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Abstract
In serverless computing, each function invocation is exe-
cuted in a container (or a Virtual Machine), and container
cold startup results in long response latency. We observe
that some functions suffer from cold container startup, while
the warm containers of other functions are idle. Based on the
observation, other than booting a new container for a func-
tion from scratch, we propose to alleviate the cold startup by
re-purposing a warm but idle container from another func-
tion. We implement a container management scheme, named
Pagurus, to achieve the purpose. Pagurus comprises an
intra-function manager for replacing an idle warm container
to be a container that other functions can use without intro-
ducing additional security issues, an inter-function scheduler
for scheduling containers between functions, and a sharing-
aware function balancer at the cluster-level for balancing the
workload across different nodes. Experiments using Azure
serverless traces show that Pagurus alleviates 84.6% of the
cold startup, and the cold startup latency is reduced from
hundreds of milliseconds to 16 milliseconds if alleviated.

1 Introduction

Owing advantages of high maintainability and testability,
serverless computing is suitable for the ever-growing Inter-
net services (the tenants are charged per invocation). As a re-
sult, hyperscalers now provide serverless computing services
(e.g., Amazon Lambda [5], Google Cloud Function [11], Mi-
crosoft Azure Functions [12], and Alibaba Function Com-
pute [1]). Meanwhile, some open-source serverless com-
puting solutions like Apache OpenWhisk [3] and Fission [9]
have also been developed and released.

In serverless computing, user functions run in containers
(or Virtual Machines), and the containers are specialized for
a function (a container is not allowed to run different user
functions). Warm containers refer to the keep-alive contain-
ers that serve subsequent invocations (warm startup). If there
is no warm container for a function invocation, a new con-
tainer is started from scratch (cold startup). The cold startup
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Figure 1: “Fork” an idle container of Function A for Function
B to alleviate its cold startups.

latency is more than 10× of the warm startup latency due to
the container creation, software environment setup, and code
initialization [40,44,47,49,59,61]. It is ideal if all functions
can run in warm containers. However, keep-alive containers
are recycled to save resources once no new invocation arrives
during the lifetime.

Many efforts have been devoted to speeding up the con-
tainer cold startup [7, 28, 31, 32, 45, 46, 54–56, 58]. The
prewarm-based methods create containers and runtime in ad-
vance, one method of which is prewarming customized con-
tainers for each function that includes all its required soft-
ware packages [8, 15, 27, 28, 60]. However, it brings heavy
memory consumption. Another method of prewarming con-
tainers is only installing common packages, and all functions
share the prewarmed container pool [14,45,46]. This method
is more memory space-efficient, but generating customized
containers for a function from the prewarmed containers suf-
fers from package download and installing latency overhead.
Current solutions mainly adopt the second method [14, 46].

To alleviate the memory waste and minimize the function
response time, instead of prewarming containers, we pro-
pose to alleviate the cold container startup through container
sharing. For instance, if function A in Figure 1 can “fork or
lend” the runtime checkpoint from its idle warm containers
for function B, the cold startup of B is eliminated. By such
means, we can leverage a function’s idle warm containers
before being recycled to help others that tend to experience
cold container startup.
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Figure 2: The container sharing logic and challenging steps.

Analyzing the container sharing procedure, we find three
challenges in achieving such goal. 1) The function invo-
cation loads are not stable [51]. It is difficult to identify
whether function A’s warm containers are actually idle or
not. If the warm containers of A are always used to help
B, A’s invocation may not be able to get a warm container
and may even suffer from Quality-of-Service (QoS) viola-
tion. 2) Functions rely on different software packages.
When function A “forks” a warm container for function B,
the warm container has to install extra packages. Installing
and importing these packages may take longer than the cold
container startup. Worse still, greedy re-packaging for exces-
sive functions can also lead to huge image size or incur pack-
age version contradictions. 3) “Forking” an idle container
from other functions may introduce security vulnerabil-
ities. While a function’s code or data are stored privately,
sharing the container with other functions is risky.

We propose a container management system, named
Pagurus to tackle these challenges. Figure 2 shows the
steps of using function A’s idle warm containers to allevi-
ate the cold container startup of other functions. The key
idea is to replace its idle containers with new containers that
other functions can safely use. The new container is cre-
ated through a new image that already installs the required
software packages of other functions, without including the
code/data of the original function A. In this way, the warm
containers of a function are classified into three categories:
private containers, zygote containers, and helper containers.
A function’s private containers can only be used by itself. Its
zygote containers are the new containers that other functions
can use. Its helper containers are the containers forked from
other functions’ zygotes. A helper container already loads its
user code for future invocations. By using privilege control
in the operating system, a function that uses a helper con-
tainer cannot obtain any code, data, or package information
of other functions.

Pagurus uses an intra-function container manager for
each function to manage its containers, an inter-function
scheduler on each node to manage the “fork” action be-
tween functions, and a sharing-aware function balancer to
schedule functions across the nodes. For a function, the

intra-function manager monitors the status of each container,
identifies idle warm containers, and re-purposes an idle con-
tainer based on a QoS-based timer. The inter-function sched-
uler, acting as an orchestrator, determines the to-be-helped
functions of each function. We design a Similarity Filtered
Weighted Random Sampling (SF-WRS) algorithm to find
an appropriate set of to-be-helped functions. Besides, the
sharing-aware function balancer distributes function invo-
cations to different nodes to achieve efficient inter-function
container sharing.

Pagurus requires no offline analysis or profile on the func-
tions, thus can be easily adopted in production. The main
contributions of this paper are as follows.

• A resource-friendly design of zygote and helper
container. Zygote container enables resource-saving
through package and function reclamation, without in-
curring any additional security issues meanwhile.

• The design of a SF-WRS re-packing policy. Based on
the package similarity between functions and the fre-
quency of function cold startups, SF-WRS policy re-
duces the number of packages to-be-installed, thus min-
imizing the memory needed and the overhead of creat-
ing zygote containers.

• The design of an efficient container sharing mecha-
nism. Pagurus divides the warm containers of a func-
tion into three types and manages the three types of con-
tainers in different ways. The mechanism efficiently al-
leviates the cold container startup.

