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Abstract
Quorum systems (e.g., replicated state machines) are criti-

cal distributed systems. Building correct, high-performance
quorum systems is known to be hard. A major reason is that
the protocols in quorum systems lead to non-deterministic
state changes and complex branching conditions based on
different events (e.g., timeouts). Traditionally, these systems
are built with an asynchronous coding style with event-driven
callbacks, but often lead to “callback hell” that makes code
hard to follow and maintain. Converting to synchronous cod-
ing styles (e.g., using coroutines) is challenging because of
the complex branching conditions. In this paper, we present
Dependably Fast (DepFast), an effective, expressive frame-
work for developing quorum systems. DepFast provides a
unique QuorumEvent abstraction to enable building quorum
systems in a synchronous style. It also supports composition
of multiple events, e.g., timeouts, different quorums. To eval-
uate DepFast, we use it to implement two quorum systems,
Raft and Copilot. We show that complex quorum systems im-
plemented by DepFast are easy to write and have high perfor-
mance. Specifically, it takes 25%–35% fewer lines of code to
implement Raft and Copilot using DepFast, and the DepFast-
based implementations have comparable performance with
the state-of-the-art systems.

1 Introduction

Quorum systems are critical distributed systems. In a quo-
rum system, a node sends a request to a group of nodes, and
proceeds on receiving a quorum of acknowledgements. The
quorum size depends on the system design; it usually varies
between a majority, a super-majority, or the whole group. The
most common quorum systems are replicated state machines—
a linearizable and fault-tolerant group of distributed nodes
coordinating through a consensus protocol such as Paxos [39]
and Raft [48]. Such quorum systems are widely deployed in
practice, especially as critical infrastructures of large-scale
cloud and Internet services [17, 20, 23, 34, 60].

Building a quorum system is hard. Quorum systems often
have a complex consensus protocol. A node in these protocols
have a complex state space. An event, e.g., a reply to a mes-
sage, or a timeout, will trigger a state transition of the node.
At each state, the node has multiple possible branches to go
into based on the event and its current state. Though the state
transition itself could be deterministic, the entire node behav-

ior is not. This is mainly because of: 1) non-determinism in
some event types, e.g., timeout, 2) the inter- and intra-node
parallelism, and 3) network asynchrony, e.g., message delays
and out-of-order delivery.

The traditional way to code these complex state transition
conditions is through an event-driven or asynchronous coding
style. For each event, the developer defines an event handler,
or a callback function, to drive the program to the next state.
On the one hand, writing code in this style could have its
benefits, mainly two-folded: 1) it could match the style of a
more formal description, e.g., a TLA+ [38] specification; 2) it
could have a high performance as even-driven programming
is often considered to be fast in concurrent programs.

On the other hand, coding in an asynchronous style has
drawbacks, mainly making the code harder to write and fol-
low, more error-prone, and harder to debug. Since the main
workflow of handling a request from begin to end is expressed
in many (callback) functions as opposed to a single function,
the developer needs to manually maintain the shared control,
data, and debug variables across these functions. The devel-
oper also needs to manually map each function execution
properly to the request’s lifetime, for example, dropping a
reply if the system has moved with a quorum without the
reply. Overall, this asynchronous code style could increase
difficulty to develop and maintain the system. This problem
is also known as stack ripping [15] or callback hell [28]).

A natural way of resolve the above issue is turning the
asynchronous code into synchronous style, using lightweight
solutions like coroutines. This is a well studied idea in sys-
tems research [15, 37, 52] and has been adopted widely in
practice [13, 14]. However, the past study of using coroutines
to inline callbacks mainly considers supporting a single asyn-
chronous call [15, 52], e.g., inlining a single RPC callback.
This is insufficient for a quorum system, which often has
many concurrent callbacks and timeouts, and branches based
on these concurrent event composition. Take the following
behavior of a classic consensus system for example, a node
sends requests to a group, then it needs to proceed to different
branches based on the replies when it receives 1) a majority
of acknowledgements, 2) a majority of rejects, 3) a majority
of replies, mixed acknowledgements and rejects, and 4) fewer
than a majority of replies. Each of these conditions have their
own timeouts, and the program can only enter one branch. It
is prohibitively difficult to express these conditions with a
single coroutine. To make matters worse, the behavior could
be even more complex with advanced protocols which have
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multiple quorum sizes. For example, in fast-path enabled pro-
tocols such as Copilot [47], a super-majority quorum and a
majority quorum apply at the same step in the protocol, which
further complicates the situation.

In this paper, we present DepFast (Dependably Fast), a
coroutine-based distributed programming framework to ad-
dress the aforementioned challenges. Like prior works [15,
52], DepFast promotes synchronous code style with cooper-
ative task scheduling and provides an Event abstraction to
wrap the waiting points. The unique part of DepFast is that
it provides a QuorumEvent abstraction that enables the con-
struction of straightforward protocol descriptions, even for
quorum systems with complicated timeout rules and multiple
quorums (which was previously only expressible in bug-prone
callback style). A QuroumEvent represents the system state
of a quorum and any event that affects the state (e.g., arrival
of a reply, a timeout) is funneled through the QuorumEvent.
The program thus can synchronously express the conditions
and branches using the QuorumEvent in a plain if-else style.
Furthermore, the events are composable in DepFast, making it
easier to deal with cases such as waiting for multiple quorums
of different sizes at the same step.

Using DepFast to build quorum systems, the main control
flow of the protocol can be written in a single function with an
unripped stack. The code written in this style is easy to follow
and to debug. As a case study, and as a motivation, we studied
the fail-slow behavior of quorum systems, where a node in
the system can be much slower than a non-faulty node but
still functioning [55]. Debugging fail-slow behavior requires
carefully identifying the line of code to add log statements for
tracing the lifetime of a request. Writing code in the DepFast
style simplifies debugging.

To evaluate DepFast, we use DepFast to implement two
quorum systems based on Raft [48] and Copilot [47] respec-
tively. We report our programming experience with DepFast.
We demonstrate examples illustrating that DepFast leads to
better implementations compared to the common practice of
asynchronous, callback-style code; in particular, DepFast en-
ables direct translation of the protocol algorithms and allows
precise expressions of complex wait conditions, resulting in
25–35% fewer lines of code. We evaluate the performance
of DepFast-based Raft and Copilot implementations against
state-of-the-art versions to show our approach imposes no per-
formance penalty. Moreover, the DepFast-based implementa-
tions have better tolerance against various types of fail-slow
faults by construction, than the state-of-the-art versions.

The paper makes the following contributions:

• We design QuorumEvent to enable the construction of
protocol descriptions even for quorum systems with com-
plicated timeout rules and multiple quorum sizes.

• We develop DepFast, an effective, expressive framework
that enables developers to implement complex quorum
systems with a synchronous programming style.

• We show how DepFast benefits the implementation of quo-
rum systems by illustrating DepFast-based Raft and Copilot
implementations compared to state-of-the-art versions.

• We evaluate the performance of DepFast-based Raft and
Copilot and show that the DepFast design for the ease of
programming does not come with a performance penalty.

2 Background and Motivation

2.1 Quorum systems and async. programming

This paper uses quorum systems to refer to distributed systems
with a communication pattern that requires replies from a
quorum in a group of nodes. One typical type of quorum
systems is a replicated state machine which uses consensus
protocols (e.g., Paxos [39] and Raft [48]) to let nodes agree
on the next state transition.

Consensus protocols are known to be hard to implement.
Take the following behavior in Paxos and Raft for example, a
node broadcasts a replication request (Accept in Paxos, or Ap-
pendEntries in Raft) to a group; then the node needs to react
to events including replies and timeout. A reply can be either
an acknowledgement or a reject. Based on different events,
this node needs to enter different branches when it receives:
1) a majority of acknowledgements before the timeout, 2) a
majority of rejects before the timeout, 3) a majority of replies,
mixed acknowledgements and rejects at the timeout, and 4)
fewer than a majority of replies at the timeout. After the node
chooses a branch, any future event needs to be dropped. The
inter- and intra-node concurrency and the non-deterministic
event triggering lead to a very complex program state space.

