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Abstract

Executing complex, memory-intensive deep learning infer-

ence services poses a major challenge for serverless comput-

ing frameworks, which would densely deploy and maintain

inference models at high throughput. We observe the exces-

sive memory consumption problem in serverless inference

systems, due to the large-sized models and high data redun-

dancy.

We present TETRIS, a serverless platform catered to in-

ference services with an order of magnitude lower memory

footprint. TETRIS’s design carefully considers the extensive

memory sharing of runtime and tensors. It supports minimiz-

ing the runtime redundancy through a combined optimization

of batching and concurrent execution and eliminates tensor

redundancy across instances from either the same or differ-

ent functions using a lightweight and safe tensor mapping

mechanism. Our comprehensive evaluation demonstrates that

TETRIS saves up to 93% memory footprint for inference ser-

vices, and increases the function density by 30× without

impairing the latency.

1 Introduction

Serverless computing has seen its popularity explode in re-

cent years, due to the ease of use, cost efficiency, resource

management-free, and autoscaling advantages. Serverless in-

ference, i.e., deploying deep learning (DL) inference services

atop a serverless platform, is continuously adopted in the

backend of the internet of things (IoT), mobile and web appli-

cations [1,6,11,65,74]. Some typical explorations include the

Amazon Alexa [5], Facebook Messenger bot [49], and Netflix

media transformation [38].

Inference services are commonly memory-intensive, con-

suming a substantial amount of memory throughout the com-

putation. If performing inference in a serverless environ-

ment, we find that the current serverless platforms (e.g., AWS

Lambda [2]) do not support inference computation well. First,
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Figure 1: Schematic overview of memory consumption in

serverless inference systems.

they cannot accommodate large inference models. For ex-

ample, AWS Lambda limits the memory footprint of func-

tions to ≤10GB [2], whereas the recent MT-NLG language

model [36] even needs 2TB memory to load its 530 billion

parameters. Second, these platforms cause a significant waste

of memory resources. The "one-to-one mapping policy" of

request to function instance by commercial platforms [2] intro-

duces significant memory redundancy. The memory footprint

of language runtime, libraries, and even tensors is repeated

across function instances. On the other hand, serverless func-

tions are usually short-lived. While the CPU processing of

inference requests takes only a short time (e.g., 75% execute

for less than 10 seconds in Microsoft Azure [60]), the memory

is kept occupied without working for long due to the early

reservation or keep-alive caching after completion (e.g., 15-60

minutes in AWS Lambda) [20,58,60]. Hence, how to improve

the memory efficiency of serverless inference has become a

crucial problem.

To reduce the memory footprint, prior works have proposed

the runtime sharing method [16] (Figure 1), i.e., multiple

requests share the same function instance runtime with in-

creased instance concurrency. In serverless inference, runtime

sharing can also be enabled through batching, which aggre-

gates multiple inputs into a single batch submission for more

efficient execution [1, 71, 74]. We study the memory footprint

of serverless inference and observe that the tensor redundancy

problem (i.e., tensors in the computational graphs of infer-
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ence models are highly duplicated across function instances)

still severely degrades memory efficiency. Such duplication is

commonly caused by either replicated function instances or

identical parts generated by pervasive pre-trained models or

transfer learning [15, 52, 61, 62, 73]. We summarize 768 ma-

chine learning (ML) models utilized by 58.com, the China’s

largest local life service website, finding that tensor redun-

dancy exists in 67.5% of natural language processing models,

26.7% of image classification models, 30.1% of recommen-

dation models.

The tensor redundancy problem can be mitigated through

operating system kernel-level page merging methods (e.g.,

[3, 33, 47]), which scan for duplicate content in the memory

and merge the content into a single physical page. However,

they incur nonnegligible scanning overhead (e.g., 5 minutes

scanning time) and thereby work well only for deduplicating

fairly static memory pages, contradicting with short-lived na-

ture of serverless functions. Since the scanning process occurs

after applications are loaded, they can neither accelerate the

function startup nor solve the startup failure problem caused

by the out-of-memory (OOM) error. Moreover, their imple-

mentations require modifications to the operating system ker-

nel, which is heavy and may introduce risks of side-channel

attacks [42].

In this paper, we explore improving the memory efficiency

of serverless inference system through both runtime-level

sharing and tensor-level sharing. As illustrated in Figure 1,

the colocated function instances share tensor-memory pages

with identical content. Tensor sharing introduces several chal-

lenges that need to be addressed. (1) Non-harming perfor-

mance: The sharing method should not impair the inference

latency. (2) Safe sharing: The sharing process should not in-

troduce data leakage risks. (3) First-time sharing: The sharing

method should start working as long as the inference functions

are activated, to accelerate the function startup and reduce

the OOM errors. (4) Low overhead: The sharing method

should be lightweight for easy integration with serverless

frameworks, and transparent to tenants.