We evaluate Pagurus using both best-practice AWS server-
less functions [6] and Azure traces [50]. Experiments show
that Pagurus alleviates 84.6% of cold startups on average in
Azure traces, and the cold startup latency is reduced from
hundreds of milliseconds to 16 milliseconds if alleviated.

2 Background and Related Work

If a function is invoked for the first time or there is no
alive (or warm) container for it, the serverless system starts
a new container to encapsulate its function runtime, ini-
tializes the software environment, loads application-specific
code, and runs the function. All these steps make up a cold
startup and may even take several seconds [21, 36, 59]. The
cold startup significantly increases queries’ end-to-end la-
tency [23, 33, 47, 49]. The long latency problem worsens
when the function invocation is short (e.g., hundreds of mil-
liseconds).

Prewarm startup spawns template containers that are al-
ready initialized with the software environment. Though
it skips the container startup and users only need to per-
form application-specific code initialization [2, 3, 32, 46],
its pre-loaded packages can either make the image size too
large [20, 32, 53], or cause more memory consumption for
the prewarm container [24, 46, 50].
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Many prior studies have been conducted to reduce the con-
tainer startup latency [19, 28, 34, 48, 52, 54]. However, exist-
ing works mainly focused on seeking lightweight virtualiza-
tion technologies to pursue lower overhead [17] or optimiz-
ing prewarm strategies for more accurate prediction models
and less initialization cost []. A common optimization is to
pause the container when idle to save resources consumed by
function codes and packages, and then reload it for reusing
when invoked [34, 44, 45, 57].

SAND [19] separated applications via containers while
allowing functions of one application to run in the same
container by different processes. FaasCache [31] took the
caching model for objects into serverless context, and imple-
mented the Greedy-Dual keep-alive caching mechanism to
reduce the resource requirement and keep containers warm.
Shahrad et al. [50] proposed to dynamically change the in-
stance lifetime of the recycling and provisioning instances
according to the time series prediction. Some researchers
use C/R (Checkpoint and Restore) [7, 55, 56, 58] that re-
stores container images from checkpoints to speed up the
cold startup. For example, Catalyzer [28] utilized C/R to
realize on-demand recovery. However, it still incurs long
latency compared with a warm startup. The above technolo-
gies are orthogonal to us, and Pagurus can be combined with
them to reduce the cold startup latency further. SOCK [46]
introduced a tree cache and uses the benefit-to-cost model to
update packages in the prewarmed containers dynamically,
but the zygote design consumes more memory when main-
taining packages by a cache-tree. Moreover, the cache-tree
does not work if functions require conflicted package ver-
sions.

Pagurus resolves the problems through inter-function con-
tainer sharing with conflict concerns, and needs neither pool-
size tradeoffs nor time-consuming model training.

3 Investigation and Motivations

In this section, we discuss the current prewarm-based mech-
anism for alleviating the cold container startups, and show
the possibility of eliminating the cold container startup with
inter-function container sharing.

3.1 Latencies of Cold and Prewarm Startups
A cold container startup is done in three time-consuming
steps: create container from the image, initialize software
environment, and initialize application-specific code. With
the prewarm mechanism (used in OpenWhisk [3] and pro-
duction platforms), several containers that already import
common libs/packages are hatched in a container pool. A
function invocation with no warm container can specialize
the prewarmed container by installing the extra packages.

We use prewarm-enabled OpenWhisk with local cache as
the serverless platform, and use the best practice serverless
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Figure 3: The cold startup latency and prewarm startup la-
tency of the benchmarks in OpenWhisk.

applications in AWS [6] as the benchmarks, to investigate
the impacts of cold and prewarm startup on the end-to-end
latency of a function invocation. A benchmark may have
several functions [41]. As for the hardware, we use one node
to perform the computation and one node to generate func-
tion invocations. The benchmarks, software, and hardware
setups are described in Section 8.

Figure 3 shows the time of generating a container when it
is started from the image, or is specialized from a common
prewarmed container. As shown, the cold container startup
takes about 500 milliseconds. The prewarm startup takes 15
milliseconds in the best case, but takes more than 1500 mil-
liseconds in the worst case (e.g., function union in the bench-
mark ddns). This is because union requires to load/install
many additional packages in the prewarmed containers, and
the package loading is time-consuming.

Intuitively, a prewarmed container may install all the soft-
ware packages required by all the functions on a physical
node to speed up the prewarm startup. It is possible because
for most serverless systems, the packages needed by a func-
tion (besides the private ones) are usually given by its user
in a requirements.txt, and are publicly accessible for FaaS
providers. However, many functions require software pack-
ages of contradicting versions. In addition, such a solution
may expose the package information of other functions. The
pre-imported requirements will implicitly embody user pri-
vacy. Due to the software conflict and privacy concerns, it is
not a good option to install packages for all functions in the
prewarmed containers.

3.2 Limitations of Prewarm Schemes
We then explore the effectiveness of the prewarm schemes
in alleviating the cold startup. In this experiment, we run all
the benchmarks on a single node, and the invocation patterns
of the functions are the same as the patterns in the Azure
serverless traces. The invocation patterns actually follow the
Pareto distribution (most of the invocations are for a small
part of the functions) [15]. By default, a prewarm container
pool has two prewarmed containers on a node [2].

Figure 4 shows the percentage of the remaining cold star-
tups with the prewarm mechanism. Many cold startups are
not eliminated (e.g., functions in eco and cart). This phe-
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Figure 4: The remained cold startup in prewarm-enabled
OpenWhisk compared with the disabled one.

nomenon attributes to the inappropriate pool size of the pre-
warm container pool. For eco and cart, their functions are in-
voked simultaneously/or in short intervals to satisfy complex
business logic, such as workflows [18, 22, 25]. For instance,
five functions are triggered simultaneously by a caller in eco.
These functions contend for the prewarmed containers.

It is nontrivial to appropriately configure the prewarm
scheme due to two considerations. 1) Pool-size and mem-
ory overhead trade-off. If we prewarm more containers,
larger additional memory space is used. In our experiment,
the prewarmed containers use more than 1GB of memory
(on a node with 16GB memory) to eliminate 80% of the cold
startup. The prewarm mechanism is not able to effectively
eliminate the cold startup with reasonable memory overhead.
2) User experience and system efficiency contradiction.
As discussed, most of the invocations are from a small part
of the functions [15], and a prewarmed container can only
cache a small number of packages for the low memory over-
head. Caching packages for frequently invoked functions
improves the system efficiency (frequent invocations have
low startup time), but results in poor user experience (invoca-
tions of most functions tend to suffer from the long package
installation time), and vice versa.