Many formal and informal protocol descriptions of quo-
rum systems are written in an asynchronous style: “upon
receiving a (reply to a) message, the system acts as follows.”
It is intuitive to construct the code in the same way (e.g.,
writing a message handler in the message loop, a callback in
event-driven model, or an actor in the actor model to process
a particular message). Coding in the asynchronous style has
the benefit of matching a formal description of the protocol
(e.g., a TLA+ [38] specification). However, it could cause
the control flow to be shredded into many sub-functions like
callbacks. This leads to spaghetti code, also known as stack
ripping [15] or callback hell [28]. Take a Paxos system for
example. For each request that goes through the 3 phases (Pre-
pare/Accept/Commit), the main control flow will at least be
shredded into 3 types of callbacks. If this is a 5-replica system,
the callbacks will be executed 3×5 times. If we further count
callbacks caused by disk logging (asynchronous I/O), there
will be even more (at least doubled) callbacks.

It does not take long before a developer loses track of
how callbacks affect each other. It also imposes significant
challenges to manage the waiting process, especially in cases
where the callbacks are written by different developers (which
is often the case in practice). A natural way to address this
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problem is to turn the code to a synchronous style by inlin-
ing the callback into the calling function. This could greatly
improve understandability and maintainability. In fact, some
papers describe the main control flow in this style. For exam-
ple, in the Paxos paper [39], after a proposer sends out the
proposal, “if the proposer receives a response from a majority
of acceptors...” In practice, many projects started with the
asynchronous callback style, but the growing size of codebase
and the accompanying cognitive load of callbacks made the
developers change to a synchronous code style [15, 18].

In the past, asynchronous versus synchronous program-
ming styles (or event versus thread) have drawn many discus-
sions [15, 19, 25, 26, 37, 44, 49]. The asynchronous or event-
driven style is often preferred for performance reasons. For
example, it can avoid the overhead of many OS threads, and
the epoll/kqueue model of processing network interrupts
can efficiently utilize the interrupt-based OSes and devices.
Past works have proposed solutions to turn asynchronous code
into synchronous and preserve its high performance, e.g., by
using lightweight threads like stackful coroutines [15, 52].
However, existing solutions mainly consider inlining a single
callback like a single RPC. It does not address the challenges
of implementing quorum systems, where a broadcast request
triggers a group of callbacks, and the system needs to proceed
with a quorum.

2.2 Experience in debugging fail-slow behavior

We recently studied fail-slow behavior of real-world quorum
systems [55]. Our journey started from observing that quo-
rum systems of product-grade databases cannot meet fault-
tolerance properties of the consensus protocols—a fail-slow
follower affects system-wide performance. Such behavior
contradicts the theory—a quorum system should proceed
when there is a majority of non-faulty nodes. Specifically, a
fail-slow follower should not have visible impact by design.

To reveal the root causes of the fail-slow behavior, we spent
two person-years to analyze the three implementations. In our
experience, debugging fail-slow fault tolerance is challenging
and time-consuming. At a high level, the debugging process
is a binary search for small fragments of code that caused the
slowness using time stamping. The process sounds easy (as
we imagined it to be), but is painful in practice. The asyn-
chronous code often looks like spaghetti: the main control of
a request is spread in different code fragments. Understanding
where those code fragments are located and how they interact
is non-trivial. In fact, working with developers of two of the
databases, we find that even they have the same experience.

We also find that asynchronous code often lacks a clear
abstraction between the quorum logic (e.g., the Raft protocol)
and common, low-level utilities (e.g., RPC, disk I/O) in the
spoken implementations. In addition to the challenge of ex-
pressing complex state transitions, lacking a clear abstraction
has two more problems in implementation.

First, when a buggy fail-slow behavior occurs, it is hard
to know whether the bug is caused by the protocol code or
the utility code. A bug in the utility code is typically easier to
identify and fix than a logic bug. It would be very helpful if
the code can be constructed in a way that the logic code and
utility code are isolated and separately profiled for debugging.

Second, a lack of abstractions also indicates lacking knowl-
edge across the two parts. The utility code has to blindly
execute the requests passed by the logic code and cannot per-
form optimizations to tolerate fail-slow behavior, but push
the burden back to protocol logic. For example, the Raft logic
broadcasts AppendEntries to all replicas and waits for a quo-
rum of replies to proceed. In many existing implementations,
the Raft logic sends the same message to each replica and the
utility faithfully puts the message to the buffer of each replica.
If one replica is slow, the connection would be slow and the
buffer would keep increasing, leading to the backlog issue
reported by recent work [27, 29]. If the utility is aware that
this is a broadcast that can succeed with a quorum of replies,
it can safely discard the messages for the slow connection.

2.3 Goal

Our experience in building and investigating complex quorum
systems has driven us to rethink the programming practice
and seek a more foundational solution that can make it eas-
ier to build and maintain quorum systems. We propose a
synchronous programming framework for this purpose. In
particular, we will propose abstractions that allow developers
to implement complex quorum state transitions that can only
be implemented with an asynchronous programming style
before. We will show by our experiences that this framework
can help programmers efficiently express complex quorum
conditions in a way that is easy to follow and maintain.

3 The DepFast Framework

This section introduces the Dependably Fast (DepFast) frame-
work. DepFast aims to provide an effective, expressive pro-
gramming framework for building quorum systems. We first
go through the interface of DepFast (§3.1), including an im-
portant abstraction we propose for quorum systems (§3.1.2).
Then we go into internals of the framework, describing how
it is implemented (§3.2).

3.1 DepFast from a programmer’s perspective
3.1.1 Coroutines and events

DepFast provides programmers with two main interfaces:

• a coroutine interface for launching tasks,
• an event interface which wraps the waiting points, or any

potential fail-slow points, in the code.

USENIX Association 2022 USENIX Annual Technical Conference    559



The idea of using coroutine is to keep the code in one
piece—avoiding callbacks, while maintaining the perfor-
mance when dealing with an operation that needs to wait. For
example, the code snippet below is triggering an RPC with a
callback. Traditionally, it is considered the high-performance
way of writing concurrent programs as it avoids the cost of
creating and switching between threads. On the other hand, it
comes with the cost of breaking the control flow, leading to
many side effects besides increasing code complexity. For one,
the programmer needs to manually maintain a shared stack
from callbacks to callbacks, which is also known as stack
ripping [15]. For a quorum-based system, the case could be
more complex. For example, a reply is not always “valid”; an
outdated reply needs to be ignored. The programmer needs to
manually manage those, as exemplified in the code below:
void DoAppendEntries() {
for (auto rpc_proxy : servers) {
auto entries = ...;
// the next line bears possible slowness
auto rpc_event = rpc_proxy.AppendEntries(entries,

AppendEntriesCallback);
}

}
void AppendEntriesCallback(Id id, Result result) {
// manually manage shared data
auto reply_ok_cnt = reply_map_g[id];
// manually manage lifetime
auto status_ = status_map_g[id];
if (status_ == undecided) {
... // only process when the log is still alive

} // else ignore
}

Using coroutine, the above code can be expressed as:
Coroutine::Create([] () {
vector<RpcEvent> events;
for (auto rpc_proxy : servers) {
auto entries = ...;
// the rpc call is asynchronous and non-blocking
auto rpc_event = rpc_proxy.AppendEntries(entries);

}
for (auto& rpc_event: events) {
// block coroutine until the rpc returns
rpc_event.Wait(); // possible slowness
Process(rpc_event.Result());

}
})

In the above code, what was split in callbacks is glued
together in a single function, where the programmer can con-
tinue using the stack to share system states with a unified
control flow. The code using coroutine can provide similar
performance to the code with callbacks, because coroutines
do not incur the heavy overhead of OS threads [15].