To overcome these challenges, we build TETRIS, a domain-

specific serverless platform that caters to DL inference as

backend-as-a-service (BaaS) offerings with high memory ef-

ficiency. For example, after using TETRIS, the memory foot-

print of the LaBSE model (a multilingual BERT embedding

model [18]) reduces from 1.97GB to merely 141.7MB, and

the instance density also increases from 64 to 911 per 128GB-

server without any modifications to the model. TETRIS pro-

vides a complete solution for the memory bottleneck problem

in serverless inference through automating runtime sharing,

tensor sharing, memory reclaiming, and instance scheduling.

It enables tensor sharing through a user-space page deduplica-

tion method, which has no pollution to the underlying systems

and is thus incredibly lightweight and easy to implement. It

is also highly efficient and supports to guarantee the Service

Level Objectives (SLOs). DL developers would significantly

benefit from TETRIS, as it can save tremendous memory as

well as monetary costs, or the freed memory can be reused

for other purposes like caching.

Our contributions can be summarized as follows:

• We observe the tensor redundancy problem in serverless

inference systems and propose the corresponding tensor

sharing idea for memory efficiency.

• We design a lightweight, user-space tensor mapping-

based sharing method, eliminating the tensor redundancy

problem in serverless inference systems.

• We implement a prototype system of TETRIS, which is

built with the open-source OpenFaaS [17] and Tensor-

Flow Serving [51], supporting memory sharing, memory

reclaiming, and instance scheduling.

• We extensively evaluate TETRIS using a comprehensive

set of benchmarks and production workloads. The exper-

imental results reveal that TETRIS can save up to 93%

of memory and increase the function density by 30×,

compared to the state-of-the-art approaches.

The rest of the paper is structured as follows. We study the

data redundancy problem in serverless inference (§2), and

use the findings to guide the design (§3) and implementation

(§4) of TETRIS. We then evaluate the performance of TETRIS

(§5), discuss related work (§6), and conclude (§7).

2 Background and Motivation

2.1 Inference on Serverless

The use of machine learning is divided into two phases: train-

ing and inference. While model parameters are continuously

updated throughout the training phase, they remain fixed dur-

ing the inference phase. In DL frameworks (e.g., TensorFlow),

models are organized as computational graphs, and data in

the graph are stored as tensors. The nodes represent oper-

ators or variables and edges denote the direction in which

the tensor flows. In particular, the variable nodes of param-

eters and intermediate tensors produced on edges consume

the most memory. The parameterized tensors may also be

identical across different models, due to the pervasive usage

of pretraining and transfer learning. As an example, we in-

vestigate the VGGish-based audio classification models that

assist the telephone customer service in the local life service

website, which are used for detecting various noises, non-

human voices, dialects, etc. We find that these models share

the bottom embedding layers, accounting for over 90% of the

model parameters.

In serverless inference, each deep learning model is typi-

cally deployed into a separate function instance (e.g., a Docker

container [45]). The function instances automatically scale in

or out according to the fluctuation of requests. In the case of

scaling out, an identical instance is created and its runtime,

library, and model parameters are loaded into the memory

repeatedly.
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2.2 Motivations

To improve memory efficiency, we study the memory foot-

print of typical serverless inference models. The benchmarks

are selected from TensorFlow Hub [22], with an average of

6.8k downloads. All of them are implemented and deployed

on an OpenFaaS [17] testbed (Table 3).

Observation #1: Memory-intensive startup: The loading of

massive model parameters dominates the inference function

instance startup.

(a) Request processing time (b) Memory breakdown

Figure 2: Request processing time and memory breakdown

for various inference models.

The DL inference functions require numerous model pa-

rameters to load at startup, typically saved in a serialized

model file. In particular, before the function can conduct the

inference, the model loading thread continuously reads the

parameter tensors from the disk and then deserializes and pop-

ulates them into the corresponding node in the computational

graph. With the memory page cache enabled to accelerate

the startup, we measure the time of the three phases during

request processing (Figure 2(a)): sandbox and runtime ini-

tialization, model loading, and inference computation. The

function startup time is significantly longer than the infer-

ence computation time. Especially in the Bert-QA model case

(with 1,300MB parameters), only 3.73% of the time is spent

on computation. Even for the small model of Resnet50 (with

102MB parameters), the inference computation time still only

accounts for 13.37%. If merely considering the startup, the

majority of time is further spent on loading model parame-

ters. For example, the ratios exceed 89% for both Electra and

Bert-QA.

Observation #2: Memory-intensive computing: The inference

computation requires a substantial amount of memory, with

the model parameters consuming the most.

Figure 3: Analysis of the compressed model size and down-

load times of deep learning models from TensorFlow Hub.

The memory footprint of an inference process can be di-

vided into the following sections: program code, libraries,

the model (for loading parameters in the form of tensors), the

function call stack, intermediate tensors (i.e., generated at

runtime) and the network buffers (i.e., allocated for receiving

function requests). The model itself consumes the majority of

memory.