The current container prewarm scheme is not efficient due
to several inevitable trade-offs. It is beneficial to alleviate
cold startups without trapping in the same dilemmas.

3.3 Opportunity of Reusing Idle Containers
We therefore propose to alleviate cold startup without relying
on prewarming containers. The key idea is leveraging the
warm but idle containers of some functions to alleviate the
cold startups. A function invocation that requires cold startup
may “steal” an idle warm container from other functions.

The proposed scheme is effective only when there are idle
warm containers in some functions when an invocation tends
to suffer from the cold container startup. In principle, only
underutilized warm containers that are active due to the keep-
alive strategy can be used by other functions. Otherwise,
always stealing a warm container directly may result in the
cold container startup of the victim function.

We analyze the day07 trace of Azure serverless plat-
form [50] (the trace contains invocations of over 44,000
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Figure 5: The number of container cold startups and idle
containers from 400 randomly selected functions.

functions) to verify the above requirement. If a container
triggers recycling, it must be an idle warm container because
of no new invocation during its lifetime. By replaying the
trace, we find that the warm containers for some functions
are idle (no invocation is received during this idle time),
while some other functions suffer from cold startup. We refer
to idle warm containers as idle containers.

Figure 5 shows the number of idle containers and cold
startups when replaying the trace. As observed, the time that
idle containers and cold startup happen are similar, and there
are more idle containers than the cold startups. If the time
does not match, the functions that suffer from cold startup
cannot find idle containers from other functions.

The time matches because many containers are prepared
and invoked to serve the high load, and they become inactive
when the load drops. We can observe a significant discon-
tinuity at the beginning of each hour as there is a certain
number of functions with a 1-hour timer trigger, and they
are invoked once and will keep idle during the rest of their
lifetime. In this case, excessive idle containers are pervasive.

In summary, serverless computing systems usually adopt
a keep-alive strategy (e.g., 15 minutes) to reduce the cold
startup. The kept-alive containers are idle before they are re-
cycled. The widely-existed diurnal load pattern also makes
containers over-provisioned at the high load. These contain-
ers will become idle when the load drops as well.

Based on the investigation, we observe the opportunity to
leverage the idle containers of some functions to help others
that suffer from cold startup on the same node.

4 Design of Pagurus

There are two prerequisites to alleviate the cold container
startup with the warm containers of other functions. First, the
container manager has to identify the actual idle warm con-
tainers. Otherwise, the “steal” results in the container cold
startup of the victim function. Second, the proposed strategy
should not expose any information of a function (e.g., data,
code, package requirements) to other functions from the con-
sideration of security.

We propose and implement Pagurus, a container man-
agement system that fulfills the two prerequisites. Figure 6
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Figure 6: Design of Pagurus.

shows the design of Pagurus. It comprises an intra-function
container manager for each function, an inter-function con-
tainer scheduler on each node, and a sharing-aware function
balancer at the cluster level. The intra-function container
manager of a function manages its three types of containers
(private containers, zygote containers, and helper contain-
ers) (Section 5). The inter-function scheduler manages the
zygotes sharing between functions (Section 6). The sharing-
aware function balancer maps the functions across multiple
nodes to minimize the system-wide cold startup (Section 7).

Based on runtime statistics, a function’s idle warm con-
tainers are replaced with its zygote containers that are newly
created from its zygote image ( in Figure 6). The zy-
gote image does not include the code or data of any func-
tions. Pagurus uses the inter-function container scheduler
on each node to generate the zygote image of each func-
tion (¬ in Figure 6). Creating zygote images does not in-
troduce extra runtime latency overhead, as it is done asyn-
chronously before replacing the idle container with a zygote
container. The inter-function container scheduler determines
the possible to-be-helped functions of each function based on
Similarity-Filtered Weighted Random Sampling (SF-WRS)
policy, which will be detailed in Section 6.1. A function’s zy-
gote container additionally installs the required packages of
its to-be-helped functions in an anonymous fashion. Based
on the privilege control of the Linux operating system, a
function is only able to access its own packages.

Specifically, when an invocation of a function f arrives, it
obtains a container to host the invocation in four steps.

1) It first tries to obtain an idle warm private container
from its own private container pool directly. Then, if its
private container pool is empty, it checks whether its helper
container pool has containers for queries.

2) If both the private pool and the helper pool are empty,
it will further check whether its zygote container pool has
some containers already adapted for other functions. If not

empty, a zygote container can be used to host the invocation.
3) If its zygote container pool is also empty, Pagurus tries

to find a container that includes the required packages of f
from other functions’ zygote container pool. The forked zy-
gote then joins the helper container pool of f (® in Figure 6).

4) If all the above steps fail, the invocation of f would
suffer from a cold container startup.

5 Intra-function Container Management

The key points of the intra-function manager are identifying
the actual idle containers, and designing an efficient sharing
mechanism.

5.1 Identifying Idle Containers
In principle, a container is idle when it does not host function
invocations for a long time. For a function f , we introduce
a timer in each of its containers to measure the free time.
A warm container is treated to be idle if its timer exceeds
threshold Tidle( f ). The timer is reset once the container re-
ceives an invocation.

The design principle here is that most function invocations
can still get warm containers, even when a container is iden-
tified to be idle and “stolen” by other functions. Different
functions should have different idle thresholds because of
their diverse invocation patterns. We explore the runtime in-
vocation arrival pattern to determine the value of Tidle( f ) for
a function f . Specifically, we use all the m invocations dur-
ing the container lifetime, and let T1, T2, ..., Tm represent
the time intervals between the adjacent invocations (the time
interval is sorted in the ascending order). Equation (1) calcu-
lates the idle threshold Tidle( f ) for the function f in the next
time period.