Note that the above code uses RpcEvent: calling Wait()
on this object would suspend the current coroutine until the
RPC has the return value ready. DepFast uses such event ab-
straction to wrap all the waiting conditions. With the events,
a programmer can suspend/resume the coroutines. DepFast
implements many built-in event types to support various oper-
ations (RPC, file I/O, etc.). With all waiting points moderated
by the framework, DepFast naturally empowers more analysis
(§A.2). DepFast also provides novel event types to better deal
with distributed, quorum-based systems. We next introduce
an important event in DepFast, QuorumEvent.

3.1.2 QuorumEvent

The coroutine-style code above is less efficient than the
callback-style code. The coroutine-style code waits for the re-
ply from each server sequentially with a fixed order, while in
the callback-style code the callback for each server’s response
can be triggered out of order. This gives the callback-style
code a major benefit in performance, because it only needs to
wait for the first quorum of messages to arrive. In particular,
it is not affected by a fail-slow remote server. On the contrary,
the coroutine-style code will be slower in performance and
be affected by a fail-slow server.

To address this issue, DepFast has a special event type,
termed QuorumEvent. The key idea is to prevent any indi-
vidual fail-slow event from straggling a coroutine by com-
bining many events together into a compound event. As the
name suggests, QuorumEvent does not need all responses
from each individual event. The usage of a QuorumEvent is
demonstrated by the following example.
Coroutine::Create([]() {
auto quorum_event = QuorumEvent();
for (auto rpc_proxy : servers) {
auto entries = ...;
auto rpc_event = rpc_proxy.AppendEntries(entries);
quorum_event.add(rpc_event);
// no longer wait for any single event

}
quorum_event.Wait(MAJORITY); // wait for a majority
...
// after 10s, release resources to avoid backlog
quorum_event.Release(10000 /*ms*/);

})

Using the above QuorumEvent has two benefits. First, the
replies can be received out of order and the program can
proceed as soon as receiving a majority of replies. Second,
the abstraction helps programmers avoid writing any code
that would be blocked by any single-point fail-slow remote
server. A key idea that DepFast deploys to help avoid fail-slow
fault propagation is to encourage programmers to not wait on
any event individually but always wait on a quorum of events
when possible.
QuorumEvent also provides a better abstraction for re-

source management to help avoid the backlog issue constantly
observed with fail-slow faults [27, 29]. In the code snippet
above, calling Release() will tell DepFast to release all re-
sources related to this event after a timeout. This is particular
useful for a quorum system. It gives a deferment period for the
slower response to arrive, after which the system will forcibly
free all the resources related, e.g., the buffer in the RPC. Al-
lowing a deferment period is very useful in implementing
many protocols, because they often need to distinguish be-
tween the two cases: 1) the response is only a bit slow, or not
at all slow but just ordered after other responses, but the host
can still react to those responses which benefits the system
liveness 2) the response is too slow, and the receiver should
react differently (e.g., a failure recovery).

To see why using QuorumEvent is a better approach for
resource management, consider the following alternative:
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// Create a separate coroutine for each RPC
for (auto rpc_proxy : servers) {
Coroutine::Create([]() {
auto entries = ...;
auto rpc_event = rpc_proxy.AppendEntries(entries);
rpc_event.Wait();
Process(rpc_event.Result());

})
}

This alternative approach is both synchronous in program-
ming style and avoids sequentially waiting on each RPC call.
Actually, such a-coroutine-per-task approach is very popu-
lar in modern practices, especially in writing services with
Go-lang [22]. However, in our experience this may cause
problems under fail-slow behavior. If the target of the RPC
is slow and cannot respond in time, the coroutine will hang
in the system, waiting for the response. With new requests
coming in, the hanging coroutines will accumulate, eventually
exhausting system resources, as each coroutine consumes at
least a memory space for its stack.

3.1.3 Other event types

In general, DepFast provides two types of events: basic events
and compound events. Basic events are waiting on a task to
finish, such as an RPC, a disk access, or a flag to be set, etc. A
compound event is a combination of basic or other compound
events. Table 1 summarizes common event types in DepFast
and their trigger conditions.

Basic events. One common basic event is ValueEvent. This
is a holder for a value to be set. If the value is set to match the
target value, the event will be triggered. We find this event
abstraction very useful because we often find statements in
algorithms written like “wait for X to become Y.” For example,
in Copilot [47], to decide the execution order of a command,
the system needs to wait until the status of a selected group of
commands to become “committed”. Traditionally, this could
be hard to implement as it would involve complex callbacks
or thread synchronization. With DepFast, statements of this
type can be directly translated to one line of code.

Another basic event type is IOEvent. We use it to wrap all
synchronous I/O operations, mainly disk-related operations.
An IOEvent corresponds to a task executed in an I/O thread.
For example, the program initiates a disk write through Dep-
Fast’s interface, the actual disk operations involving fwrite
and fsync will be executed in the I/O thread. The program
then waits on a DiskEvent returned by DepFast. When the
disk operation finishes, the I/O thread will notify the sched-
uler that the event is ready. The synchronization between I/O
threads and scheduler is the only part in a DepFast program
that has multi-thread synchronization. We believe that this
small footprint of multi-thread synchronization can minimize
the possible fail-slow issues caused by multi-threading.

Compound events. For compound events, an example is
QuorumEvent (§3.1.2). It takes many events (e.g., RPCEvent)
as its subevents, and wait for at least a defined quorum of

Event Trigger Condition

ValueEvent If the value is set and matches the target (it sup-
ports customized comparators).

DiskEvent If the disk access operation (e.g., fread, fwrite,
and fsync) is finished.

RpcEvent If the RPC call has returned.
QuorumEvent If a quorum has reached (typically used together

with RpcEvent).
AndEvent If all subevents have been triggered.
OrEvent If any subevent is triggered.

Table 1: The built-in events in DepFast

them to be triggered. Other compound events in DepFast
includes AndEvent and OrEvent. As the name suggests, an
AndEvent is triggered when all of its subevents are triggered;
an OrEvent is triggered as soon as one of its subevents is
triggered. Note that events can be nested: for instance, an
AndEvent can contain many QuorumEvents as its subevents.

Nesting events can express complex waiting conditions.
For example, one can use an OrEvent to combine these 3
events: 1) a QuorumEvent that waits for a majority of okays.
2) A QuorumEvent that waits for a minority-plus-one rejects.
3) A TimeoutEvent. This compound event can be used to
effectively catch conditions in classic consensus protocols. In
fact, as we find that the abstraction is very commonly used,
we have merged these three conditions into QuorumEvent so
it has three outcomes: Ready(), Fail(), Timeout(),

3.1.4 A showcase of DepFast’s expressiveness

DepFast can effectively express many complex behaviors of
quorum systems, organize the main control flow in a clean
way, and process the complex state transitions automatically
in the background. We demonstrate the expressiveness of
DepFast using the code snippet of our Copilot implementa-
tion built with DepFast in Figure 1. Copilot is one of the
protocols that leverages a “fast-path quorum” [40, 45, 57]. In
these protocols, after broadcasting a round of (FastAccept)
messages, there are at least three concurrent conditions to
decide how the system proceeds: 1) to a fast path if receiving
a super-majority of acknowledgments with identical specu-
lative information, 2) to a slow path if receiving a majority
of acknowledgments, and 3) to failure recovery if neither the
above is possible (e.g., when receiving a majority of rejects,
or not enough messages after a timeout). Figures 1(a) and (b)
show the code and control flow chart of Copilot built on top of
DepFast. As demonstrated, the code implements the protocol
in a clean manner. What DepFast handles in the background
is shown in Figure 1(c). Upon every event (message arrival
and timeout), DepFast processes the subtle state transitions
and drives the main control flow forward to the proper next
state. Without DepFast, one needs to carefully implement all
state transitions and error handling manually, a complex and
error-prone process. With DepFast, one can build the system
cleanly, with code easy to follow.
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1 BcastFastAccept(...);

