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Abstract
The secure container that hosts a single container in a mi-
cro virtual machine (VM) is now used in serverless comput-
ing, as the containers are isolated through the microVMs.
There are high demands on the high-density container de-
ployment and high-concurrency container startup to improve
both the resource utilization and user experience, as user
functions are fine-grained in serverless platforms. Our in-
vestigation shows that the entire software stacks, containing
the cgroups in the host operating system, the guest operating
system, and the container rootfs for the function workload,
together result in low deployment density and slow startup
performance at high-concurrency. We propose and imple-
ment a lightweight secure container runtime, named RunD,
to resolve the above problems through a holistic guest-to-
host solution. With RunD, over 200 secure containers can
be started in a second, and over 2,500 secure containers can
be deployed on a node with 384GB of memory. RunD is
adopted as Alibaba serverless container runtime to support
high-density deployment and high-concurrency startup.

1 Introduction

With serverless computing (Function-as-a-Service), ten-
ants submit functions directly to the Cloud without rent-
ing virtual machines, and the cloud provider uses contain-
ers to host invocations on-demand [26, 31, 35, 48, 48, 56].
Most cloud providers publish the serverless computing ser-
vices with the pay-for-use pricing model, such as Amazon
Lambda [4], Google Cloud Function [11], Microsoft Azure
Functions [13], and Alibaba Function Compute [2].

When hosting function invocations, traditional contain-
ers (e.g., Docker, LXC) only provide process level isola-
tion [22, 38], as they are implemented based on Namespace
and Cgroup. They cannot prevent privilege escalation, in-
formation disclosure side channels, and covert channel com-
munication [20]. To this end, secure containers that achieve
the same isolation with the traditional virtual machines are
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Figure 1: The state-of-the-art secure container model, and
several bottlenecks in the architecture stacks.

often preferred. MicroVM is for isolation, and the container
is for abstraction [30]. Secure container often creates a nor-
mal container within the lightweight microVM as shown in
Figure 1(a). In such way users can build serverless services
based on exsiting container infrastructure and ecosystem. It
ensures compatibility with the container runtime in the Mi-
croVM. Kata Containers [19] and FireCracker [20] provide
practical experience in implementing such secure containers.

Figure 1(b) shows the architecture hierarchy of a secure
container. In general, the guest operating system (GuestOS)
in the microVM and resource scheduling on the host are of-
floaded to the cloud provider. The rootfs is a filesystem and
acts as the execution environment of user code. It is cre-
ated by the host and passed to the container runtime in the
microVM. On the host side, cgroups are used to allocate re-
sources to secure containers, and the CPU scheduler man-
ages the resource allocation. The complex hierarchy of se-
cure containers brings extra overhead.

The lightweight and short-term features of functions make
high-density container deployment and high-concurrency
container startup essential for serverless computing. For in-
stance, 47% of Lambdas run with the minimum memory
specification of 128MB [5] in AWS, about 90% of the ap-
plications never consume more than 400MB in Microsoft
Azure [49]. Since a physical node often has large memory
space (e.g., 384GB), it should be able to host many func-
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tions. Meanwhile, a large number of function invocations
may arrive in a short time. However, the overhead of secure
containers significantly reduces the deployment density of
functions, and the concurrency of starting containers.

Our investigation identifies two key factors in secure con-
tainers that result in low concurrent startup. First of all,
rootfs either results in unacceptable long latency for writable
device provisioning or high CPU overhead under consider-
able I/O stress, when many containers are started concur-
rently. Secondly, concurrently starting multiple containers
brings a large number of cgroups operations on the host side.
However, the cgroup-related operations are serialized in the
operating systems. The serialization is due to several mutex
locks introduced in the kernel to handle a complex hierar-
chy of cgroup subsystems. The serial operations slow down
cgroups creation for microVMs.

Meanwhile, secure containers amplify the resource over-
head of each function, multiply host-side resource consump-
tion with more microVMs, and lower the deployment den-
sity. Firstly, for microVMs, the standard Linux kernel is
heavyweight for a small-sized memory specification. Sec-
ondly, the mainstream block-based solution for container
rootfs in microVM generates the same page cache in both
host and guest, resulting in a duplicated memory overhead.
Lastly, CFS (Completely Fair Scheduler) in the host operat-
ing system traverses all the cgroups (containers) for balanc-
ing the processes, resulting in a significant scheduling over-
head at high-density deployment.

We propose and implement a lightweight secure con-
tainer runtime, named RunD, to resolve the above problems
through a holistic guest-to-host solution. According to our
evaluation, RunD boots to application code in 88ms, and can
launch 200 secure containers per second on a node. On a
node with 384GB memory, over 2,500 secure containers can
be deployed with RunD.

The main contributions of this paper are as follows.

1. Bottlenecks identification in high-density deploy-
ment and high-concurrency startup of secure con-
tainers in serverless. We analyze the shortcomings and
bottlenecks through a holistic guest-to-host solution, in
terms of container rootfs storage, the microVM memory
footprint, and the overhead of cgroups.

2. A guest-to-host solution to secure containers for
high-density and high-concurrency targets in server-
less. The practice including: 1) a better container rootfs
implementation based on read/write splitting for server-
less; 2) the method to condense the guest kernel and im-
prove kernel sharing by a pre-patched kernel image; 3)
the host-side lightweight cgroup design and the rename-
based cgroup pool management.

3. A lightweight serverless runtime RunD for server-
less architecture. We design and open-source RunD
based on Kata-runtime, and it shows much higher de-
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Figure 2: Two practices of the secure container model.

ployment density and startup concurrency compared
with the state-of-the-arts.

RunD is adopted as Alibaba serverless container runtime
serving more than 1 million functions and almost 4 billion in-
vocations daily. The online statistics demonstrate that RunD
enables the maximum deployment density of over 2,000 con-
tainers per node and supports booting at most 200 containers
concurrently with a quick end-to-end response.

2 Background

In this section, we will discuss the current secure container
design, and concerning problems motivating this work.