Tidle( f ) =

{
Td0.95me ,m≥ 30,

Tde f ault ,m < 30.
(1)

In the equation, Td0.95me is the 95%-ile time interval of
the m samples. In this case, for frequent invoked functions
(m≥ 30), more than 95% invocations of f tend to get warm
containers, if the invocation arrival patterns remain. We use
30 to be the sampling target for stability considerations. For
occasionally invoked functions, Tidle( f ) is set to be Tde f ault ,
and almost all the invocations get warm containers. Tde f ault
may impact the overall efficiency for idle identification, and
Section 8.4.3 evaluates the sensitivity of Pagurus to it.

5.2 Replacing Idle Containers with Zygotes
A function’s idle containers cannot be used by other func-
tions directly, as the data and code of the function may still
reside in the memory of the idle containers. To this end,
Pagurus creates a zygote container that does not include any
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data or code of the owner function, and uses the zygote con-
tainer to replace the original idle warm container. The zygote
container is created from an image that installs the shared
packages of all the to-be-helped functions. Section 6 dis-
cusses the policies used to determine the to-be-helped func-
tions and generate the zygote image of a function.

One may be concerned about the security and privacy of
the zygote container for re-purposing. Figure 7 shows the
way to avoid package information leakage in zygote con-
tainers. All the functions run as non-root users [4, 10, 16].
In the figure, fB and fC are the to-be-helped functions in fA’s
zygote container. In general, the common intersectant pack-
ages required by all functions are installed as a shared do-
main (pkgm, pkgn) in the zygote container, and the additional
complementary and private packages of to-be-helped func-
tions are cached in different directories of the host. These
directories are mounted anonymously into the zygote, thus
ensuring that others cannot identify a function.

Each function that may use the zygote container is given
a privilege domain and is only allowed to access its corre-
sponding package directory. The privilege domain and priv-
ilege control are provided by Linux operating system and
different non-root users. For instance, in Figure 7, when
function fB obtains the zygote container, it can only enter
its own privilege domain for fB’s packages (private packages
and pkgY ) to specialize its software runtime. In this way, the
zygote container serves as a safety checkpoint. Because it
does not import any user-related code and data, the function
privacy of the software environment is also protected.

6 Inter-function Container Scheduling

The inter-function container scheduler selects to-be-helped
functions for zygotes, re-packs zygote images, and manages
the fork operation for helper containers.

6.1 Selecting To-be-helped Functions
A straightforward approach is to treat all the other co-located
functions as the candidate to-be-helped functions, and in-
stall all the required packages into a zygote image. However,
this approach suffers from extremely high re-packing over-
head, in terms of both time and resource consumption. When

re-packing a zygote image, we have two important observa-
tions. On the one hand, if the set of to-be-installed packages
is large, it is time-consuming and resource-unfriendly to cre-
ate a giant zygote image. On the other hand, some functions
tend to have more cold startups than others (as observed from
Azure traces [12]), inappropriate selection of to-be-helped
functions is inefficient in alleviating the system-wide cold
startups. Taking the above challenges into consideration,
we propose SF-WRS (Similarity Filtered Weighted Random
Sampling) algorithm, which contains:

• A Similarity-based Filter to find out to-be-helped candi-
dates based on the similarity of functions’ packages. In
this way, a zygote installs fewer complementary pack-
ages, thereby lowering the re-packing overhead.

• A WRS (Weighted Random Sampling) strategy [29]
to select K to-be-helped functions based on the cold
startup frequency of each function on the node. Pagu-
rus tends to prepare zygote images for the functions that
suffer from more cold startups with high possibility.

Similarity-based Filter. Focusing on the package infor-
mation, a function f can be viewed as a set of packages, i.e.,
f = {pkg1, pkg2, ...}, where pkgi is assigned in the require-
ments.txt and refers to the required package in f ’s runtime
environment. Let Fn = { f ′1, f ′2, ...},∀ f ′i 6= f represent the set
of functions on node n when function f triggers re-packing.
The package difference between f and f ′i ∈ Fn imposes a
deep influence on the re-packing overhead. Let us denote the
containment relationship of a package pkg in fA and another
function fB as

con(pkg, fA) =

{
1 , if pkg∈ fA,

0 ,others,
∀pkg∈ fA

⋃
fB. (2)

We can then derive the containment relationship vector
of f and f ′i ∈ Fn as ~f = {con(pkg, f )|∀pkg ∈ f

⋃
f ′i } and

~f ′i = {con(pkg, f ′i )|∀pkg ∈ f
⋃

f ′i }, respectively. The simi-
larity between f and f ′i thus can be calculated as their cosine
distance by

Cos(~f ,~f ′i ) =


~f ·~f ′i
‖~f‖‖~f ′i ‖

, ‖~f‖‖~f ′i ‖ 6= 0,

1 , ‖~f‖‖~f ′i ‖= 0.

∀ f ′i ∈ Fn. (3)

Thereafter, we can obtain an initial f ’s to-be-helped function
candidate set C f

n by removing those functions with similarity
lower than TargetSimilarity from Fn. TargetSimilarity can
be set as the median similarity in default.

Note that, as discussed before, a package may be specified
in different versions, and a zygote image with version con-
flict (i.e., the same package but different versions) could not
be re-purposed by another function. Denoting the version of
a package pkg in function f as V (pkg, f ), we can express the
version conflict relationship between f and f ′ as

Con f lict( f , f ′)=

{
1 ,∃ pkg ∈ f ,V (pkg, f ) 6=V (pkg, f ′),

0 ,others.
(4)
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Then, we first ensure that there is no conflict between
function f and its candidates, by removing the functions with
version conflict from the candidate set. However, it is still
possible that some candidates conflict with each other. For
instance, candidates f ′1 and f ′2 do not conflict with f , but f ′1
conflicts with f ′2. In this case, they cannot be packed into a
single zygote image either. The candidate set C f

n should be
further updated by Equation (5), where C f

n\ f ′i represents the
complement of f ′i in C f

n .

C f
n = { f ′i |Con f lict( f , f ′i ) = 0,

Con f lict( f ′i , C
f
n\ f ′i ) = 0,∀ f ′i ∈ C f

n ,},
(5)

Take the package conflict in AWS application benchmarks
as an example, function tcp_check_transcribe requires the
package aws_requests_auth with version 0.4.1, while func-
tion ep_delivery_on_package_created requires that with
version 0.4.3. It denotes that applications have various pack-
age similarities, and two functions may rely on conflicted
packages. By selecting the to-be-helped functions based on
package similarity, a zygote image installs fewer packages
for zygote images with less re-packing overhead.