2 QuorumEvent fastpath = ...;
3 QuorumEvent slowpath = ...;
4 fastpath.SetTimeout(FASTPATH_TIMEOUT);
5 slowpath.SetTimeout(SLOWPATH_TIMEOUT);

6 fastpath.Wait();

7 if (fastpath.Ready()) {
8 ... // process fast path

9 } else if (fastpath.Fail() || 
10 fastpath.Timeout()) {

11 slowpath.Wait();

12 if (slowpath.Ready()) {
13 ... // proceed slow path
14 } else {
15 ... // retry & error handling
16 }
17 }

BcastFast
Accept()

fastpath.
Wait()

slowpath.
Wait()

// process 
fast path

// process 
slow path

// retry 
& error 
handling

On reply of 
FastAccept

On timeout of 
the fast path

On timeout of 
the slow path

If this 
quorum is 

expired

If still 
wait for this 

fast path

If still 
wait for this 
slow path

If fast 
accepted? 

OK_cnt ++

If wait on 
fast path and 

OK_cnt>=Q_f

Rej_cnt ++

If wait on 
fast path and 

OK_cnt>N-Q_f

If wait on 
slow path and 

OK_cnt>=
Q_s

If wait on 
slow path and 

OK_cnt>
N-Q_s

(a) Copilot code written using DepFast (b) Control flow of DepFast-based code (c) Events and state transitions handled by DepFast

1:

6:

8: 11:

13:

15:

Clean RPC 
related 

resource

Figure 1: Expressiveness of DepFast demonstrated by DepFast-based Copilot implementation: (a) code, (b) control flow, and (c)
events and state transitions. The code logic is explained in Figure 3.

3.2 DepFast internals
3.2.1 Architecture

Figure 2 shows the architecture of DepFast. A DepFast pro-
cess has two major types of threads: worker threads and sys-
tem threads. The former run user code and the latter run
background activities.

All user-defined tasks run in worker threads as stackful
coroutines; we use Boost::coroutine2 [13] as a building block.
A worker thread runs an epoll [6] (or kqueue [10] for BSD-
based systems) loop that wakes up on network interrupts or
timeouts. The system has a built-in high-performance RPC
module that uses the epoll for incoming and outgoing mes-
sages similar to other high-performance networking library
like libev [11]. The RPC module provides automatic client
code and server handler header generation from an RPC dec-
laration file (like gRPC [9]). The RPC works asynchronously
and provides synchronous event binding (RpcEvent).

Having the RPC working asynchronously allows us to
avoid launching a separate coroutine for each RPC (§3.1.2).
Take the QuorumEvent for example. The system only has
one global epoll loop that receives replies for all RPCs.
Once the system receives a reply, it is matched to the
belonged QuorumEvent, and a counter is updated in that
QuorumEvent. Once that counter reaches the quorum num-
ber, the QuorumEvent is ready, and then the system resumes
the coroutine waiting on it. There is no coroutine creation
during handing a message that might contribute to a quorum.

In the same worker thread runs the scheduler functions. The
scheduler is in charge of managing user coroutines. All corou-
tine lifetime related functions, including coroutine creation,
deletion, pause, and resume, are provided by the scheduler.
The scheduler performs a check at each epoll wakeup. It
checks whether the event a coroutine is waiting on is triggered

System ThreadWorker Thread

A DepFast Process

Worker Thread
Worker Thread

System Thread
System Thread

Hardware & OS

epoll/kqueue loop

SchedulerRPC

User-defined coroutines

Res. monitoring 
(CPU, mem, 

network, disk)

Fail-slow analysis

Blocking calls (IO)

Figure 2: The architecture of DepFast

(or timed out), and then resume the paused coroutine.
While the worker threads handle most of the system func-

tions on the critical path, the system threads deal with the
additional features of the framework. Among these, a signifi-
cant function is to support blocking calls. Examples include
disk flush calls (fsync) and support for third-party libraries.
DepFast supports these by wrapping them in system threads.
Other features that run in system threads include the resources
usage monitoring (CPU, memory, network, disk) and fail-slow
analysis, which we will discuss later.

3.2.2 Lazy and cooperative scheduling

The base class of an Event is implemented as follows:
class Event {
// timeout defines the maximum duration of waiting
// on the event. -1 means waiting forever.
void Wait(int timeout = -1) {
if (IsReady()) return;
if (timeout >= 0) {
sched_s.sorted_timeouts.insert(now()+timeout);

}
// sched_s is a thread_local static variable
sched_s.yield_current_coroutine(this);

}
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void Test() {
if (IsReady()) {
// the scheduler will put the suspended coroutine
// back to the ready_coroutine queue.
sched_s.notify_ready(this);

}
}
// To implement by specific event type to define when
// this event is ready to resume suspended coroutine.
virtual bool IsReady();

}

The coroutine management operates in a lazy and cooper-
ative approach. It does not preemptively suspend or resume
a coroutine. When a coroutine is running, it fully occupies
the worker thread. A key structure in the scheduler is a queue
that records pending events and the corresponding suspended
coroutines. When a coroutine runs, it may change the status of
other events (e.g., changing the value of ValueEvent). When
this happens, the scheduler will not yield the current running
coroutine and switch to the resumable coroutine immediately,
but mark the event ready and put it in a ready queue. Only
when the running coroutine calls Wait on an event, the sched-
uler is triggered to do scheduling work.

The scheduler will first check if the event is ready (i.e., no
wait is necessary). If so, the Wait call returns directly without
yielding out the coroutine; the caller coroutine continues run-
ning. If not, the scheduler will put a reference of the event and
the caller into a pending queue, and then looks for the next
coroutine to run. The scheduler first checks the queue of ready
events and resumes them one at a time. Note that the queue
of ready events may grow during this process, as the resumed
coroutine may turn more events ready. After the ready queue
is empty, the scheduler searches the pending queue for events
that are timed out, and resumes the suspended coroutines cor-
respondingly. To make the search faster, the pending queue is
sorted based on the timeout timestamps.

Reversed backlog. In our development of DepFast, we en-
countered an interesting issue termed “reversed backlog.”
When a system has a slow node, RPCs to this slow node will
be delayed. However, the delays are not necessarily uniform
over time. The responses often arrive in a burst pattern—the
RPC sender will not hear back from the slow node for a while,
and then suddenly receive many responses from it. In our
early implementation, the epoll loop would process every-
thing available from a connection before moving on to the
next. This caused the system to occasionally hang on process-
ing the outdated RPC responses. To deal with this issue, the
system is improved to process data from connections with a
round-robin approach; it will pause processing a connection
after reaching a threshold to avoid starving other connections.

3.2.3 Concurrency and multi-threading

Through the coroutine model, DepFast allows multi-task con-
currency inside a single worker thread. Similar to many other
asynchronous event or coroutine frameworks, DepFast encour-
ages programmers to exploit concurrency in a single worker

thread before moving to multi-threading. The advantage of
running tasks in a single thread is to avoid thread-safety issues.
To DepFast, an extra benefit is to eliminate the possibility of
fail-slow faults caused by thread locks, a known suspect of
performance issues. In reality, running tasks concurrently with
a single thread can give high enough performance in most
cases, as shown in our evaluation (see §6.2 and §6.3).

Moving to multiple threads, to write thread-safe code the
users need to either shard the system into different threads
and regulate inter-thread communication, or write memory-
sharing code and use mutexes for mutual exclusion. DepFast
encourages the former as it minimizes the chances of perfor-
mance issues caused by waiting on mutexes.