2.1 Secure Container Models
Based on different levels of security/isolation requirements,
there are generally two categories of secure containers in the
production environments.

Figure 2(a) shows the multi-container-per-VM secure con-
tainer model that only isolates functions. In the model, a vir-
tual machine (VM) hosts the containers for the invocations of
the same function. The containers in the same VM share the
guest operating system of the VM. In this case, the invoca-
tions to different functions are isolated, but the invocations
to the same function are not isolated. Since the number of
required containers for each function varies, this model re-
sults in memory fragmentations [34]. Though the memory
fragmentations can be reclaimed at runtime, it may signif-
icantly affect the function performance, and even crash the
VM when the memory hot-unplug fails.

Figure 2(b) shows the single-container-per-VM secure
container model that isolates each function invocation. Cur-
rent serverless computing providers [1, 20] mainly use this
secure container model. In this model, each invocation is
served with a container in a microVM. This model does not
introduce memory fragmentations, but the microVMs them-
selves show heavy memory overhead. It is obvious that each
microVM needs to run its exclusive guest operating system,
multiplying the memory footprints.
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The secure container depends on the security model of
hardware virtualization and VMM, explicitly treating the
guest kernel as untrusted through syscall inspections. With
the prerequisite of isolation and security, this work targets
the single-container-per-VM secure container model.

2.2 Problems with Secure Containers
In production serverless platforms, achieving high container
startup concurrency, and high container deployment den-
sity are the two key requirements [20]. With the single-
container-per-VM secure container model, there are prob-
lems in achieving the two purposes.

Requirement on high-concurrency container startup.
In serverless platforms, each function invocation is short, and
a large number of function invocations may arrive in a short
time. For example, in Alibaba serverless platform, more
than 200 container-launch requests arrive nearly simultane-
ously on a node. The latency until all containers have entered
main() can swell super-proportionally due to resource con-
tention among the simultaneously launching VMs. Mean-
while, emerging internet services often show a diurnal load
pattern and have bursty loads [18]. A large number of con-
tainers are required to be created when the load bursts. Some
techniques, such as prewarming containers [31, 42, 49], are
able to alleviate container cold startups.

However, bursty loads are inevitable can easily exhaust the
limited prewarmed containers. The ability to startup contain-
ers at high-concurrency is crucial for serverless platforms.

Requirement on high-density container deployment.
The small container specification in a serverless computing
platform brings the requirement to deploy containers densely
on a node. For instance, 47% of lambda functions run with
the minimum memory specification of 128MB in AWS [5].
The actual memory usage of a container may also be smaller
than its specifications. As Azure reports [49], about 90% of
the applications never consume more than 400MB of mem-
ory. A node with 256GB of memory can host 8×256 = 2048
containers if there is no other overhead. In Alibaba serverless
platform, over 2,500 secure containers that 128MB-sized can
be deployed on a node with 384GB memory.

Without proactive customizations, secure containers in-
cur extra memory overhead, reducing deployment density in
serverless computing. Increasing deployment density greatly
improves resource utilization and multi-tenant serving effi-
ciency with the same infrastructure.

3 Problem Analysis and Insights

In this section, we analyze the problems of achieving high-
concurrency startup and high-density deployment with se-
cure containers. We use Kata container [19] as the repre-
sentative secure container to perform the following studies.
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Figure 3: The steps of starting up multiple Kata containers
concurrently. The concurrency bottleneck results from cre-
ating rootfs (step ¬ in red block) and creating cgroups (step
® in red flowline). The density bottlenecks result from the
memory footprint of the microVM (step  in blue block) and
the scheduling of massive cgroups (step ® in blue block).

Figure 3 shows the steps of starting Kata containers. First,
containerd concurrently creates the container runtime Kata-
runtime and prepares runc-container rootfs. Second, the hy-
pervisor loads the GuestOS and the prepared rootfs to launch
a runc-container in the microVM. Third, the function work-
load is downloaded into the container and may start to run.

Comparing with starting traditional containers [53], we
have two observations when starting up secure containers.

• When starting 100 or more Kata containers concur-
rently, there is a distinct performance degradation of
creating rootfs and cgroups, during the Kata-runtime
preparation. The degradation results in the low concur-
rency of starting containers.

• When deploying more than 1,000 Kata containers with
128MB memory specification on a single node with
384GB memory and 104 cores, the microVMs’ mem-
ory footprint (due to the guest kernel and rootfs) already
occupies most of the memory space. Meanwhile, the
containers’ I/O performance is also seriously degraded.

Figure 3 also shows three bottlenecks we found that result
in the above two observations. In general, the inefficiency of
creating rootfs and cgroups results in low container startup
concurrency. The high memory footprint and scheduling
overhead result in low container deployment density. We an-
alyze the bottlenecks in the following subsections.

3.1 Bottleneck of Container Rootfs Storage
In general, rootfs can be exposed to the container runtimes
in the microVMs through two interfaces to construct the im-
age layers: filesystem sharing (e.g. 9pfs [45], virtio-fs [16])
and block device (e.g. virtio-blk [46]). Filesystem sharing
enables microVMs to access a directory tree on the host di-
rectly. When the block device is used, the host creates block
devices through the device-mapper [8] and passes them to
the microVMs, so that containers can access data at the block
level, rather than the file level.
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Figure 4: The IOPS/bandwidth performance of rand/seq di-
rectIO/BufferIO read/write when using different rootfs map-
ping in Kata-runtime (dev-mapper represents that virtio-blk
is used, ext4+overlayfs represent the baseline of default
runc-container rootfs implementation).

Figure 4 shows the IOPS (IO-Per-Second) and IO band-
width of the random/sequential read and random/sequential
write, when Kata uses 9pfs, virtio-fs, and virtio-blk, respec-
tively. We also measure the metrics of using ext4 file system
and overlayfs file access interface on the host node, to denote
the case of the traditional containers [50, 51]. As observed,
microVMs should not use 9pfs as rootfs storage interface due
to the poor performance.