We measure the memory consumption of different types

of inference models at runtime and present the results in

Figure 2(b). The model parameters occupy a major portion

of all memory consumption (e.g., for VGG19, storing the

parameter tensors accounts for more than 93% of the total

memory consumption). We also compile a list of 625 machine

learning models from TensorFlow Hub [22] and analyze their

compressed model file sizes (Figure 3). In addition, 42% of

the compressed model file sizes surpass 100MB, such as the

popular text-embedding model universal sentence encoder

(downloaded 1.4M times), which has a compressed model

size of 0.89GB and consumes 1.72GB memory at runtime.

Typically, the text processing models employing large embed-

ding layers are substantially larger than the image, audio, and

video processing models.

Observation #3: Runtime redundancy: The inference runtime

is replicated in memory due to the multilaunched instances.

While both concurrent execution and batching enable runtime

sharing, how to use them in combination is challenging.

Figure 4: Average inference latency increases over batch size

and concurrency.

Multilaunched instances lead to duplicated runtime mem-

ory consumption. The memory footprint can be reduced by

packing multiple requests into an instance for sharing the

runtime resources (e.g., ML model, framework, and network

buffers.). In serverless inference, runtime sharing can be im-

plemented in two ways: batching and concurrent execution.

Given the same benchmarks and resource configurations, we

evaluate the inference latency under both implementations.

Figure 4 illustrates that both implementations increase the

latency significantly: batching increases the latency due to

the increased computing load, whereas concurrent execution

increases latency due to the increased resource contention

among threads, i.e., as concurrent requests compete for the

computing threads in TensorFlow, the interleaved computa-

tion of operators increases the average latency.

We further measure memory consumption under various

combinations of batching and concurrency (Figure 5). In par-
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ticular, we generate a constant 200 requests per second (RPS)

toward DenseNet169 [30] and Lstm [27] and specify their

latency SLOs at 200ms and 30ms, respectively. After omitting

combinations that do not guarantee the SLOs, we find that

solely increasing either the concurrency or batch size leads to

sub-optimal memory efficiency. For DenseNet169, increasing

only the batch size quickly causes SLO violations due to the

long waiting time in the batch queue, whereas increasing the

concurrency does not. For the Lstm model, a larger batch size

(batchsize = 6) achieves the least memory consumption un-

der the SLO guarantee. As various combinations of batch size

and concurrency may lead to completely different memory

efficiency, selecting the best among them is essential.

(a) DenseNet169 (b) Lstm

Figure 5: Normalized memory consumption of function in-

stances under various combinations of batch size and concur-

rency.

Observation #4: Tensor redundancy: The tensors of the con-

stants, model parameters, are extensively replicated across

function instances.

Besides the runtime redundancy, parameterized tensors

are also replicated across instances from the same function,

i.e., tensor redundancy. We summarize 768 DL models at

58.com, finding that tensor redundancy also commonly ex-

ists across distinct functions. There are presently 27 business

lines in 58.com, including jobs, housing, vehicles, cellphones,

home services, resumes, etc. These businesses have common

demands on DL inferences (e.g., image, text, video, and au-

dio processing) but with different datasets (e.g., pictures of

houses, cars, people, and smartphones). Primarily, there are

two scenarios that cause tensor redundancy across distinct

functions [15, 40, 52, 61, 62, 73]:

(1) Multi-versioned functions. In production scenarios, a DL

model is frequently reused directly in various business con-

texts. As online web services have strict latency requirements

(e.g., < 100 milliseconds), models with pipeline dependen-

cies are commonly deployed together within a function to

avoid the excessive network communications. In such cases,

although these pipelines vary across businesses, tensors within

the shared models stay identical. For example, the Optical

Character Recognition (OCR) pipeline and the image mod-

eration pipeline share the same text line identification and

recognition models (e.g., Resnet), whereas the image mod-

eration pipeline incorporates an extra model for keyword

detection. Moreover, DL models are also commonly deployed

with specific pre- and post-processing modules for process-

ing data in different formats, thus generating multi-versioned

model pipelines.

(2) Pretraining & transfer learning. It refers to training a

model with massive datasets for one task, where the learned

parameters could be reused in other related tasks. In such way,

new models could significantly benefit from prior knowledge

to accomplish new tasks rather than from scratch. At 58.com,

pre-trained models or transfer learning are widely used for re-

ducing development costs. For example, in the house leasing

business, webchats are recorded and different DL models are

called to identify the status of the landlord (e.g., whether the

house was leased) and tenant (e.g., a genuine renter or housing

agent) respectively. In the telephone customer services, there

are also distinct models to assess the recruitment, rental and

housekeeping intentions of users, respectively. These models

with similar tasks are all built from a pretrained Bert model.

Instead of fine-tuning all parameters of a model, it is common

to directly reuse partial parameters and only fine-tune a small

set of model layers for two reasons: (i) It is able to signifi-

cantly decrease the training overheads of similar downstream

tasks, enabling rapid development; (ii) Fine-tuning the whole

model may result in overfitting if the target dataset is small

and the number of parameters is huge [23, 28, 34, 44, 48]. It

even improves the accuracy in case of insufficient training

samples (e.g., sporadic noises). For example in the advertising

business, a Resnet50 model with only the top layers retrained

achieves an accuracy of > 98% in classifying QR codes.