WRS selection. After the similarity filter and conflict
recognition, the to-be-helped function candidates can be sig-
nificantly reduced. However, it is still nontrivial for the inter-
function scheduler to determine the appropriate number of
to-be-helped functions without resulting in too large image
size, too long image generation time, or failing to eliminate
most cold startups. Therefore, we should choose an appro-
priate number, say K, of functions from candidates C f

n that
tends to eliminate the cold startups with high probability.

Therefore, we first remove the functions never re-invoked
from C f

n . Let I be the number of remaining functions that
have been invoked more than once. We can calculate K as

K=
∑

I
n=1 Kn

I
=

I

∑
n=1

[
∑

I
n=1 Cold( f ′n)+∑

I
n=1 Zygote( f ′n)

(Cold( f ′n)+Zygote( f ′n))Num(Zygote)
]/I,

(6)
Ki is the expected number of to-be-helped functions for f ′i ,
Num(Zygote) is the average number of active zygotes in the
system, Zygote( f ′i ) and Cold( f ′i ) indicate the times a func-
tion experiences zygote-based invocation and cold startups
of f ′i , respectively. Ki ensures that each to-be-helped func-
tion f ′i can be re-packed into a zygote container at least once.

Algorithm 1 summarizes the SF-WRS algorithm. First,
the inter-function scheduler filters out the candidate func-
tions with low similarity values (lines 1-3), recognizes the
package conflicts (lines 4-6), and then selects K to-be-helped
ones by the A-ExpJ algorithm, which is a variation of WRS
(Weighted Random Sampling) algorithm [29] (lines 9-12).
Compared with naive WRS, A-ExpJ shows much lower time
complexity. The time complexity of selecting K functions is
O(K log( n

K )) with A-ExpJ, and the time complexity of naive
WRS is O(n).

Algorithm 1 SF-WRS Selection Algorithm

Require: To-be-helped function candidates C f
n

Require: Cold( f ′i ) and Zygote( f ′i ) of function f ′i in last hour
1: C f

n = Sample.init(Fn)

2: for f ′i in C f
n do

3: if Cos(~f , f ′i )< TargetSimilarity then: C f
n .delete( f ′i )

4: for f ′j in C f
n do

5: if Con f lict( f , f ′j)=1 or Con f lict( f ′j, C
f
n\ f ′j)=1 then

6: C f
n .delete( f ′j)

7: if C f
n 6= Null then

8: Total = ∑
K
n=1 Cold( f ′i )+∑

K
n=1 Zygote( f ′i )

9: for f ′k in C f
n do

10: Prepack( f ′k) = [Cold( f ′k)+Zygote( f ′k]/Total
11: Sample.append(( f ′k,Prepack( f ′k)))

12: A−ExpJ(Sample,K)
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Figure 8: The key steps (represented in green) of re-packing
a zygote image for the first time.

6.2 Re-packing a Zygote Image
Figure 8 shows the steps of re-packing the zygote image
for a function f . When the intra-function container man-
ager of f identifies an idle container, it informs the inter-
function scheduler, then selects the to-be-helped functions
of f based on the SF-WRS algorithm. After that, the inter-
function scheduler triggers the re-packing operation, obtains
the packages, and re-packs the zygote image. Only the pack-
ages shared by all the to-be-helped functions are installed
in the shared domain. Finally, the re-packed zygote image
is returned to the intra-function container manager of f for
building zygote containers to replace f ’s idle containers.

The inter-function container manager has an advantage
compared with the traditional building method, where the
image is built through the network from the container repos-
itory. Pagurus omits the downloading of the required pack-
ages in a zygote image through the network again, benefiting
from the locally cached packages, when creating the private
container images [26, 39]. By reusing cached packages, re-
packing a zygote image takes a much shorter time.

Besides, the zygote image of a function is asynchronously
re-packed before its to-be-helped functions actually meet in
cold startups. Re-packing a zygote image does not result in
long response latencies of to-be-helped function invocations.
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Figure 9: Security guarantee when forking a zygote.

6.3 Forking a Zygote Container

The rest undertaking is to safely and efficiently share zygote
containers for other functions. To provide higher availabil-
ity for multiple to-be-helped functions getting zygote con-
tainers, we fork the zygote container to be helper contain-
ers, rather than directly specializing it. The zygote container
remains there for other to-be-helped functions. The forked
containers also ensure software security by the anonymous
mounting and privilege domain as zygote containers do.

When a zygote container is forked from function fA to be
fB’s helper container, the code of fB is copied into the forked
one. We implement two plugins Zygote fork and Code copy,
in the inter-function scheduler. The Zygote fork plugin forks
a container asynchronously, un-mounts the package directo-
ries of functions other than fB, and transfers the control ac-
cess to fB’s corresponding privilege domain. The Code copy
plugin copies the code of fB to the helper container.

Figure 9(a) shows the steps of fB forking a zygote con-
tainer of function fA. In Step 1, a zygote container of fA is
forked through the Zygote fork plugin. Then, the Code copy
plugin copies the code of fB into the forked zygote (Step 2).
Lastly, the forked container joins the helper container pool
of fB (Step 3). It also provides process-level isolation for
queries, as shown in Figure 9(b).

7 Sharing-aware Function Balancing

In existing serverless computing clusters, hash-based meth-
ods or resource usage-based methods are often used to route
user queries [13, 30, 35, 37, 38, 42, 43]. It is possible that the
functions on a node do not share many packages. In this case,
the host node needs to create many private directories with
many packages, resulting in poor resource efficiency. To ad-
dress such a problem, a straightforward solution is checking
the package similarities of all the active functions, and as-
signing the functions that share more packages to the same

node. However, it is not always a good solution, as the func-
tions sharing many packages may not have idle containers.