With the default configuration (cache enabled), virtio-blk
performs best at random/sequential writing. However, the
device-mapper who prepares the block device in the host
cannot meet the high-concurrency requirement [59]. Ac-
cording to our measurement, it takes as high as 10 seconds
to prepare a rootfs when 200 containers are started concur-
rently, while it only takes about 30 milliseconds for a single
container startup. In this case, the operation of preparing
rootfs timeouts, resulting in the container breakdown. More-
over, virtio-blk inherently does not support the page cache
sharing between host and guest operating systems. When
virtio-blk backend reads rootfs files into the host page cache,
the mapped content reproduces the same page cache in the
guest. The issue of duplicated page cache brings a high
memory footprint overhead.

Virtio-fs resolves the problem of duplicating page cache.
When DAX is enabled in virtio-fs, it allows bypassing guest
page cache and mapping host page cache directly in guest
address space [16]. However, virtio-fs results in poor ran-
dom/sequential write performance (Figure 4). In addition,
each container has to employ a client daemon to support
virtio-fs I/O operations, leading to excessive CPU usage
when enormous containers colocate. Things get worse for

128 256 512 1024 2048 4096
0

50
100
150
200
250
300

M
em

or
y 

ov
er

he
ad

 (M
B)

(a) Impact of specification (solo)

1 10 100 500 1k 1.5k

kata-qemu
kata-FireCracker

(b) Impact of density (128MB)

Figure 5: The memory overhead of a secure container.

either large I/O stress under high-concurrency or massive op-
erations of metadata processing.

The above investigation shows that either virtio-fs or
virtio-blk can compromise either deployment density or
startup concurrency of secure containers. An exploratory
alternative would be: using virtio-fs to support the read-
only part of rootfs for sharing page cache between host and
guests, and using virtio-blk to support the writeable part of
rootfs for high I/O performance. A solution is also required
to further reduce the duplicated writable part for rootfs.

3.2 High Memory Overhead Per Container
Except for the memory used by the user function, the mem-
ory footprint of other components in the secure container is
the memory overhead. The 5MB memory overhead reported
in FireCracker [52] is the overhead of the FireCracker VMM
itself. In the microVM of a secure container, the guest oper-
ating system, the struct page for memory management, and
other components (e.g., baseOS, shimv2, agent) also con-
sume additional memory space [52].

Figure 5 shows the per-container memory overhead of se-
cure containers with different memory specifications and at
different deployment densities. In the figure, Kata-qemu is
the secure container that uses qemu as the hypervisor, and
Kata-FireCracker uses FireCracker as the hypervisor. As ob-
served in Figure 5(a), the memory overheads of a 128MB
container are 94MB and 168MB with Kata-FireCracker and
Kata-qemu, respectively. The overhead increases with the
memory specification of the container.

The average memory footprint of a single microVM can
be reduced by sharing the text/rodata segment among multi-
ple microVMs. Mainstream MicroVMs achieve it by map-
ping the kernel file to the guest memory directly using mmap.
As shown in Figure 5(b), the per-microVM memory over-
head of kata-qemu and kata-FireCracker reduce to 145MB
and 71MB when 1,000 VMs are deployed on a node. How-
ever, the overhead is still too large for a serverless container
with only 128MB memory specification.

MicroVM template (e.g., Kata template) [17, 29, 52] is a
popular method to further reduce the per-microVM mem-
ory overhead, while preserving microVM consistency. The
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template serves as a primary image for a microVM copy
that includes disks, devices, and settings. New microVMs
are created by on-demand forking from a pre-created tem-
plate microVM, and text/rodata segments are also shared
among multiple microVMs [54] in read-only mode. The un-
accessed kernel files of the template will not consume the
physical memory, reducing the memory overhead.

However, the template technique is not as efficient as we
thought, due to the self-modifying codes in the operating
system kernel [24, 25]. The self-modifying code technique
alters the instructions on-demand as it runs, and the Linux
kernel relies heavily on self-modification code to improve
performance on boot and during runtime. We start a clean
microVM with CentOS 4.19 guest kernel from a template to
investigate the impact of self-modifying codes. The investi-
gation shows that 10,012KB of the code and the read-only
data is accessed in the memory, but 7,928KB of them were
modified during boot. This case in point reveals that the self-
modifying codes degrade the efficiency when using mmap
for less memory consumption of kernel image files.

The code self-modifying reduces the shareable memory
when using microVM template. Reducing the self-modifying
codes in the guest kernel is worth investigating if they are not
necessary for the serverless computing scenario.

3.3 High Host-side Overhead of Cgroups

Cgroup is designed for resource control and abstraction of
processes. In serverless computing, the frequency of func-
tion invocations shows high variation. In this case, the cor-
responding secure containers are frequently created and re-
cycled. For instance, in our serverless platform, at most 200
containers would be created and recycled on a physical node
concurrently in a second. The frequent creating and recy-
cling challenge the cgroup mechanism on the host.

We measure the performance of cgroup operations when
creating 2,000 containers concurrently. In the experiment,
we use different numbers of threads to perform cgroup op-
erations. Figure 6(a) shows the cumulative distribution of
container creating latencies. Counter-intuitively, the latency
increases when more threads are used, even if each thread
needs to create fewer containers.

The reason behind the above fact is that the Linux ker-
nel introduces several global locks (e.g., cgroup_mutex,
css_set_lock, freezer_mutex) to serialize cgroup operations.
The global locks are used to coordinate more than 10 re-
source subsystems (aka. the cgroup subsys) involved in
cgroup. Figure 6(b) shows the flame graph of creating 2,000
cgroups using 10 threads concurrently. In the figure, the red
parts show the case that “mutex locks” are active. When the
cgroup mutex uses the optimistic spinning by default, the
spinner cgroups experience the optimistic spinning if they
fail to acquire the lock. It will lead to heavy CPU consump-
tion and belated exiting of the critical section in the multi-
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Figure 6: The performance of cgroup operations when cre-
ating 2,000 containers concurrently. Due to the mutex lock,
the cgroup operations have higher latencies as the concur-
rency increases.

threaded scenarios. Therefore, the locks serialize the opera-
tions of cgroups and drag down the latencies.