It is highly empirical to determine which layers should

be reused in practice. For tasks like sentiment classification,

reusing the initial 12-16 layers of Bert even outperforms fine-

tuning all layers on the SST-2 dataset [39]. The VGGish-based

audio classification model for detecting noises with retained

bottom embedding layers also achieves an accuracy of > 93%.

Table 1 summarizes the representative deep learning models

used for image, text, and audio processing in our website,

as well as their applications, potential redundant parts and

redundancy ratios.

Table 1: Tensor redundancy at 58.com.
Application Domains Image Text Audio

Representative Models

Resnet50
EfficientNet
MobileNet

Bert
Roberta
Albert
GPT

VGGish

Applications

Advertising
Housing

Secondhand Trading

Reading
Extraction

Text Summary
Text Classification

Audio
Classification

Redundant Part Bottom Layers
Embeddings

Middle Layers
Embeddings

Redundancy Ratio >70% >31% >90%

Observation #5: Cache redundancy: Both the runtime and

tensor redundancy are exacerbated by the widespread usage

of in-memory caches in both the serverless platform and DL

library.

To alleviate the cold-start overhead, serverless platforms

[20,60] often keep function alive and warm after the execution
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is finished (a.k.a. caching). Caching exacerbates the runtime

and tensor redundancy problem.

Moreover, caching also exists in DL frameworks. For exam-

ple, TensorFlow makes use of high-performance computing

libraries, such as MKL-DNN [32] to accelerate the execution

of computational graphs. The internal tensor representation

of TensorFlow is not identical to MKL-DNN when perform-

ing operations such as convolutions; thus, the convolutional

kernel data in TensorFlow format must be converted into

MKL-DNN format. These converted parameters are usually

cached in memory for subsequent usage [4] (e.g., 87.7% of

parameters are cached for Resnet50). Hence, these caches

also increase tensor redundancy.

2.3 Implications

Due to the memory-intensive nature of startup and computing

in DL inference (Observation 1 and Observation 2), the

main memory can be easily and massively harvested in server-

less inference systems. Reducing the memory footprint of

serverless inference needs to be addressed immediately. We

study the in-memory data redundancy in serverless inference

systems, and observe that the redundancy problem primarily

derives from three aspects: runtime redundancy (Observation

3), tensor redundancy (Observation 4) and cache redundancy

(Observation 5).

Table 2: Comparision of existing systems.
KSM [33] Photons [16] INFless [71] TETRIS

Runtime sharing � concurrency batching �

Tensor sharing � � � �

Cache sharing � � � �

No-harming perf. � limited limited �
Func.

First-time sharing � � � �

Running level kernel container container container
N.F.

Imple. difficulty high low low low

Prior works [3, 16, 33, 47, 71] have proposed reducing the

in-memory data redundancy through page merging or run-

time sharing (Table 2). The page merging methods, such

as KSM [3, 33, 47], support memory-saving deduplication

through searching and merging equal physical pages of mem-

ory. However, it is a Linux kernel-level feature; therefore, its

implementation is relatively difficult. It also does not support

first-time sharing during the startup of function instances.

Runtime sharing can be enabled through either concurrent

execution (e.g., Photons [16]) or batching (e.g., INFless [71]).

However, they only partially solve the runtime redundancy

problem and their optimal combination is still worth further

exploration. Moreover, the tensor redundancy and cache re-

dundancy still exist and severely degrade the memory effi-

ciency.

3 System Design

In this section, we present the design of TETRIS.

3.1 System Overview

The insight of TETRIS is that memory efficiency can be

improved through the combined optimization of tensor

Figure 6: An overview of TETRIS.

sharing and runtime sharing. Figure 6 illustrates the over-

all architecture of TETRIS, which enables runtime sharing

through its scaling and scheduling engine and supports tensor

sharing through the agent in each container and the tensor

store in each server. When a developer submits a trained

DL model to the platform, TETRIS extracts the tensor infor-

mation (including tensor sizes and hash values) and profiles

the inference latency under various batch sizes and concur-

rency settings. The tensor information is used for directing

tensor sharing, and the profiles are used by the scaling and

scheduling module to determine the best runtime sharing

configuration.

When the user submits requests to the gateway, the scaling

and scheduling engine first decides whether to scale out new

instances or reuse existing ones according to the workloads.

First, in the case of scaling out instances, the engine derives

the batch size and concurrency configurations, minimizing

the memory footprint under the SLO guarantee. Then, the

new instances are launched on servers with maximum ten-

sor similarity. TETRIS supports first-time sharing of tensors

through a special agent in each sandbox. The agent parses the

computational graph of the model and reads the hash value of

the tensors. Then, the agent checks whether the tensor store

has already stored it. If so, the agent only maps the memory

address of the tensor to its local process using the syscall of

Mmap, and the reference number of the tensor is increased

by 1. Otherwise, the agent loads the tensor from the model

file into memory directly and creates a new item in the tensor

store. Each agent is only active during the startup of a new

instance. In contrast to DL training where tensors may be

updated every iteration, tensors in inference are fixed during

its service time. Hence, we set them to be only readable to

ensure safe memory access across functions. Second, in the

case of reusing existing instances, requests are forwarded to

instances following the load balancing principle.