4 Discussion

We discuss the software engineering benefits of using DepFast
to build quorum systems. We exemplify the challenges in
implementing complex quorum conditions and discuss how
DepFast can address the challenges. As an concrete example,
the following code snippet processing a fast path is taken (and
simplified) from the EPaxos implementation [3], a popular
academic prototype of advanced consensus protocols.
func handlePreAcceptReply(reply) {
inst := ... // find consensus instance
... // return if this is a delayed request
if reply.OK {
inst.preAcceptOKs++

} else {
inst.preAcceptRejects++
if inst.preAcceptRejects >= r.N/2 {
// TODO

}
}
fastpathSatisfied = ... // test fastpath conditions
if inst.preAcceptOKs >= N/2 && fastpathSatisfied {
// proceed to fast path

} else if inst.preAcceptOKs >= N/2 {
// proceed to slow path

}
//TODO: take the slow path if msgs are slow to arrive

}

We can see two TODOs in the code. The first TODO is on count-
ing rejects. If a node receives too many rejects to proceed, it
should enter error handling to retry this request. In DepFast,
this maps to the branch where slowpath.Fail() happens.
The second TODO is when messages are slow to arrive, this
case maps to DepFast’s branch where fastpath.Timeout()
and/or slowpath.Timeout() happen.

Implementing the two TODOs would require heavy revisions
on the code logic and change the control flow, as it cannot
be done by naturally replacing the TODO comments with two
function calls. In contrast, with DepFast, one can implement
both TODOs in place. For the first TODO, a retry function can
be synchronously called in the reject branch. For the second
TODO, if messages are slow to arrive, a function calling the
slow path can be put right in the timeout branch.

In fact, TODOs are not the only problem in the code. The
fast-path condition is also simplified and suboptimal. The
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condition is important, because it decides whether to enter a
fast path or a slow path. In the code, once it sees a majority of
OK replies, it makes the decision based on the current calcula-
tion of the conditions (fastpathSatisifed). However, this
decision could be suboptimal, because the conditions could
change if more replies arrive. As a consequence, a node loses
the opportunity to enter a fast path if it waits a little longer,
but directly enters the slow path. The simplification, despite
being suboptimal, is understandable, because it is very hard
to express the conditions accurately in the asynchronous code
style. With DepFast, this can be expressed easily with the
timeout scheme on a QuorumEvent.

Lastly, the conditions assume that the fast- and slow-path
quorums have equal size, which indicates that it only works
for at most 5 replicas. If the replication group size is bigger [4],
the code needs heavy revisions. Simply replacing N/2 in the
if branch with a larger super-majority value is incorrect: the
code will always choose a slow path because the else if
branch will always be taken.

Although this discussion is based on EPaxos, we find that
the conditions are error-prone in other quorum system im-
plementations, especially regarding timeout handling. For
example, CockroachDB had a bug caused by having no time-
out on lease acquisition [5], which may lead to system stalling.
In DepFast, because timeout can be easily added to an event,
such problems can be prevented. In fact, we often use this
practice for debugging: for cases that cause the system to stall,
we add a global default timeout to all events, and then we can
easily find the stall point of the problematic code.

5 Building Quorum Systems with DepFast

To demonstrate the usefulness and effectiveness of DepFast,
we use DepFast to build two quorum-based systems: Raft
[48] and Copilot [47], named as DepFast-Raft and DepFast-
Copilot respectively. In this section, we discuss our experi-
ences in using DepFast to build these systems, with a focus
on how to “translate” the protocol algorithms into system
implementations effectively.

5.1 DepFast-Raft

Raft’s protocol largely consists of two parts: 1) leader election:
a candidate broadcasts RequestVote RPCs to all the other
servers; it becomes a leader once votes from a majority of
servers are received. and 2) data replication: for each follower,
the leader keeps a mark (nextIndex) of the next log position
to send to that follower; if the follower is lagging (due to out-
of-order messages, network issues, etc.), the leader repeatedly
sends the log entries needed by the follower.

Leader election can be effectively expressed with DepFast’s
QuorumEvent design: a server broadcasts requests to other
servers and can proceed after it receives a quorum of acknowl-
edgments. Data replication, though described in a different

style in the Raft paper [48]— from a follower’s view, not a
quorum’s view—can also be expressed to the same pattern
above. Our implementation uses one coroutine to initiate the
broadcast of the AppendEntries requests and wait for a quo-
rum of responses. As DepFast handles most of the complexity
in the network, disk, and event processing, a Master student
was able to translate Raft’s pseudocode directly into a stable
C++ implementation (used in §6.2) in ten days. The imple-
mentation has ∼1,200 lines of code. As a rough comparison,
the Raft logic in etcd [8] is implemented in ∼1,600 lines of
code in Go; braft [2], an open-source Raft implementation in
C++, has ∼3,500 lines of code.

An interesting case we found in implementing DepFast-
Raft relates to the way Raft describes its protocol. In the de-
sign of Raft’s data replication protocol (its AppendEntries
RPC), if the follower is lagging, the leader repeatedly sends
log entries that are missing on the follower. This design is
optimized for lagging servers and for new servers trying to
catch. However, the way the algorithm is described may nat-
urally lead to an implementation with separate threads syn-
chronizing with different followers. A natural implementation
could split the code responsible for committing a request into
different functions in different threads. This style of imple-
mentation works well when there are no failures, but could
take more time to debug when there are unexpected fail-slow
behaviors, because it requires more work to trace the progress
of each request. Our implementation, instead, uses a single
coroutine to initiate the broadcast of the AppendEntries
requests and wait for a quorum of responses. In case of an
occasional reject due to the follower being lagging, the leader
will launch a background coroutine, which is off the criti-
cal path of client requests, to synchronize with the lagging
follower with additional AppendEntries.

5.2 DepFast-Copilot

Copilot is a consensus protocol that tolerates any single fail-
slow node including the leader. It has two leaders, a pilot and
a copilot, each is the backup of the other in case one fails.
Copilot’s complexities mainly rise from following designs:

• Commands ordering. Each leader maintains two separate
logs, one for itself and one as the backup of the other leader.
Copilot’s ordering protocol coordinates between pilot and
copilot to determine the dependencies of log entries, which
specifies the prefix of the other log that should be executed
before a given log entry.

• Commands execution. Unlike Raft that uses an index to or-
der command execution, Copilot’s execution order is more
complex: (1) Copilot has a protocol that calculates the right
order of a command based on its dependencies. The calcula-
tion process is restricted by the status of these dependencies,
e.g., the execution must happen after all the dependencies
satisfy a rule; (2) The execution of the command is also con-
strained by the dependencies, i.e., a command’s execution
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It then proposes command and 
initial dependency for this entry to 
the other replicas by sending them 
FastAccept messages.

A pilot tries to gather a fast 
quorum of FastAcceptOk replies.

If a pilot gathers a fast quorum, 
..., it is safe for the pilot to commit 
this entry on the fast path and 
continue to execution.

Otherwise, the pilot waits till it 
receives at least f+1 FastAcceptOks
and FastAcceptReplys and then 
continues to the Accept phase.

(a) Algorithm Description (b) DepFast-Copilot (c) Original Copilot Implementation

• The original implementation needs to manually manage control flow, e.g., tracking if 
the reply is outdated (L8   ). DepFast automatically handles this.

• DepFast handles timeout elegantly (L10   ). The original code must count timeout
after receiving a reply, or it needs another callback to explicitly handle timeout.

• DepFast can effectively express complex conditions more naturally. It first waits for
the fast path (L7   ), then the slow path (L9   ). The original code does it in a reversed
way, first waits for the regular quorum (L16   ), then the fast quorum (L21   ).