Besides, a common observation is that there are often
more than 10,000 cgroups with thousands of containers on
a compute node. The PELT (Per-Entity Load Tracking) for
load balancing in CFS will iterate over all cgroups and pro-
cesses when scheduling these containers. In this scenario,
the frequent context switching and hotspot functions that in-
volve high-precision calculation in the scheduler become a
bottleneck, accounting for 7.6% of the CPU cycles of the
physical node, according to our measurement.

The host-side overhead of cgroups prohibits the high-
density deployment and high-concurrency startup in server-
less computing. Simplifying the cgroup design, and reducing
the critical section introduced by the mutex locks, are funda-
mental solutions to eliminate the high host-side overhead.

4 Methodology of RunD

The above analysis reveals the bottlenecks in the host, the
microVM, and the guest in achieving the high-concurrency
startup and high-density deployment. We propose RunD, a
holistic secure container solution that resolves the problem
of duplicated data across containers, high memory footprint
per VM, and high host-side cgroup overhead.

In this section, we first show a general design overview
of RunD, and then present the design of each component to
resolve the corresponding problem.

4.1 Design Overview

When designing RunD, we have a key implication for server-
less runtime. The negligible host-side overhead in a tradi-
tional VM can cause amplification effects in the FaaS sce-
nario with high-density and high-concurrency, and any triv-
ial optimization can bring significant benefits. Utilizing the
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guest domain, while read/write splitting-based rootfs and a
lightweight cgroup pool land in the host domain.

features of read-only data/runtime and non-persistent storage
in serverless, RunD proposes guest-to-host solutions.

Figure 7 shows the RunD design and summarizes our
methodologies. RunD runtime makes a read/write splitting
by providing the read-only layer to virtio-fs, using the built-
in storage file to create a volatile writeable layer to virtio-
blk, and mounting the former and latter as the final container
rootfs using overlayfs. RunD leverages the microVM tem-
plate that integrates the condensed kernel and adopts the pre-
patched image to create a new microVM, further amortizing
the overhead across different microVMs. RunD renames and
attaches a lightweight cgroup from the cgroup pool for man-
agement when a secure container is created.

Based on the above optimizations, a secure container (re-
ferred to as a “sandbox”) is started in the following steps,
when RunD is used as the secure container runtime.

• In the first step, once containerd receives a user invoca-
tion, it forwards the request to RunD runtime.

• Second, RunD prepares the runc-container rootfs for the
virtual machine hypervisor. The rootfs is separated into
read-only layer and writable layer. (Section 4.2).

• Third, the hypervisor uses the microVM template to
create the required sandbox (Section 4.3), and mount
the runc-container rootfs into the sandbox by overlayfs.

• Lastly, a lightweight cgroup is attached to the sandbox
(Section 4.4), to manage the resource allocation for this
sandbox in the host.

4.2 Efficient Container Rootfs Mapping

Section 3.1 examines the challenges in the high-density and
high-concurrency scenario for container rootfs. The cur-
rent secure container fails to discriminate between serverless
platforms and traditional infrastructure-as-a-service environ-
ments. The mainstream solutions are designed for persistent
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data storage, and it is the key point why container rootfs stor-
age imposes restrictions on our goals.

We investigate the data in a sandbox in the serverless
computing scenario, and find that user-provided code/data
is read-only for the operating system, and the system-
provided runtime files are also read-only for user func-
tions. Meanwhile, the data in the local memory or storage
generated in a sandbox will not be used by subsequent func-
tion invocations, due to the stateless feature of serverless
computing. The temporary and intermediate data generated
during the function execution is not required to be persisted.

Based on the above finding, it is possible to split the rootfs
into a read-only layer and a writable layer, and then handle
them in different ways [32]. The sandboxes can share the
read-only layer on the same node, and the writable layer has
to be prepared separately for each sandbox.

Figure 8 shows the way to split rootfs into a read-only
layer and a volatile writable layer. According to the investi-
gation in Section 3.1, virtio-fs is used to handle the read-only
layer, and virtio-blk is used to handle the volatile writable
layer for better performance. The read-only layer is stored in
the host and can be prepared in negligible time when using
the overlay snapshotter provided by the container runtime.
However, it is challenging to handle the volatile writable
layer efficiently. By default, the host operating system needs
to prepare a logic storage volume for the sandbox. This op-
eration is time-consuming and is one of the most important
reasons that result in the long latency of preparing rootfs.

We propose the volatile block device as the volatile
writable layer, considering the volatile feature of the writable
layer in serverless platforms. The volatile block device will
not persist temporary data from user functions to the disk,
unlike the logic storage volume. A storage image template
is pre-created in the host as the base file. When creating a
volatile block device for a new sandbox, a build-in storage
image is created and linked to the storage image template,
using reflink [60]. reflink enables storage image template to
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share data with build-in storage images in a CoW (Copy-
on-Write) fashion. Then a volatile block device is created
associated with the build-in storage image. Once the hyper-
visor opens the device, the build-in storage image will be
deleted. The volatile block device ensures that user func-
tions can perform writing as usual without persisting data on
the local disk.

We compare our solution with the traditional ones in
which the entire rootfs is created by the device-mapper as a
block device. When 200 sandboxes are started concurrently,
traditional solutions incur 4,500 IOPS and use 100MB/s IO
bandwidth. On the contrary, our solution incurs only 1,500
IOPS and uses 8MB/s IO bandwidth. Better, the time needed
to prepare the rootfs decreases from 207ms to only a negligi-
ble 0.2ms, and the writing performance of our solution is the
same as that of the mainstream transmission.

4.3 Condensed and Pre-patched Guest Kernel
In this subsection, we present two techniques used to reduce
the memory used by each sandbox, so that the deployment
density can be significantly increased.