To resolve the problems above, we propose a function bal-
ancing strategy based on the statistics of zygote containers
and the available resources Un={UCPU ,UIO,Unet , ...}n on ev-
ery node. The function balancer is implemented on the head
node of the cluster, to obtain the statistics from all the nodes.
For a function fB that requires package pkga and pkgb, if
it fails to find a zygote container during its invocation on a
node, its future invocations should be redirected to another
node with potential zygote images.

To this end, Pagurus runs the sharing-aware function bal-
ancer on the head node based on the resource usage Un, and
the similarity between the redirected fA and functions with
idle containers on node n. Let N= {n|maxUn ≤ Tres} repre-
sent the set of nodes where the resource utilization is under
the threshold Tres (80% by default). The head node will se-
lect a new node with the most zygote containers from N and
inform the API gateway accordingly. After that, the queries
of fB will be routed to this new node.

8 Evaluation of Pagurus

In this section, we evaluate Pagurus in reducing the cold star-
tups and end-to-end latencies when a function does not have
warm containers. Then, we evaluate Pagurus by a large-scale
evaluation with Azure trace. After that, we show the integra-
tion with other techniques and overhead.

8.1 Experimental Setup

We use 10 best-practice applications with the most GitHub
stars from Amazon AWS samples as the benchmarks [6].
We use these applications for revealing the performance
of Pagurus for real applications. Experiments with small
scale benchmarks in serverless benchmark suites, e.g., FaaS-
Profiler [49] and ServerlessBench [61] show similar results.
We run the benchmarks on a 6-node cluster. A node gener-
ates function invocations, and the other 5 nodes serve invo-
cations. Table 1 shows the configurations of each node.

Pagurus does not rely on the function invocation arrival
distribution. In Section 8.2-8.3, we send queries to each ap-
plication following a Poisson distribution by randomly sam-
pling λ between 0 and 5 queries per second. We co-locate
all the benchmarks, and run 20 tests with different sam-
ples to avoid randomness. More experiments are done with
the Pareto distribution-based invocation pattern of the Azure
serverless trace in Section 8.4.

We compare Pagurus, prewarm-disabled OpenWhisk,
prewarm-enabled OpenWhisk (OpenWhisk-Prewarm), and
SOCK [46]. SOCK also prewarms containers by dynami-
cally updating packages in the prewarmed containers to al-
leviate cold startups. When a function obtains a prewarmed
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Figure 10: Remained cold startups of OpenWhisk-Prewarm, SOCK and Pagurus, compared with prewarm-disabled OpenWisk.
The left figure shows the remained cold startups (all bars are normalized to the number of cold startups of OpenWhisk Prewarm-
Disabled) of each function, while the right figure shows the remained cold startups of all functions in the system.

Table 1: Hardware, software, and benchmark setups
Configuration

Node
CPU: Intel Xeon(Ice Lake) Platinum 8369B @3.5GHz

Cores: 8, DRAM: 16GB, Disk: 100GB SSD (3000 IOPS)

Software
Operating system: Linux with kernel 4.15.7, Docker: 20.10.6

Nginx version: nginx/1.10.3, Database: Couchdb:3.1.1
runc version: 1.0.0-rc93, containerd version: 1.4.4

Container

Container runtime: Python-3.7.0, Linux with kernel 4.15.7
Resource limit and Lifetime: 1-core with 256MB, 600s

Function container limit: 10 for each function on each node
prewarm pool size in OpenWhisk: 2 on each node

Benchmarks ( serverless-ecommerce-platform (eco), etl-orchestrator (etl)
38 functions in cost-explorer-report (rep), serverless-tokenization (tok)

10 AWS Lambda transcribe-comprehend-podcast (pod), serverless-chatbot (bot)
best practice serverless-shopping-cart (cart), refarch-fileprocessing (file)
applications) finding-missing-persons-using-rekognition (rek), ddns

container, SOCK and OpenWhisk-Prewarm copy the miss-
ing packages into the prewarmed container for its invocation.

8.2 Alleviating Container Cold Startups
Figure 10 shows the percentages of the cold startups not
eliminated by Pagurus, SOCK, and OpenWhisk-Prewarm,
compared with prewarm disabled OpenWhisk. On aver-
age, Pagurus alleviate 83.1% of the cold startups, while
OpenWhisk-Prewarm and SOCK alleviate 68.9% and 64.4%
of that. Meanwhile, as Pagurus does not need to prewarm
containers, there is no extra memory overhead introduced by
the prewarm container pool with Pagurus.

As observed, SOCK and OpenWhisk-Prewarm only re-
duce a small percentage of cold startups for many functions
(e.g., functions of eco and cart). This is because the func-
tions tend to contend for the limited prewarmed containers.
On the contrary, Pagurus alleviates the cold startups by fork-
ing other functions’ zygote containers, without trapping in
the same dilemmas. We can also find that Pagurus alleviates
slightly fewer container cold startups for several functions,
compared with SOCK and OpenWhisk-Prewarm. This is be-
cause these functions have low cold startup frequency by de-
fault, and SF-WRS policy does not tend to re-pack them into
zygotes for achieving higher system-level cold startup alle-
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Figure 11: The latency of starting up a prewarmed container
in OpenWhisk-Prewarm and SOCK, and the latency of fork-
ing a zygote container in Pagurus.

viation. The percentage looks large when the original cold
startup frequency is low, even if a small number of cold con-
tainer startup is not eliminated.

In our experiment, 27.8% of the warm containers are
turned into zygote containers, then are forked by other func-
tions. When a function does not have a warm container for
its queries, 60.5% of the obtained containers are forked.

8.3 Reducing Startup and E2E Latency

Figure 11 shows the latencies of starting a container from
a prewarmed one (OpenWhisk-Prewarm and SOCK), and
forking a zygote container (Pagurus). As observed, all the
benchmarks have the shortest startup latencies with Pagurus.

If a function invocation is hosted by a helper container
with Pagurus, the packages are ready beforehand, and only
the user-specific code initialization is needed. Pagurus is
able to fork a zygote container in 11ms, and completes the
code initialization in 5ms.

With OpenWhisk-Prewarm, starting from prewarmed con-
tainers takes longer than directly cold startup a container
from the image (e.g., functions in ddns, pod, and rep).
SOCK reduces the latency of the prewarm startup leverag-
ing the packages cached with higher benefit-to-cost.