1 BcastFastAccept(...);
2 QuorumEvent fastpath = ...;
3 QuorumEvent slowpath = ...;
4 fastpath.SetTimeout(FASTPATH_TIMEOUT);
5 slowpath.SetTimeout(SLOWPATH_TIMEOUT);

6 fastpath.Wait();

7 if (fastpath.Ready()) {
8 ... // process fast path
9 } else if (fastpath.Fail() || 

10 fastpath.Timeout()) {
11 slowpath.Wait();
12 if (slowpath.Ready()) {
13 ... // proceed slow path
14 } else {
15 ... // retry or error handling
16 }
17 }

1 func FastAccept() {
2 entry := ...
3 BcastFastAccept(entry)
4 entry.startTime = Now()
5 }
6 func OnFastAcceptReply(r *Reply) {
7 entry := logs[r.p][r.i]
8 if entry.ballot != r.ballot
9 return

11 if r.fastAcceptOK
12 entry.nOK++
13 else if r.fastAcceptReply
14 entry.nReply++
15 elapsed := Now().Since(entry.startTime)
16 if elapsed >= SLOWPATH_TIMEOUT && 
17 entry.nOK + entry.nReply < QuorumSize()
18 ... // retry or error handling
19 if entry.nOK+entry.nReply >= QuorumSize() {
20       if elapsed < FASTPATH_TIMEOUT {
21         if entry.nOK >= FastQuorumSize()
22 ... // proceed fast path
23         else if entry.nReply >N-FastQuorumSize()
24 ... // proceed slow path
25 } else {
26 ... // proceed slow path
27 } 
28   }}

Figure 3: Comparison of the Copilot implementation using DepFast and the original implementation (both are simplified)

must wait until all the predecessors are executed.
• Fast takeover. When one pilot becomes slow or fails, the

other pilot needs to take over entries in the slow pilot’s log
to prevent waiting for its commit for too long. It broad-
casts Prepare to all other replicas to collect the entries
and their status on other replicas at that position. Depend-
ing on the replies collected, Copilot distinguishes between
many different cases to choose an entry properly, including
whether there are committed entries, how many entries are
fast-accepted, how many entries are accepted, etc.

As we have discussed in Section 3.1.4, DepFast can effec-
tively express Copilot’s complex behaviors. Figure 3 shows a
comparison of the DepFast version and the original version
of Copilot. As shown, the DepFast version is closer to the
algorithm in flow, and is easier to follow.

The commands execution algorithm contains statements
like “waiting for the commit/execution of”, which is common
in other protocols that use dependency for commands order-
ing (e.g., EPaxos [45]). However, such kind of behavior is not
straightforward to express in an asynchronous programming
style. In fact, the original Copilot implementation adopts this
asynchronous programming style. It uses a separate Gorou-
tine to keep scanning through the log and breaks the loop to
start from the beginning when the above waiting condition
is not satisfied. Instead, DepFast’s Wait API captures such
behavior effectively. What we do is to represent the com-
mit/execution of a log entry as an event and call Wait if there
is a dependency on it as shown in Figure 4.

We find that the Copilot implementation using DepFast is
more concise and readable than the original asynchronous,

callback-style implementation. To give a rough, unsolicited
idea, the original implementation of the core protocol (ex-
cluding the utility code) has ∼2,500 lines of Go code [12].
DepFast-Copilot only has ∼1,600 lines of C++ code, despite
that C++ is less expressive than Go.

Anecdotally, we started a Copilot implementation without
DepFast, using an asynchronous callback style. In the process
we ran into a bug that sometimes froze the system, which was
caused by a wait condition being not triggered properly. We
find bugs of this type are very hard to debug (we spent two
weeks debugging it) because there is not a simple way to track
each wait condition. We re-implemented the wait conditions
using DepFast’s Wait API. The new implementation was
done in roughly two days and we never encountered the same
problem. Thanks to DepFast’s coroutine and event model, it
is very easy to find out which event the system is waiting on,
and print all the stack frames of the suspended coroutine.

6 Evaluation

We have shown the software engineering benefit of DepFast
is its expressiveness and programmability (§3.1.4, §4 and §5).
In evaluation, we mainly focus on answering two questions:
1) Does the expressiveness come at a cost of performance, or,
can systems implemented in DepFast achieve the same level
of performance as heavily optimized production and academic
systems? 2) Can DepFast help system implementations guar-
antee their fault tolerance? This section answers the two ques-
tions by comparing Raft and Copilot implemented in DepFast
to etcd and the original Copilot implementation. Specifically,
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(a) Algorithm Description (b) DepFast-Copilot (c) Original Copilot Implementation

The DepFast implementation 
is almost a line-to-line 
translation to the algorithm.

1 void OnCommit(pilot p, slot i) {
2 // Commit entry
3 auto entry = logs[p][i];
4 entry.status = COMMITTED;
5 ValueEvent pred_execed = 

logs[p][i-1].exec_event;

6 ValueEvent dep_execed =
logs[!p][entry.dep].exec_event;

7 ValueEvent cycle_dep_satisfied(
isPilot(p) && inCycle(p, i));

8 AndEvent exec_ready(pred_execed,
9 OrEvent(dep_execed,

cycle_dep_satisfied));
10 exec_ready.Wait();
11 executeCmd(entry);
12 entry.exec_event.Set(true);
13 }

1 func run() {
2 go executeCommands()
3 ... // command ordering Goroutine
4 }
5 func executeCommands() {
6 // command execution Goroutine
7 while true {
8 for i = executeUpTo[p] + 1;
9 i < latestIdx[p]; i++ {

10 entry = logs[p][i]
11 depEntry = logs[!p][entry.dep]

12 if entry.status < COMMITTED {break}

13 if depEntry.status == EXECUTED {
14 executeCmd(entry)
15 continue
16 }
17 if isPilot(p) && inCycle(p, i) {
18 executeCmd(entry)
19 continue
20 }
21 break
22 }
23 p = !p
24 }
25 }

The original implementation is an indirect realization of the algorithm. The 
conditions (e.g., for      ) are complex, with sophisticated control flows.

The original implementation keeps scanning through the pending. Achieving 
high performance is nontrivial, but needs many extra efforts, e.g., where to 
start the scan, how to avoid redundant scans, how to pause/resume. 

Specifically, a replica can execute 
a command in entry P.i with
dependency P’.j if:

P.i is committed, and.
It has executed P.(i-1), and then 
one of the following two 
conditions holds:
It has executed P’.j, or
P is the pilot log, and
cycles exist between P.i and 
all P’ log entries ≤ P’j.

Figure 4: Comparison of the Copilot implementations using DepFast and the original impl. (both are simplified), cont’d

for fault tolerance, we evaluate DepFast-based systems on
fail-slow fault tolerance using fail-slow faults [27, 31].

6.1 Experiment Methodology

We ran all the experiments on Azure Cloud. For each system,
we evaluated it on a 3- and 5-replica cluster: each node runs
on a Standard_D4s_v3 virtual machine (VM), with 4 vCPUs,
16GB RAM, and 64GB SSD. The server process is bind to
one CPU core for all the systems evaluated. We ran the clients
in a Standard_D16s_v3 VM, with 16 vCPUs and 64GB RAM.

Workloads and metrics. For all the evaluated systems, in-
cluding our Raft and Copilot implementations, and the ref-
erence implementations (etcd [8] for Raft and the original
Copilot implementation [12]), we use a single K-V, 100%
write workload. We measure performance metrics, including
throughput and latency distribution. Each trial runs for 120s
and is repeated for 3 times. We display the results with the
median throughput of the 3 trials, with the error bars showing
the deviation.

Configurations. We use quorum reads and writes in our eval-
uation. We use the load that reaches the max CPU utilization
on leader for the fault-injection experiments, marked with red
stars in Figures 5(a) and 6(a). For DepFast-Raft, the server
replies to the client after the log entry has been persisted on
disk. For DepFast-Copilot, we set the fast-takeover timeout
to 10ms and the command batching timeout to 1ms (same as
the original Copilot implementation).