4.3.1 Reducing the guest kernel size

Following the abstraction premise in current serverless plat-
forms, the guest environment management for serverless
containers is offloaded to the cloud provider. Meanwhile,
RunD depends on the security model of hardware virtual-
ization and VMM, explicitly treating the guest kernel as
untrusted through syscall inspections. Based on this fact,
there is an opportunity to condense the guest kernel for the
lightweight characteristic of serverless functions. Consider-
ing that several features in the guest kernel are redundant and
memory intensive in the serverless context, RunD condenses
these features at compile-time. When customizing the con-
densed guest kernel, the principles behind it are as follows:

- Minimize kernel memory footprint and image size.
- Retain features required in the serverless context.
- Without runtime performance degradation.

Following the above principles, we build the condensed ker-
nel for the guest operating system based on Linux kernel, by
disabling features:

- Do not pre-create loop device (2.2MB Mem reduced).
- Disable acpi and ftrace (2MB and 6MB Mem reduced).
- Disable graphics-related items (2MB Mem reduced).
- Disable i2c and ceph (3MB Mem reduced, and 4MB

reduced of kernel image size).
- Kernel files (560K Mem and 571K image size reduced).
Validating all features at compile-time case by case, RunD

effectively reduces the memory footprint of a CentOS 4.19
Linux kernel by about 16MB and condenses the kernel image
by about 4MB. Based on this condensed guest kernel, we

review several investigations of the self-modifying code and
propose our solution to reduce the memory overhead further.

4.3.2 Alleviating code self-modification

As mentioned before, cloud providers manage and maintain
the underlying hardware and execution runtimes in server-
less context, standing for that all microVMs on the same
node generally use the same guest kernel. In this scenario,
the sandboxes on the same node generate the same patched
kernel code, even if they execute the self-modification patch
logic. This is because the self-modifying code of ker-
nel text segments only occurs at the startup phase, after
which the kernel code area becomes “read-only after ini-
tialization”. In this case, sandboxes experience the same
initialization phase and generate predicable self-modifying
code segments.

Based on the above observation, there is an opportunity to
generate a pre-patch guest kernel image file already patched
with self-modified code segments. The MicroVM template
technique discussed in Section 3.2 may work efficiently
without self-modifying code.

Adapting to this optimization, we also resolve the poten-
tial kernel panic issues when loading the pre-patched ker-
nel image for higher stability. RunD tries to share as many
kernel files as possible across different secure containers.
With a pre-patched microVM template, RunD not only re-
duces the memory footprint of a single container for higher-
density deployment, but also allows to quickly fork multiple
instances [29, 52].

4.4 Lightweight Cgroup and Cgroup Pool

In Section 3.3, we analyze that serialized cgroups operations
in the host become one of the bottlenecks of secure con-
tainers with high-density deployment and high-concurrency
startup. The intuitions are to efficiently handle synchroniza-
tion access on mutex structures and reduce the number of
cgroups with a better design.

Our further investigations reveal the optimization oppor-
tunities in two aspects. Firstly, creating containers involves
multiple cgroup subsystems (e.g. cpu, cpuacct, cpuset, mem-
ory, and blkio). Because the Linux kernel cannot parallelize
these cgroup-related operations, creating these groups for
each sandbox is time-consuming. Secondly, pre-creating
and maintaining cgroups in a pool can effectively reduce
the creation overhead, since afterward only the cgroup
rename is used. The cgroup rename, as a special case,
is a lightweight operation without acquiring any global lock.
Following these two observations, we propose a lightweight
cgroup and the cgroup pool, as shown in Figure 9.

The lightweight cgroup decreases the total number of
cgroups and system calls. Rather than creating the cgroup for
each subsystem, we aggregate necessary cgroup subsystems
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Figure 9: The lightweight Cgroup aggregates all subsys-
tems, eliminating the time-consuming creation by renaming
from the Cgroup pool.

(aka the cpu, cpuacct, cpuset, memory, and blkio) into one
single dedicated lightweight cgroup. The implementation of
the joint cgroup controller helps RunD reduce the redundant
cgroup operations when a container is started, significantly
decreasing the total number of cgroups and system calls.

The cgroup pool with renaming mechanism eliminates the
time-consuming cgroup creation and initialization. RunD
pre-creates corresponding lightweight cgroups and main-
tains them in a cgroup pool based on the pre-defined node
capacity. These cgroups are marked idle when initialized,
and are protected in a linked list. For each created container,
RunD simply allocates an idle cgroup, updates the state to
busy, performs the cgroup rename operation, and then at-
taches the container to this renamed cgroup when a container
is started. If a container triggers recycling, RunD will take
the cgroup back to the pool, kill the corresponding instance
process, and then update the returned cgroup state to idle for
subsequent allocating and renaming.

Adopting the above optimizations in kernel mode, we re-
play the evaluation in Section 3.3. The cgroups creation only
consumes 0.09s (1 thread), 0.1s (50 threads), and 0.14s (200
threads), respectively. Compared with the default mecha-
nism, the lightweight cgroup and the rename-based cgroup
pool reduce 94% of the cgroups creation time.

5 Evaluation

In this section, we evaluate the performance of RunD in sup-
porting high-concurrency startup and high-density deploy-
ment of secure containers, and introduce the performance of
RunD in production usage.

5.1 Evaluation Setup

We have implemented and open-sourced RunD with Rust,
a more memory-efficient and thread-safe programming
language. RunD runtime involves four main modules:
Containerd-shim (21k LOC), Device (4.4k LOC), Hypervi-
sor (5.6k LOC), and Lightweight-cgroup (20k LOC).

Table 1: Experiment setup in our evaluation.
Configuration

Hardware
CPU: 104 vCPUs (Intel Xeon Platinum 8269CY)

Memory: 384GB, two SSD drives: 100GB, 500GB
Software OS: CentOS7, kernel: Linux kernel 4.19.91

Container

kata-qemu containerd 1.3.10, kata 1.12.1
kata-FC containerd 1.5.8, kata 2.2.3
kata-template containerd 1.3.10, kata 1.12.1
RunD containerd 1.3.10

Baselines: we compare RunD with the state-of-the-
art secure container, Kata Containers [19]. Specifically,
we use three popular configurations of Kata containers:
Kata-qemu, Kata-template, and Kata-FC. Kata-qemu uses
QEMU [15, 23] as the microVM hypervisor, Kata-template
uses QEMU while integrating container template, Kata-FC
uses lightweight FireCracker [20] as the microVM hypervi-
sor. Kata-qemu and kata-template use an old version of Kata
Containers, as the new version has some bugs that result in
poor performance. Table 1 shows the detailed setups.