When the workload decreases, the scaling and scheduling

engine also selectively releases the least-loaded instances

without violating the SLO. After release, the reference number

of its tensors decreases by 1. In each server, there is a memory

reclaimer periodically validates the reference number of each
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tensor and reclaims the memory pages with reference = 0 so

that the released functions no longer occupy memory. A keep-

alive policy can be adopted to avoid reclaiming oscillation.

3.2 Scaling and Scheduling
The scaling and scheduling engine relies on the model profile

and requests per second (RPS) to make the scaling decision.

Profiling: We develop an automatic profiler that measures the

inference latency of each model under various configurations.

Specifically, we define the profile of each model as a 5-tuple

〈c,m,b, p, l〉, where c ∈ C denotes the number of allocated

CPUs, m ∈ M denotes the memory configuration for the infer-

ence, b∈B indicates the maximum batch size for that instance

to process requests, p∈P represents the number of concurrent

inference threads, and l represents the inference latency under

previous configurations. Since current serverless platforms

typically use CPUs for function computation and DL infer-

ence on CPUs typically uses small batches (e.g., B= {1,2,4})

and low concurrency (e.g., P = {1,2,3,4}) to achieve low la-

tency. Thus, we profile only these combinations to narrow

the profiling space. Since allocating excessive memory does

not lower inference latency, we assign each configuration the

bare minimum. Finally, we obtain n = |C||M||B||P| 5-tuples

characterizing the model, which are stored in the database.

In the profiling phase, TETRIS also computes and stores the

hashes of tensors using the cyclic redundancy check (CRC)

code, which is utilized in checking the memory status during

tensor sharing.

Runtime-shared scaling: The scaling engine monitors the

real-time RPS and judges whether the existing instances are

sufficient to serve these requests. If not, it dispatches parts of

requests to existing instances and launches new instances to

process the residual ones. Given the model profile and residual

RPS (denoted by R), the scaling engine explores the optimal

configurations of new instances, to minimize memory usage

while guaranteeing their latency SLO. We define an integer

variable xi, ∀i ∈ [1, ..,n], which indicates the configuration i is

adopted for xi new instances. Hence, the optimal configuration

can be found by solving the following integer programming

problem:
minimize :

n

∑
i=1

mixi (1)

li ≤ tslo, ∀i∧xi ≥ 1∧bi = 1 (2)

li ≤ tslo/2, ∀i∧xi ≥ 1∧bi > 1 (3)

∑
n

i=1
xibi pi/li ≥ R, ∀i (4)

xi ∈ N (5)

Objective (1) defines the memory occupied by the instances.

Constraints (2) and (3) ensure that the latency SLO is satisfied:

For bi = 1 (i.e., no batch queue exists for an inference thread),

the inference latency li should not exceed the SLO; For bi > 1

(i.e., requests must wait in a queue to saturate the batch), we

have ti
wait + li ≤ tslo, where ti

wait denotes the waiting time in

the batch queue. Suppose the RPS distributed to instance i

is ri, then we have ti
wait = bi pi/ri. Since ri ≤ bi pi/li must be

Algorithm 1: DTS Algorithm

Input:

Requests R; profile O = {< c,m,b, p, l >}; tslo;

Output:

S: the set of selected instance configurations;

1 S =∅;

2 sort O in descending order of (bi pi)/(limi),∀i ∈ [1..n];
3 while R > 0 do

4 for each configuration oi ∈ O do

5 if bi = 1∧ texec(ci,bi, pi)> tslo then

6 continue;

7 if bi > 1∧ texec(ci,bi, pi)> tslo/2 then

8 continue;

9 R ← R− (bi pi)/li;

10 S ← S∪{oi};

11 break;

established (otherwise, if the request arrival rate exceeds the

batch processing rate, requests will be dropped), we obtain

li ≤ tslo/2. Constraint (4) ensures that the residual RPS can

be fully processed by the new instances. Constraint (5) refers

to the domain constraint.

This problem can be reduced to the NP-Complete knap-

sack problem [54]. Hence, we design a heuristic algorithm,

called Decreased Throughput Selection (DTS) to determine

the instance configuration efficiently. Algorithm 1 presents

the details. In line 2, we sort the configurations in O in de-

scending order by normalized throughput. Then, we greedily

select the configuration with higher normalized throughput as

long as the latency SLO is satisfied (lines 3-11). The DTS al-

gorithm can also be easily extended to balance CPU usage by

normalizing the throughput with mi +αci, where α denotes

the equilibrium factor.