Fault Injection. We build a fail-slow fault injection testing
tool to inject different types of fail-slow faults on system
components (including CPU, memory, SSD, and network in-

terface) into the target systems and measure their impact in
terms of the end-to-end performance. The fail-slow faults
are simulated based on prior studies on fail-slow faults and
represent common fail-slow modes [27,31]. Table 2 describes
those faults and the corresponding injection methods. For
DepFast-Copilot, we do not inject faults on the disk, because
the implementation is memory-based.

We inject fail-slow faults in the way that is expected to be
tolerated without losing throughput by the consensus proto-
cols of the target quorum systems. For DepFast-Raft, we inject
faults to a minority of followers [55]. For DepFast-Copilot,
we inject faults to a minority of nodes that can include one of
the leaders [47].

6.2 DepFast-Raft

Figure 5(a) shows the latency and throughput of DepFast-Raft
and etcd with both 3- and 5-replica setups. When binding
the server process to one core, our DepFast-Raft achieves a
maximum throughput of over 20K and 18K RPS (requests
per second) with 3- and 5-replica setups, respectively; etcd
has a peak throughput of 8K RPS. Claiming DepFast-Raft
is better than etcd would be perhaps unfair as etcd is a pro-
duction system with many features. However, this test at least
proves that DepFast can be used to implement systems of
production-level performance, with a class-project level of
building difficulty.

Figures 5(b)–(d) show the fail-slow fault tolerance of
DepFast-Raft in terms of throughput, median and P99 tail
latency (in CDF) in both 3- and 5-replica setups. For the 3-
replica setup, we inject fail-slow faults to one follower; for the
5-replica setup, we inject fail-slow faults to two followers (the
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Fail-slow Type Injection Method Follower Leader

Slow CPU Use cgroup to limit DB process to utilize only p of CPU period p=5% p=50%
CPU Contention Custom program (to consume cpu) assigned t× cpu share as the DB process t=15 t=1
Slow Disk Use cgroup to limit the disk I/O bandwidth available for DB to bw bw=128KB/s N/A
Disk Contention Use program(dd) to do write operation on disk while DB is running no parameter N/A
Slow Network Add a delay of d to the network interface using tc d=40ms d=40ms
Memory contention Use cgroup to set the maximum amount of user memory for DB process to s s=50MB s=250MB

Table 2: Fail-slow faults used in the measurement study and our evaluation
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Figure 5: Performance of DepFast-Raft with various fail-slow faults on follower(s) in the 3- and 5-replica deployments.

minority). We choose to only inject faults on the followers,
because slow followers in Raft should not affect performance,
while the slow leaders do.

We can see that DepFast-Raft consistently tolerates the in-
jected fail-slow faults. The throughput differences are within
6% and 10% for 3- and 5-replica setup, respectively. The
differences in both median and P99 latency are within 15%
range. The results are comparable to etcd under the same test
(see Figure 8, §B).

We attribute DepFast-Raft’s fault tolerance to the use of
the DepFast framework to manage potential fail-slow points
with the event interface. Specifically, we wrap every set of
RPCs with QuorumEvent to avoid blocking on a single slow
follower, preventing slowness propagation. Besides, blocking
operations (e.g., disk I/O) are wrapped and put on a separate
thread to avoid blocking the main worker thread.

Note that fail-slow followers inevitably have an impact,
as the system is more susceptible to network and disk I/O
spikes. In a 3-replica quorum, when one follower fails slow,
the quorum reads and writes can be affected by the spikes of
the other follower, affecting the tail latency.

6.3 DepFast-Copilot

Figure 6(a) shows the latency and throughput of DepFast-
Copilot and the original Copilot implementation [12] in a
3-replica setup. (the 5-replica results can be found in B). The
peak throughput of DepFast-Copilot is 33K RPS with a 3-
replica setup. The performance is comparable to the original
Copilot, which is just 9.3% higher at 36K RPS. The through-
put is much higher than Raft, mainly because there is an op-
timization in Copilot called ping-pong batching that batches
many requests into one command.

We inject fail-slow faults to both a leader and a follower, as
Copilot is designed to tolerate any one of the fail-slow nodes.

Fail-slow follower. Figure 6(b) and 6(c) show the throughput
and latency CDF of DepFast-Copilot with a fail-slow follower.
Similar to the results of DepFast-Raft (§6.2), the faults do not
have a significant impact on system-wide performance. The
differences in throughput are with 10%, and the differences
in median latency and P99 latency are within 9% and 30%,
respectively. We observe that DepFast-Copilot’s tail latency is
more susceptible to fail-slow faults than that of DepFast-Raft.
Apart from the spikes discussed in §6.2, we attribute that to
Copilot’s property of having two leaders. With a maximum
number of minority followers being slow, a reply from another
leader must be obtained to form a quorum, while with fewer
slow followers a leader can form a quorum just with replies
from non-slow followers. However, the load on a leader is
much higher than a follower, causing the tail latency of replies
from a leader node to be higher than replies from a follower
node. That in turn results in longer tail latency to form a
quorum, rendering the tail latency higher.

Fail-slow leader. Figure 6(b) and 6(d) shows the throughput
and latency CDF of DepFast-Copilot with a fail-slow leader
in a 3-replica setup. With Copilot’s multiple-leader design,
there is no significant impact on throughput (the differences
are within 25%) and the increase in median and P99 latency
are within a reasonable range under the existence of one
slow leader. For DepFast-Copilot, the CPU contention has the
most significant impact on tail latency, in which case the P99
latency increased by 10ms.

The original Copilot implementation. We did the same fault-
injection experiments on the original Copilot implementation
(results are in Figure 9, §B). We can successfully duplicate the
results in its paper that Copilot can tolerate a node slowdown
in a slow network simulation. In some other cases (CPU,
memory), we find that the original Copilot implementation
cannot tolerate the failures as well as DepFast-Copilot. On one
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Figure 6: Performance of DepFast-Copilot with various fail-slow faults on follower(s) and leader in the 3-replica deployment.

hand, this is justifiable as the original Copilot implementation
is an academic prototype that focuses on verifying the design,
rather than the implementation problems. On the other hand,
it proves that fault tolerance is not only a design problem but
also an implementation problem. It further proves the value
of having another layer like DepFast in the system.

7 Related Work
Synchronous versus asynchronous programming. The
discussion on synchronous and asynchronous programming
styles started decades ago [41]. As common wisdom, syn-
chronous programming (using threads instead of callbacks) is
easy to follow, but tends to have unstable performance due to
the overhead of OS threads [15,25,26,37,42,43,52,53]. Prior
work on synchronous programming focuses on reducing its
overhead using cooperative task scheduling with lightweight
user-space threads (e.g., coroutines or fibres) [15, 43, 52, 53].
Today, coroutines and cooperative task scheduling have been
widely accepted, with built-in support in modern languages
such as Go and C++. Our work follows the same principles,
and extends the literature by considering distributed systems
code (prior work focuses on I/O operations on a single node).
An orthogonal direction is to improve the understandability of
callback-style code, making it synchronous code alike [25,37].
The approach needs compiler support and extra tooling.

Distributed programming patterns and frameworks. The
actor model is a common model to construct distributed pro-
grams, e.g., Erlang/OTP [7] and Scala/Akka [1], Orleans [21]
and ActOp [46]. Our target is not actor systems, as we focus
on the imperative coding style with RPC for communication
that is still a common practice in building C/C++ system soft-
ware. But our results can be complimentary to the actor world,
because the actor systems are mostly asynchronous, and may
be subject to the same callback hell problem [56].