Testbed: we run the experiments on a node with 104 vir-
tual cores, 384GB memory, and two SSD drives of 100GB
and 500GB. Such specification is widely-used in production
clouds. The 100GB drive is used as the root filesystem of the
host operating system, and the 500GB drive is used by the
secure containers. We use Alibaba Cloud Linux 2 for RunD
and Alpine Linux [3] for others, as the guest operating sys-
tems in the microVM for a low memory footprint.

Measurement: in the CRI specification [6], a pod sand-
box refers to a microVM with a lightweight pause con-
tainer [12]. In all the tests, we only create the pod sand-
boxes without other containers inside, through the crictl
command. In the following evaluations, the memory speci-
fication of a container denotes the size of memory that can
be used by itself. The actual memory usage of a container is
collected using the smem command.

As RunD is proposed to maximize the supported container
startup concurrency and deployment density, in the experi-
ment, we start empty secure containers without user codes
or data considering that it is a common practice in FaaS to
start empty containers concurrently for prewarming. The in-
production results show the performance of RunD for actual
workloads with all the steps involved.

5.2 Concurrent Startup Measurement
In this experiment, we focus on three critical metrics related
to user experience: (1) the time needed to start a large num-
ber of sandboxes concurrently, (2) the startup latency distri-
bution of the sandboxes, and (3) the CPU overhead on the
host. The first metric reveals the throughput of starting sand-
boxes, and the second metric reveals the experience of every
user.

As for the first metric, Figure 10(a) shows the time needed
to start a large number of sandboxes concurrently. In the fig-
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Figure 10: The startup metrics with different runtime and concurrency: (a) The end-to-end latency of concurrent startups. The
right figure is an enlargement of the left one (y ∈ [0,10]). (b) The CDF of startup latencies from a 200-way concurrent launch.
(c) The CPU usage of concurrent startups.

ure, the x-axis shows the number of sandboxes to be started
concurrently, the y-axis shows the overall time needed to
startup all the sandboxes.

As shown in the figure, RunD uses the shortest time to
start a large number of sandboxes for all concurrency levels.
When 200 containers are created concurrently (we already
observe such high-concurrency in Alibaba serverless plat-
form), Kata-FC, kata-qemu, kata-template, and RunD needs
47.6s, 6.85s and 2.98s and 1s to create them. Kata-FC re-
quires a much longer time to startup the sandboxes when the
concurrency is high. This is because Kata-FC uses virtio-
blk to create rootfs, and the performance is poor at high-
concurrency, as we measured in Section 3. There is no such
bottleneck in Kata-template and Kata-qemu. Kata-template
simply uses template to reduce the overhead of guest kernel
and rootfs loading, but the inefficient rootfs mapping, code
self-modification and high host-side overhead of the cgroup
operations still exists. As a result, it performs worse than
RunD at high startup concurrency. The overall optimizations
suggest that RunD provides the performance improvement of
about 40% over its nearest baseline, Kata-template, at high-
concurrency (e.g., 400-way) startup.

As for the second metric, Figure 10(b) shows the latency
distribution of starting each sandbox, when 200 sandboxes
are started concurrently. RunD and Kata-template are able
to start sandboxes in a stable short time, but the latencies of
starting sandboxes with others are out of expected. Users can
have identical good experiences with RunD.

As for the CPU overhead, Figure 10(c) shows the CPU
time needed on the host to startup sandboxes. When the
concurrency is high, RunD greatly reduces the CPU over-
head. For instance, when 200 sandboxes are started concur-
rently, RunD reduces 89.3%, 74.5% and 62.1% CPU over-
head compared with Kata-qemu, Kata-template, and Kata-
FC, respectively. In addition, the CPU overhead of RunD
only increases slightly, when the concurrency increases. This
is due to the read/write split policy and the reduction of
compute-intensive operations in cgroups. Therefore, RunD
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Figure 11: The memory overhead of Kata-qemu, Kata-
template, Kata-FC, and RunD (100 sandboxes are deployed).

is scalable in starting more sandboxes concurrently.
In summary, RunD is able to start a single sandbox in

88ms and launch 200 sandboxes simultaneously within 1s,
with minor latency fluctuation and CPU overhead.

5.3 Deployment Density
In this experiment, we evaluate the effectiveness of RunD in
increasing the sandbox deployment density. In general, the
memory used by each container determines the deployment
density, while the CPU time needed by each function invo-
cation is minor in the serverless platform. Figure 11 shows
the memory overhead when 100 sandboxes are deployed on
the experimental node. In the figure, the x-axis shows the
memory specification of each sandbox.

As observed, RunD has the least memory overhead among
four runtimes, and does not increase with the memory spec-
ification. The memory overhead is less than 20MB per sand-
box with RunD. Compared to kata-qemu, kata-template and
kata-FC, the overhead of RunD is reduced by 54.9%, 27.2%,
and 18.9%, respectively, even when the memory specifica-
tion is 128MB. The memory overhead does not increase, be-
cause the microVM template technique uses the on-demand
memory loading for the containers. Therefore, the page ta-
ble required for memory management is determined by the
actually used memory space. On the contrary, the memory
overheads introduced by Kata-qemu and Kata-FC increase
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with larger memory specifications, as the page table is built
for all available memory. In addition, the pre-patched kernel
image in RunD further reduces memory overhead.

Figure 12 shows the average memory overhead of the
sandboxes when different numbers of sandboxes are de-
ployed on a node. The x-axis shows the deployment den-
sity. As observed, the average memory overhead reduces
with the deployment density, as the sandboxes share the
mapped code/data segments. RunD reduces the memory
overhead by 87.7%, 82.4%, and 75.1% when 1,000 sand-
boxes are deployed, respectively, compared with kata-qemu,
kata-template, and kata-FC.