Scheduling: Once the scaling engine has determined the

configurations of new instances, the scheduler deploys them

to the appropriate servers. To reduce cluster-level memory

consumption through tensor sharing, TETRIS always tries

to dispatch them on servers with maximum tensor similarity

(denoted by θ). Specifically, for instance i, TETRIS first filters

out servers that do not meet resource requirements (e.g., CPU

and memory). Then, it derives the similarity value between a

model i and a server j using θi j = Mem(Ti ∩T
j

store)/Mem(Ti),

where Ti represents the set of tensors in instance i, T
j

store repre-

sents the set of tensors already stored in server j, and Mem(Ti)
represents the aggregated memory of tensors in Ti.

3.3 Tensor Sharing

After an instance is scheduled on a server, TETRIS first

launches a sandbox (e.g., container) on the target server to

accommodate it. Then, an agent is activated in the sandbox

to load the model into the main memory. For a tensor that has
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previously been loaded into the tensor store, the agent maps

its memory address to the instance. Otherwise, it creates a

new item for it in the tensor store.

1 Status LoadTensor(Tensor& tensor,TensorReader& reader) {

2 // Get tensor hash value.

3 std::string tensor_hash = GetHash(reader,tensor);

4 // Get or create tensor lock in

5 // Shared Tensor Store atomically.

6 TensorLock lock = CreateOrGetTensorLock(tensor_hash);

7 // Obtain ownership of a tensor lock.

8 lock.Lock();

9 // Check if the tensor in Shared

10 // Tensor Store already exists.

11 if(!TensorExists(tensor_hash)) {

12 // Allocate the tensor memory in

13 // Shared Tensor Store and load

14 // the model parameters.

15 CreateTensor(reader,tensor,tensor_hash);

16 } else {

17 // Mapping already existing tensor

18 // memory from the Shared Tensor Store.

19 MmapTensor(tensor,tensor_hash);

20 }

21 // Release the lock.

22 lock.Unlock();

23 return Status::OK();

24 }

Listing 1: Simplified code snippet for loading tensors.

Agent: The agent is a lightweight, user-space process for

sharing tensors across function instances. Whenever loading

a model into memory, the agent reads the computational graph

metadata stored in the model file and parses the tensors that

need to be loaded into memory. As illustrated in Listing 1,

the agent reads the hash value of a tensor using the interface

GetHash() and checks whether the tensor store has already

had the tensor. If the TensorExists() returns FALSE, the agent

allocates memory for the tensor and puts it in the tensor store.

Otherwise, it calls MmapTensor() to map the memory address

of the existing tensor to the model. The agent maintains a

loading queue for tensors. To ensure that the tensor store

correctly behaves when it is accessed by multiple concurrent

agents, we employ locks: an agent must acquire a lock be-

fore writing to the store (line 8) and release it after writing

completion (line 22).

The agent is only active during the startup of an instance.

It does not require modifications to the underlying operating

system or virtualization layer and does not degrade inference

performance.

Tensor store: The tensor store holds all tensor memory (pa-

rameters, constants, etc.) that need to be shared across all

function instances on a server. Every function instance on the

server can access tensors in the tensor store. Each tensor is

uniquely identified by a hash value, calculated from the tensor

content and dimensions. We use hash values because they

are independent of the models and underlying frameworks.

There is also a corresponding lock for each tensor to ensure

their safe operation of constructing, mapping, or reclaiming.

The tensor store is initially empty and does not hold any ten-

sors or locks. During the running of the system, the agent

continuously adds tensors into it. Each tensor is associated

with a reference number initialized with 1 after its creation.

Whenever the agent adds a new mapping to an existing tensor,

the reference number is increased by 1. Similarly, whenever

an instance is released after completion, the reference number

is decreased by 1. The tensor memory is reclaimed after the

reference number is set to 0.

While the tensor store is shared by all function instances

by default, TETRIS also supports building a dedicated ten-

sor store for a subset of functions at the local server (e.g.,

functions belonging to the same tenant). The tensors in a ded-

icated tensor store cannot be accessed by functions without

permission.

3.4 Memory Reclaiming

When a function instance is released, the tensor that it maps

from the tensor store is not instantly deleted, as it may still be

referenced by other instances. To appropriately reclaim the

memory of shared tensors, TETRIS runs a memory reclaimer

on each server, which periodically detects and reclaims the

memory of tensors with reference number = 0.

The reclaimer also supports tensor caching policies, which

keep tensors in the tensor store even after their reference num-

bers become 0. Currently, we have added two caching policies

in the reclaimer: (1) keep-alive window: it is a timeout thresh-

old to determine how long a tensor is kept alive; (2) Least

Recent Used (LRU): it only keeps the recently or often-used

tensors in the tensor store after the tensor store is full. The

cached tensors can accelerate the startup of function instances.

Although TETRIS only supports these two policies at this time,

other caching policies [20, 60] can be easily integrated into it.

When a tensor’s memory is reclaimed, the reclaimer is also

required to obtain its lock. To sum it up, Figure 7 depicts the

lifecycle of tensors in TETRIS.

Figure 7: Overview of the tensor lifecycle in TETRIS.