Rex [32], Eve [35], and Crane [24] target fault tolerance at
the OS process level. Ambrosia [30] extends the actor model
with built-in fault tolerance support. These frameworks are
potential users of DepFast—they can use DepFast to build
fault-tolerance mechanisms and services.

A few frameworks help programmers to match their im-
plementations to the specifications rigorously and thoroughly.

Mace [36] translates specification into a C++ implementation
and provides a model checker to verify correctness. Rules-
based programming [50] promotes programming in an event-
based state machine, which helps specify concurrent and non-
deterministic conditions. Verdi [54] and Ironfleet [33] help
build formally verified systems. DepFast has a different goal:
making distributed system code easier to write, maintain, and
debug. It also addresses different issues, e.g., fail-slow fault
propagation and backlogs (reported in formally verified quo-
rum implementations [29]). DepFast also imposes much fewer
restrictions on how distributed systems are programmed.

8 Concluding Remarks

We have presented DepFast, a programming framework to
build quorum systems. Our experience of using DepFast is
encouraging. DepFast helped us to effectively develop high-
performance, fault-tolerant quorum systems with complex
consensus protocols. With DepFast, we can write quorum
systems code that is easy to follow and maintain. Our future
work includes using DepFast to build different types of dis-
tributed systems, such as sharded datastores with distributed
transaction protocols which also have complicated waiting
conditions. We will investigate adopting DepFast’s abstrac-
tion with other frameworks and interfaces, e.g., C++ 20’s
coroutine interface, and the actor model in Erlang/Scala.
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A Appendix

A.1 Artifact evaluation

Abstract

A Docker image is provided which contains required depen-
dencies and source code to run the system. Instructions are
provided in the README.md to reproduce the major results.

Contents

The artifact evaluation includes experiments in Figures 5 and
Figures 6. This artifact does not include (1) experiments for
comparisons: etcd and ref-copilot, and (2) experiments in B.

Hosting

You can find the publicly available source code at
https://github.com/stonysystems/depfast-ae/tree/atc_ae.

Requirements

At least one client plus five servers are used to reproduce
the experimental results. Five servers must have an extra
disk mounted for slowness experiments. We run all our code
on Debian-10, which mainly depends on common Linux
libraries (i.e., python, gcc and libyaml-cpp-dev). You can
install all dependencies by bash ./dep.sh.

A.2 Empowered analysis

DepFast empowers a number of analysis to help programmers
understand the fault-tolerance properties of their systems and
to detect faults at the run time.

Monitoring with linked coroutines Through the event in-
terface, the DepFast framework can link coroutines together
and analyze fail-slow fault propagation. For example, the
RpcEvent could link the caller and the callee coroutines. The
framework will propagate the wait-for information and aggre-
gate them at configured granularity. Figure 7 presents an ex-
ample of a fail-slow fault propagation graph which shows the
wait-for relationship at the node granularity in our DepFast-
Raft implementation (§5.1). Each vertex represents a node in
a quorum. Each edge is directed and weighted: the direction
suggests the wait-for relationship; the weight is the count
of the waiting. Each edge is colored. A wait on a potential
fail-slow event (e.g., an RpcEvent) leads to a red edge. A
wait on a QuorumEvent leads to a green edge. This graph
is generated and refreshed periodically at runtime. It can be
used with graph analysis to detect execution paths which are
vulnerable to fail-slow fault, that is, the execution path that
contains a red edge. Ideally, this graph should not contain
any red edges except for those representing a client issuing
requests to a server.
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Figure 7: The fail-slow fault propagation graph of DepFast-
Raft with three quorums (§5.1). The labels on the edge repre-
sents the quorum of the event. “2/3” refers to QuorumEvent
where 2 responses are needed out of 3 RPCs; “1/1” refers to
waiting on a single RPC (clients wait for the leader nodes).

Fault detection. DepFast has a few built-in fail-slow fault de-
tection mechanisms. First, DepFast measures the CPU usage
of the worker thread. When the worker thread is awake from
epoll sleep, it should take up all the CPU core it is running
on, because the worker thread does not have thread-blocking
calls. The measurement excludes all the epoll sleep time
and only measures the code executed in the worker thread.
If it observes that the worker thread occupies less CPU time
than it should, it alerts: either a fault occurs or other programs
compete for CPU. Note that this is not perfect detection: the
competition could be healthy if it is a shared host; a fail-
slow fault could also make the epoll sleep longer rather than
reducing the CPU utilization.

Second, DepFast measures the time of waiting on each
event. If there is a spike for the same event, DepFast will report
it. Or, if the wait time repeatedly breaks a user-configured
threshold, DepFast will report fail-slow as well.

Third, DepFast exposes the runtime information of resource
utilization by allowing applications to register a user-defined
detector function. The user-defined detector will be called
periodically (taking the monitoring information as inputs)
and then make its own decision to notify the application.

B Supplemental evaluation

Figure 8 shows the results of etcd under various fail-slow
faults. Our results show that etcd can tolerate these failures
well as a production system.

Figure 9(b) and 9(d) shows the throughput and latency CDF
of the original Copilot implementation with a fail-slow leader
in a 3-replica setup. The experiment verifies that the original
Copilot implementation can tolerate a fail-slow node in the
cases tested in the Copilot paper. We find that largely due
to its immature implementation, in some fail-slow follower
cases that are not tested in the original paper, the performance
is lower than expected. For example, our experiment of in-
jecting CPU slowness to the original Copilot frequently fails.
After some diagnosing, we found that when the follower fails
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Figure 8: Performance of etcd with various fail-slow faults on follower(s) in the 3- and 5-replica deployments.
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Figure 9: Performance of original Copilot with various fail-slow faults on follower(s) and leader in the 3-replica deployment.
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Figure 10: Performance of DepFast-Copilot with various fail-slow faults on follower(s) and leader in a 5-replica setup

slow, it could detect the leader as dead as it cannot process the
heartbeats from the leader in time and starts a view change.
The leader then steps down and crashes due to what is sus-
pected to be a memory bug. The fail-slow follower will next
become the new leader. This results in two live nodes, with
one of them failing slow, rendering the cluster into a slow or
even stalled state.

Figure 10 shows the evaluation results of DepFast-Copilot
in a 5-replica setup, in a similar vein as Figure 6. Figure 10(a)
shows the latency-throughput of DepFast-Copilot and the orig-
inal Copilot implementation. The peak throughput of DepFast-
Copilot is 18% higher than the original Copilot.

Figure 10(b)-(d) show the throughput as well as latency
CDF of DepFast-Copilot with fail-slow faults injected to fol-
lower and leader nodes. Recall from §6.1 that we inject faults
on two followers (denoted as “follower” in Figure 10) and
on one leader and one follow (denoted as “leader” in Fig-
ure 10). Similar to the results of 3-replica setup, there is no
significant downgrade on throughput and latency in terms of
both fail-slow follower and leader. For follower slowness, the

decrease in throughput is within 12%. The increase in median
and P99 latency are within 10% and 35%, respectively. For
leader slowness, the decrease in throughput is within 26%.
The latency results are similar to those in a 3-replica setup.

Compared with the 3-replica setup (Figure 6), we find that
the 5-replica setup is affected by network and disk I/O spikes
more. We discussed the impact of the spikes in §6.2; we
elaborate more here. Since we inject one fail-slow node in the
3-replica setup and two fail-slow nodes in the 5-replica setup,
the probability of one of the remaining replicas experiencing
network or I/O spike is higher in the 5-replica setup than in
the 3-replica setup. As every request leads to a quorum read
or write, the 5-replica setup is more susceptible to network
or I/O spikes. The spikes, in our experience, are common in
Azure Cloud (also reported by other studies [16, 51, 58, 59]).
Note that Azure uses virtual hard drives that are accessed
remotely over the network [59]. As a result, disk writes can
also be impacted by network spikes.
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