RunD supports to deploy over 2,500 sandboxes of 128MB
memory specification on the node with 384GB memory.

5.4 Impact of Deployment Density on Startup
Latency and Concurrency

When some sandboxes are already deployed on a node, the
performance of starting sandboxes concurrently is affected.
Figure 13 shows the time needed to boot 10 and 200 sand-
boxes, when some sandboxes are already deployed on the
node. The x-axis shows the number of already deployed
sandboxes. The y-axis is in the log10 scale.

When 1,000 sandboxes are already deployed, the time
needed to startup 10 containers increases by 1.69s, 0.41s,
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Figure 14: The startup latency and concurrency tracing of
RunD in Alibaba serverless platform.

10.8s, and 0.22s compared with the cases in Figure 10(a)
with Kata-qemu, Kata-template, Kata-FC, and RunD. In ad-
dition, the time needed already increases with the number of
already deployed sandboxes.

We can also observe that, the time needed to start 200
sandboxes is at least 10 times as much as that needed to start
10 sandboxes at a 1,000-density deployment in all the tests.
The significant increase originates from a large number of
cgroups in the host operating system. Scheduling and man-
aging containers with these cgroups consume more CPU cy-
cles, thus resulting in CPU bottlenecks appearing earlier than
a low-density deployment. The increased time is the small-
est with RunD, because it already eliminates many time-
consuming cgroup operations.

RunD shows better performance and stability in support-
ing high-concurrency startups at high-density deployment.

5.5 In-Production Usage for Serverless

Currently, Alibaba serverless computing platform has
adopted RunD. The platform serves almost 4 billion invo-
cations from more than 1 million different functions per day.

Figure 14 reports the sandbox startup concurrency and the
corresponding startup latency from six nodes. The specifi-
cation of each node is the same as our experimental setup
in Table 1. The data is collected between 08:00 and 18:00
of Jan 10th, 2022. There are about 800 active sandboxes on
each node, when the concurrency data is collected. The in-
production startup latency of sandboxes at high-concurrency
is consistent with that reported in Section 5.4.

As observed from the figure, the startup concurrency
bursts at the beginning of each hour. At most 191 sandboxes
are started concurrently around 10:00. RunD starts the 191
sandboxes in 1.6 seconds. We look into the function invo-
cation logs, and find that the periodic burst is caused by the
an-hour time trigger and cluster-level load balancing. The
periodical burst is pervasive, as the Azure serverless platform
traces [14] show the same pattern. In the figure, the sandbox
startup latency occasionally increases when the concurrency
is low. The long time results from the operation in loading
large-scale workloads from the tenants. Although the startup
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Figure 15: The deployment density and concurrency of
RunD in 1 minute intervals, from Alibaba production traces.

concurrency is not always high, it is crucial to ensure a quick
startup for a good user experience.

Figure 15 shows the deployment density of the sandboxes
on each node. We collect the density statistics of the six
nodes between 18:00 of Jan 10th to 10:00 of Jan 11th, 2022.
As observed, more than 2,000 sandboxes are deployed on a
node at most. We can also find that the high-density deploy-
ment happens at the same time as high concurrent startups.
This is because many tasks are triggered at the beginning of
each hour. The deployment density does not achieve the the-
oretical upper limit of 384GB/(128+20)MB=2656 contain-
ers, as some functions use more than 128MB memory, and
the workloads are also balanced to other nodes.

RunD is production-verified to meet the high-concurrency
startup and high-density deploymant requirements.

5.6 Lessons Learned from Production Usage
Besides the RunD secure container, we have some insights
about designing secure containers for serverless systems.

Lesson-1: the CRI specification designed for Kubernetes
is not suitable for serverless system. In CRI, multiple re-
lated containers can co-locate in the same sandbox, and a
lightweight pause container is started first to prepare the
cgroups for the remaining containers. This pause container-
based solution is negative for serverless computing, as each
sandbox only has a single container for security and privacy.

Lesson-2: Functions tend to use the same standard guest
environment provided by the serverless platform. In this
case, the language environment (e.g., JVM) can also be inte-
grated into the microVM template. However, the language-
level template will invalidate the on-demand memory load-
ing in the guest because some language runtimes need to pre-
allocate the available memory. There are tradeoffs between
higher memory utilization and less startup time, and the deci-
sion should be made based on how often the functions share
the language environment.

Lesson-3: The memory usage of user functions is the key
aspect determining the upper limit of the deployment den-
sity. Most functions are lightweight. When 2,000 sandboxes
are deployed on a node of our serverless platform, the CPU

utilization does not achieve 50%, and there is no complaint
on the poor performance from users. One reason for the low
CPU utilization is that many sandboxes are actually idle and
“kept-alive” after its function invocation is completed in a
serverless scenario.

6 Related Work

The most closely related work to RunD is FireCracker [20],
which proposes a lightweight VMM for serverless runtime.
It provides fast startup within 125ms, allowing 150 VMs to
start concurrently per second per node, with less than 5MB
footprint per VM. However, FireCracker only serves as the
hypervisor stack in the Security Container model, without
other complex related processes, e.g., rootfs [52]. By con-
trast, RunD investigates the guest-to-host solution through
all stacks and provides higher concurrency and density.

Higher-density deployment. Regarding serverless com-
puting, in the space of higher function deployment density
of Secure Containers and VMs [57], the key is designing a
more lightweight container runtime both in guest and host.
Unikernel [36, 37, 43, 47] runs as a built-in GuestOS with-
out necessary add-ons, demonstrating great potential for de-
ploying containers with less overhead. Kuo [33] Explores
lightweight guest kernel configurations for use in Unikernel
environments, which has similarity to the approach towards
reducing guest kernel size. However, Unikernel is hard to
be changed once after compilation with the application. Its
compile-time invariance results in poor flexibility in prac-
tice. SAND [21] adopts the multi-container-per-VM model
to amortize the memory footprint of sandboxing. However,
they do not further investigate the utilization impact of mem-
ory fragmentations in a real-system with high-density de-
ployment. Gsight [61] observes that fine-grained function-
level profiling can expose more predictability system-level
features in the partial interference. With a more accurate in-
terference predicting [27, 44], the function density can get
improved with QoS guaranteed.