4 System Implementation and Discussion

TETRIS is implemented in the open-source serverless plat-

form OpenFaaS [17] with the DL inference framework Tensor-

Flow Serving [22]. In particular, the runtime sharing ability

is added to OpenFaaS by modifying its modules including

request dispatching, autoscaling, scheduling and instance cre-

ating; The tensor sharing ability is implemented by modifying

the TensorFlow Serving framework. We further implement
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the reclaimer as a separate daemon. The entire system runs

on Kubernetes. Overall, TETRIS’s implementation introduces

negligible pollution to the existing software stack except for

the newly added module reclaimer.

Tensor store: Since maintaining a cluster-level global tensor

store is costly due to frequent tensor access during inference

and high network latency, TETRIS maintains a shared tensor

store on each server for performance guarantee while minimiz-

ing cluster memory consumption through instance scheduling.

The tensor store on each server is implemented as a shared

memory region, which can be accessed by all agents and the

reclaimer at the local server. Although shared memory can

be enabled by Docker through setting the –ipc=host option at

the container creation time, allowing all containers to share

the host ipc namespace, this introduces significant risks of

malicious activities or misoperations. Hence, we instead im-

plement the shared memory by mounting a memory-based

tmpfs [64], in which the tensor store is just a directory. Then,

it could be mounted to each container during its creation time

using command like docker -v. Tensors are stored as files

under the mounted tmpfs directory and their hash values are

set as the filenames. In this way, we can build multiple dedi-

cated tensor stores flexibly, just by creating different mounted

directories.

Agent: The agent is integrated into the existing loading pro-

cess of the TensorFlow Serving system. In particular, we

modify the RestoreOp interface and provide a new tensor

memory allocator to manage the shared memory mappings

using the open and Mmap syscalls. After a tensor is created

and initialized, its memory pages are tagged as read-only to

prevent modifications. File locks are leveraged to synchro-

nize agents, avoiding manipulating tensors simultaneously. In

the case of concurrently loading models, we pre-randomize

the list of loaded tensors to reduce lock conflicts. Besides,

we replace the malloc interface in the TensorFlow Serving

framework with tcmalloc [59] to reduce the memory waste.

Scaling & scheduling: The scaling and scheduling engine is

integrated into the faas-netes module of OpenFaaS. In par-

ticular, we modify its autoscaling module to implement the

DTS algorithm. While OpenFaaS originally uses the default

scheduler of Kubernetes, we also modify it using the ten-

sor similarity-based scheduling algorithm. To enable both

runtime sharing and tensor sharing, we directly create Kuber-

netes pods for instances and mount the tmpfs directory in the

instance creating process.

Reclaimer: The Reclaimer is implemented as a Kubernetes

DaemonSet. Although Linux provides fuser or lsof for identi-

fying whether or not a tensor has been referenced by processes,

these tools are highly inefficient. Instead, the Reclaimer re-

trieves the set of running functions on a server through Kuber-

netes’ API, then infers the set of referencing tensors (denoted

by Twarm) by querying the profile database. Then, the tensor

set to be reclaimed (denoted by Tcold) can be derived using

Tcold = Tall \Twarm, where Tall represents the set of tensors

residing in the Tensor Store. Such an implementation also en-

sures fault tolerance, i.e., unreferenced tensors can be detected

even when agents crash.

GPU Inference: Although the current serverless platforms

typically use CPUs for function computation, TETRIS is still

effective for GPU inference since frameworks like Tensor-

Flow usually keep a copy of tensors in CPU memory. TETRIS

is also suitable for large models which cannot fit into GPU

memory. As GPU memory could also be shared through cud-

aIpc [50] APIs, TETRIS can be extended to the GPU inference

scenario by developing a specialized manager for maintaining

GPU tensor mappings.

5 Evaluation

5.1 Methodology

Table 3: Experimental testbed configurations.
Machine Type Type 1 Type 2

CPU Device Intel(R) Xeon(R) CPU E7-4820 v4 Intel Xeon Silver-4215

Number of Sockets 4 2

Processor BaseFreq 2.0 GHz 2.50 GHz

CPU Threads 80 (40 physical cores) 32 (16 physical cores)

Memory Capacity 256 GB 128 GB

Shared LLC Size 25 MB 11 MB

Operating System Ubuntu 16.04 Ubuntu 16.04

Kubernetes Version v1.19.2 v1.20.0

Testbed: We evaluate TETRIS using an 8-server testbed con-

sisting of two types of machines: 2 machines are equipped

with 80 cores and 256GB of memory while 6 others are

equipped with 32 cores and 128GB memory. The machines

are interconnected via a 100 Gbps, full-bisection bandwidth

Ethernet. Table 3 lists the hardware and software details.

Figure 8: Production workload trace examples.