Figure 12 shows the average end-to-end latency of each
function normalized to its latency with prewarm-disabled
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OpenWhisk. Pagurus reduces the end-to-end latency of the
benchmark functions by 475ms and 479ms on average, while
OpenWhisk-Prewarm and SOCK reduce the end-to-end la-
tency by 237ms and 286ms.

By mounting packages beforehand with privilege control,
zygote containers can better reduce the startup latency, thus
the end-to-end latency.

8.4 Large-scale Evaluation with Azure Trace

In this subsection, we evaluate Pagurus by replaying the
Azure serverless trace [50] on a 31-node cluster. The soft-
ware and hardware configuration of each node is the same
as Table 1. We use all the 40,000 functions from the day07
trace [12], generate function invocations, and randomly route
the invocations to the 30 nodes.

The Package similarity in Pagurus is used to shrink the
searching space for identifying to-be-helped candidates and
reducing the re-packing overhead. However, the Azure
trace does not provide package information for the func-
tions, but only the function duration and invocation arrival
time. Lacking the package information, it is impossible
to evaluate the similarity-filtered WRS selection policy in
Pagurus, nor OpenWhisk-Prewarm or SOCK. With no pack-
age information and similarity-filtered re-packing for Azure
trace, Pagurus identifies to-be-helped candidates based on
the basic WRS policy. We therefore only compare similarity-
disabled Pagurus, with the prewarm-disabled OpenWhisk for
the large-scale evaluation , to show the effectiveness of alle-
viating cold startups by simply replacing idle containers with
zygotes.
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Figure 13: The effect of alleviating cold startup, and the CDF
that functions suffer from different cold startup frequencies.

8.4.1 Alleviating Cold Startup

We report two user experience-related metrics in this exper-
iment. First, how many cold startups are alleviated by Pagu-
rus? Second, how many functions seldom experience cold
startups (e.g., one cold startup) in one day with Pagurus?

Figure 13(a) shows the total number of cold startups
with Pagurus and prewarm-disabled OpenWhisk (denoted by
“OpenWhisk” for short in this subsection). In the figure, the
functions are sorted in the descending order of their invoca-
tion frequencies. The smaller the function ID, the more fre-
quent the function is invoked. As shown in the figure, Pagu-
rus reduces the number of cold startups by 84.6%. We can
also find that OpenWhisk results in the frequent cold startup
for the functions of middle-popularity. It is because the
warm containers of these middle-popularity functions tend
to be recycled due to the relatively low invocation frequen-
cies. Pagurus efficiently alleviates the cold startups for the
middle-popularity functions through zygote containers.

Figure 13(b) shows the cumulative distribution of the
functions with different container cold startup frequencies.
As observed, 73.4% and 52.1% of all functions experience
cold startup less than once in a day with Pagurus and Open-
Whisk, respectively. Meanwhile, 90.1% of the functions ex-
perience cold startups less than 5 times daily with Pagurus.
In the figure, sudden jumps happen around 24 and 48 cold
startups for OpenWhisk. The jumps are caused by functions
with a 1-hour or 30-minutes trigger in the trace.

Pagurus effectively alleviates the cold container startup,
especially for middle-popularity and low-popularity func-
tions in production. It greatly improves the user experience.

8.4.2 Reducing Tail Latency

Figure 14 shows the 95%-ile latencies of the 40,000 func-
tions with Pagurus and OpenWhisk. The left y-axis shows
the 95%-ile latencies of functions with Pagurus, and the right
y-axis shows that with OpenWhisk normalized to the for-
mer. OpenWhisk results in longer 95%-ile latencies for most
functions than Pagurus (the right y-axis is larger than 1).

We can also observe that popular functions (functions
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Figure 14: The end-to-end 95%-ile latency of 40,000 func-
tions with Pagurus and OpenWhisk.
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tups alleviated by Pagurus with different Tde f ault .

with ID smaller than 15,000) have similar 95%-ile latency
with OpenWhisk and Pagurus. This is because the slowest
95%-ile invocations of these functions still experience warm
startup, as these functions are frequently invoked. For the
middle-popularity and low-popularity functions, their 95%-
ile latencies are the latency of the function invocation that
suffers from the cold container startup with OpenWhisk.

8.4.3 Impacts of Hyperparameters

In this experiment, we evaluate the impact of Tde f ault (the
value is set as 60s by default), and the number of to-be-
helped functions K, on Pagurus. Figure 15 shows the per-
centages of cold startups alleviated by Pagurus with differ-
ent Tde f ault and different K. As observed, the performance of
Pagurus is stable when Tde f ault varies. The performance of
Pagurus is not sensitive to Tde f ault .

We also find the number of to-be-helped functions, K,
gradually converges to 8. Moreover, the appropriate value
of K is not affected by Tde f ault . For Azure workloads, Pagu-
rus should generate a zygote for 8 to-be-helped functions on
average. It is consistent with the calculated one in Equa-
tion 6. We also measure the impact of larger prewarm pool
size in OpenWhisk, and find that the improvement becomes
marginal but with significant resource waste.

8.5 Integrating with Orthogonal Techniques
The decoupled hierarchy design of Pagurus provides easy-
to-use APIs for container orchestrators. Pagurus can be inte-
grated with prior work on speeding up the cold startup.

Table 2: Overheads of the components in Pagurus
Sources Type Overheads (each node)

CPU overhead 0.345 core
Intra-container manager Memory overhead 228MB

Storage overhead 485MB for each zygote image

Inter-function scheduler
CPU overhead 0.66 core (re-packing included)

Memory overhead 315MB

Pagurus brings shorter end-to-end latency when it is in-
tegrated with Checkpoint/Restore [7] (denoted by C/R) and
Catalyzer [28], respectively. With C/R, a container is recov-
ered from a checkpoint image. With Catalyzer, more data are
already loaded in the image stored in memory. By replaying
the evaluation, we find that C/R+Pagurus reduces the cold
startup time of the benchmarks by 78.9% on average com-
pared with C/R; Catalyzer+Pagurus reduces the cold startup
time by 15.1% on average compared with Catalyzer. Even if
no appropriate forked zygote container returns, Pagurus does
not slow down the container startup.