The above studies make sense in improving the effective
density with less interference for serverless. They are or-
thogonal to our work, because RunD is motivated to improve
the maximum deployment density on a signe node.

Higher-concurrency startup. In the space of higher
function startup concurrency, recent approaches leverage the
container prewarm pool [9, 40, 49, 58]. The state-of-the-art
on container prewarming, SOCK [42], uses a benefit-to-cost
model to select packages pre-installed in zygotes, and builds
a tree cache to ensure that the forked zygote container does
not import any additional packages other than the private
ones the handler specifies. The C/R (Checkpoint/Restore) [7,
31, 39] supporting the VM snapshotting [10, 28, 29, 41, 54]
captures the state of a running instance as a checkpoint,
and then restores it once cold startup. Observing that most
functions only access a small fraction of the files and mem-
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ory loaded in the initialization stage, Catalyzer [29] and
Replayable Execution [55] extend the C/R mechanism to
achieve a faster on-demand recovery and paging when start
containers. REAP [52] identifies the guest-side page when
loading a VM snapshot and records the metadata during
the record phase. Then, for subsequent invocations, REAP
proactively prefetches and load the recorded pages into the
guest memory for faster and higher-concurrency startup.

The above studies reduce the startup and recovery phases
to partially improve the capability of higher-concurrency
startup. From a different angle, RunD holistically focuses on
prominent bottlenecks through a guest-to-host investigation
when start secure containers with high-concurrency. We also
proposes a lightweight serverless runtime that production-
verfied in practice.

7 Conclusion

In serverless computing, the lightweight and short-term
functions leads to the requirement of high-density container
deployment and high-concurrency container startup. This
work dives into the bottlenecks from the entire software
stack and proposes RunD, a lightweight secure container
runtime for serverless through a holistic guest-to-host solu-
tion. The evaluation results and in-production usage prove
the efficiency of RunD to launch 200 secure containers in one
second, and deploy over 2,500 secure containers per node.
RunD is used in Alibaba production serverless platform, and
shows good performance in terms of high-density deploy-
ment and high-concurrency startup.
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A Artifact Appendix

A.1 Abstract
We choose Kata containers and its three configurations kata-
qemu, kata-FC, kata-template as baselines for comparison
with RunD. For measuring the startup latency, we use the
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crictl command to start pod sandboxes and measure the time
between the first crictl runp invocation and the last ready
pod sandbox. For measuring the memory footprint, we use
the smem command and the PSS column of its output. All
the tests are run on a machine with 104 vCPUs and 384GB
of memory running CentOS7.

A.2 Artifact Check-list (Meta-information)
• Run-time environment: Alibaba ECS instance;
• Hardware: Intel Xeon(Cascade Lake) Platinum 8269CY,

CPU and Memory: 104 cores and 384GiB, Storage: Two
ESSDs (100GB + 500GB);

• Software: Aliyun Cloud OS 2, with Linux kernel 4.19.91,
Kata container 1.12.1 and 2.2.3, containerd 1.3.10, smem 1.4;

• Metrics: average latency and average memory footprint;
• Time is needed to complete experiments: 10 hours;
• Available: https://github.com/chengjiagan/RunD_ATC22
• Code Licenses: Apache-2.0 license

A.3 How to Access and Installation
Github Link: https://github.com/chengjiagan/RunD_ATC22.
Then you should follow the README instructions to get in-
stallation.

A.4 Experiment Workflow
A.4.1 High-concurrency Experiment (Section 5.2)

Scripts are provided to run the high-concurrency test
for kata-qemu, kata-fc and kata-template. To run high-
concurrency tests:

$ ./script/time_kata_test.sh
$ ./script/time_katafc_test.sh
$ ./script/time_katatemplate_test.sh

They may take several hours to finish. Some concur-
rency tests can be removed by removing the correspond-
ing concurrency setting in file time_test.conf to shorten the
time. The scripts will create a directory (e.g., named like
time_kata_05120948) to store the logs.

We provide python scripts to analyze logs from the tests:

$ python3 data/time.py
$ python3 data/cpu.py

The python script will create two .csv files in the result
directory: time.csv and cpu.csv. Each line in the csv file in-
dicates the average cold-start latency and cpu time of a con-
tainer runtime.

A.4.2 High-density Experiment (Section 5.3)

Scripts are provided to run the high-density test for kata-
qemu, kata-fc and kata-template. To run high-density tests:

$ ./script/mem_kata_test.sh
$ ./script/mem_katafc_test.sh
$ ./script/mem_katatemplate_test.sh

Density and memory capacity of containers in the tests
can be changed in the file mem_test.conf. The scripts will
create a directory named like mem_kata_05120948 to store
the logs.

We provide a python script to analyze logs from the tests:
$ python3 data/mem.py

The python script will create a csv file for each runtime,
named like mem_kata.csv, containing the average memory
consumption of containers with different memory capacity
in different density.

A.4.3 Density Impact on Concurrency (Section 5.4)

Scripts are provided to run the high-density test for kata-
qemu, kata-fc and kata-template. To run tests:
$ ./script/density_kata_test.sh
$ ./script/density_katafc_test.sh
$ ./script/density_katatemplate_test.sh

The background density and the concurrency of the tests
can be changed in the file density_test.conf. The scripts will
create a directory (e.g., named like density_kata_05120948)
to store the logs.

We provide a python script to analyze logs from the tests:
$ python3 data/density.py

The python script will create a csv file for each runtime,
named like density_kata.csv, containing the average cold-
start latency under different background densities and con-
currencies.

A.5 Expected Results and Notes
The expect results are all stored in ae_data directory. Con-
sidering that some related binary packages are tightly in-
tegrated with our internal system, we provide a screencast
ATC_RunD_AE.mp4 of the tool along with the results. You
can also find RunD-related performance and execution logs
in our artifact..
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