8.6 Overheads of Pagurus Components
In Pagurus, packing zygote images, generating zygote con-
tainers from the images, and determining the to-be-helped
functions for each function introduce runtime overhead.

According to our measurement, each container in Pagurus
uses smaller memory on average than OpenWhisk. The re-
duction originates from the design of the zygote container.
Although packages are pre-installed in zygote containers,
they are imported into memory only when a zygote container
is forked. On the contrary, warm containers (private contain-
ers) always keep the packages in memory for low latency.
The reduction of memory usage is not affected by the num-
ber of to-be-helped functions.

Table 2 shows the CPU, memory, and storage over-
head caused by the intra-container managers and the inter-
function schedulers when replaying the Azure trace. As re-
ported, less than one core is required to run all the intra-
container managers and the inter-function scheduler on a
node. If fewer functions are executed on a node, the over-
head will be smaller.

9 Conclusion

Pagurus alleviates cold startups with inter-function container
sharing rather than popular prewarm-based methods. It com-
prises an intra-function manager for idle container identifi-
cation and management, an inter-function scheduler for safe
container scheduling, and a sharing-aware function balancer
for resource-aware workload balancing. Our experimental
results based on both real system benchmarks and Azure
trace show that Pagurus significantly alleviates the cold con-
tainer startup. The cold startup latency is reduced from hun-
dreds of milliseconds to 16ms if Pagurus alleviates it.
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A Artifact Appendix

A.1 Abstract
Our artifact includes the prototype implementation of
Zygote-based mechanism in Pagurus, 10 masked applica-
tions (including 38 functions) benchmarks, and mapped
functions from Azure Trace. The artifact provides experi-
ment workflow scripts to perform the measurement.

A.2 Artifact Check-list (Meta-information)
• Run-time Environment: Ubuntu 18.04, Docker 20.10.6,

CouchDB 3.2.2 and Python are required.
• Data set: The artifact uses 10 masked application bench-

marks from AWS samples and Azure traces.
• Execution workflows: For reproducing our paper’s results,

we provide the corresponding scripts for each evaluation sec-
tion (from Section 8.2 to Section 8.4) to send queries, collect
the execution metrics, and draw the comparison plots.

• Time needed to complete: see the instruction of each Exp.
• Publicly available: https://github.com/lzjzx1122/Pagurus
• Code Licenses: Apache-2.0 license

A.3 Hardware and Software Dependencies

• Hardware: The hardware is configured by {CPU: Intel
Xeon(Ice Lake) Platinum 8369B @3.5GHz, Cores: 8,
DRAM: 16GB, Disk: 200GB SSD with 4200 IOPS.}

• Software environment: Operating system: {Linux
with kernel 4.15.0, Docker: {20.10.15}, Container run-
time: {Python-3.6.9, Linux with kernel 4.15.7}, Nginx
version: {nginx/1.10.3}, Database: {Couchdb with ver-
sion 3.2.2}, runc version: {1.0.0-rc93}, containerd ver-
sion: {1.4.4}, and Pagurus. Detailed software depen-
dencies are all listed and scripted in the artifact.

A.4 How to Access and Install

GitHub link: https://github.com/lzjzx1122/Pagurus. Clone
the GitHub repository and then run the quick setup script to
deploy Pagurus.

A.5 Experiment and Expected Results

A.5.1 AWS applications (Section 8.2 and 8.3)

Under the path Pagurus/aws/trace, there are 18 different
sampling test results for AWS applications, and the expected
test results for each sampling are stored in the directory
aws/expected_result. You can directly run aws/plot.py
to generate the plots, or replay the trace using a testing script
to run the AWS experiment:

$ python3 aws/run_experients.py 1

Experiment customization: The above script performs
the 1st sampling test with Openwhisk, Pagurus, OpenWhisk-
Prewarm and SOCK. Other sampling tests can also be per-
formed by changing "1" to other test numbers. To fully re-
produce our result, it additionally takes at least 160-hours (20
tests with different sampling parameters) to generate the exe-
cution logs for 4 platforms. To ensure that the zygote repack-
ing mechanism and prewarm works efficiently, the running
time should be at least 2-hours for both 4 platforms (8 hours
for each test number).

After running the sampling tests under four platforms, the
script will generate the results under aws/result. Run the
following script to generate three .csv files:

$ python3 aws/summary_from_results.py

• cold_start.csv shows the remained cold startups
of OpenWhisk, SOCK and Pagurus, compared with
prewarm-disabled OpenWhisk (Figure 11).

• startup_time.csv shows latencies of starting up con-
tainers in prewarm-disabled OpenWhisk, OpenWhisk
and SOCK, respectively. It also contains latencies of
forking zygote containers in Pagurus (Figure 12).
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• e2e_latency.csv shows e2e latencies of benchmarks
in Pagurus, SOCK, OpenWhisk, and prewarm-disabled
OpenWhisk, respectively. (Figure 13).

Then run the following script to generate the plots:
$ python3 aws/plot_from_results.py

A.5.2 Azure Trace mapping (Section 8.4)

In the Azure trace experiment (Day07), invoke more than
40,000 functions will take 24 hours and more than 800
vCPUs by default. To reduce the computation resources
needed, we randomly select about 4,000 functions to
generate several small-scale Azure traces under the path
Pagurus/azure/trace. The functions in each small-scale
trace are all different from each other. A larger trace with
more functions can be replayed if only more computation
resources or nodes are provided.

Considering that the experiment will take about 24 hours,
we already pre-run each small-scale Azure trace and save
their execution results. You can directly run azure/plot.py
to generate the plots, or replay the trace using the following
script:

$ python3 azure/run_experients.py 1

Experiment customization: Each small-scale Azure
trace can be replayed by changing "1" to other trace numbers.
The script will replay the trace in Openwhisk and Pagurus,
respectively, and then generate results under azure/result.
Run the following script to generate two .csv files:

$ python3 azure/summary_from_results.py

• cold_start.csv shows the remained cold startups of
OpenWhisk and Pagurus, respectively (Figure 14).

• e2e_latency.csv shows end-to-end 95%-ile latencies
of benchmarks in Openwhisk and Pagurus, respectively
(Figure 15).

Then run the following script to generate the plots:

$ python3 azure/plot_from_results.py
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