Workloads: We collect a comprehensive set of benchmark

DL models with high heterogeneity from both TensorFlow

Hub [22] and the real-world local life service website (Table

4). The benchmark suite is comprised of 21 inference mod-

els, ranging in model sizes from 11MB to 3.5GB, varying in

download times from 310 to 1.1M, and covering application

domains including text, image, audio, etc. Based on these

models, we further construct four real-life applications: A

second-hand vehicle trading (SVT) application adopts the

SSD model for object detection and two Resnet152 models

for classifying cars and motorcycles. An audio question &

answering (QA-Audio) application employs the Stt, Use-qa

and Fastspeech2 models for speech-to-text translation, QA
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(a) Memory reduction under different # of instances (b) Intra-model acceleration

Figure 9: (a) Memory reduction rate under tensor sharing over the number of instances from the same function. (b) Accelerating

the startup using tensors from existing instance of the same function.

Table 4: Inference benchmark suite.
DL Model Size Description Download times

Bit-M [37] 3.5GB Feature vector extraction 1.4k

LaBSE [19] 1.8GB Sentence Embedding 24.9K

Bert-qa [14] 1.3GB Question Answering 501

Electra [10] 1.3GB Discriminator 6.1K

Use [7] 980MB Sentence Encoder 1.4M

Centernet [75] 731MB Object Detection 12.8K

Use-qa [72] 568MB Question Answering 16.3K

Use-large [7] 563MB Sentence Encoder 1.1M

Vgg19 [63] 549MB Image Classification commercial

Bert [14] 392MB Text Processing 197.5K

EfficientNetB7 [68] 255MB Image Processing 2.2K

Resnet152 [26] 231MB Image Processing 1.6K

InceptionResnetV2 [66] 214MB Image Processing 6K

Stt [69] 176MB Speech-To-Text 398

Resnet101 [26] 171MB Image Processing 1.6K

Fastspeech2 [57] 119MB Text-To-Speech 310

InceptionV3 [67] 92MB Image Processing 11.6K

SSD [43] 29MB Object Detection commercial

Dssm [29] 25MB Text Processing commercial

Lstm [27] 23MB Text Processing commercial

Textcnn69 [9] 11MB Text Processing commercial

and text-to-speech translation, respectively; A semantic simi-

larity computation (SS) application uses the Use model for

semantic similarity computation; A text question & answering

(QA-Text) application uses Textcnn69, Lstm, and Dssm for

understanding user questions and finding matched answers.

These services are triggered by dynamic invocations simu-

lated using the production trace from the Azure Function [46],

where the invocations per hour illustrate diurnal and weekly

patterns. Figure 8 displays all the three typical types of pro-

duction traces used: stable, periodic, and bursty.

Competing approaches: We compare TETRIS with INF-

less [71], Photons [16], and the runtime sharing-only ver-

sion of TETRIS: Tetris-RO. INFless is a state-of-the-art

serverless inference system that natively supports batching

and fine-grained CPU-GPU allocation for low-latency, high-

throughput inference on serverless. Photons supports runtime

sharing through concurrent execution in each instance. Since

Photons is not serverless inference oriented and provide no

SLO guarantee, we redevelop it atop OpenFaaS and extend

it with function profiles while greedily selecting instance

configurations with the maximum concurrency under SLO

constraints. Tetris-RO is a variant of TETRIS that disables the

tensor sharing part.

5.2 Tensor Sharing Evaluation
We first evaluate the tensor sharing effectiveness by solely acti-

vating the TETRIS’s agent, and compare the memory footprint

to that in the native OpenFaaS system. In particular, the mem-

ory footprint under tensor sharing can be derived by Mts =
Mtensor+I×Mothers, where Mtensor denotes the memory for pa-

rameterized tensors, Mothers indicates the memory for runtime,

libraries and others that cannot be shared across instances,

and I represents the number of colocated instances in a server.

Likewise, the memory footprint under the native OpenFaaS

system can be derived by Mbaseline = I × (Mtensor +Mothers).
Memory footprint: Sharing tensors across instances of an

inference function saves memory by up to 93%. Figure 9(a)

depicts the memory reduction rate by various models under

various number of instances (from 2 to 32). Clearly, the mem-

ory reduction rate benefits more from increasing the number

of colocated instances. The reduction rate depends on the

percentage of memory that can be shared. Basically, the more

parameters a model contains (i.e., Mtensor) and the less other

memory (i.e., Mothers) a model requires lead to a higher mem-

ory reduction rate. For example, the memory reduction rate of

VGG19 (i.e., with Mtensor = 549MB and Mothers = 95.4MB)

reaches to 82% when colocating 32 instances. For models

with fewer parameters and relatively larger temporary mem-

ory footprints, Lstm for example, the memory reduction rate is

limited to 4.4% in the 2-instance co-locating scenario. When

deploying 32 function instances, the memory reduction rates

of large models like LaBSE and Use even exceed 91% and

93%, respectively. For the model of Bit-M, TETRIS reduces

its memory consumption by 108.5GB, because TETRIS only

keeps a single copy of the model parameters in memory. Even

with only two instances, the memory footprint can still be

reduced by an average of 28%.

Memory footprint: Sharing tensors across functions can

further reduce memory by up to 36.3%. We collect model

variants which are generated by transfer learning from the

InceptionV3, EfficientNetB7, Resnet101, Resnet152, Vgg19,
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and InceptionResnetV2 models for applications in housing

rental, recruitment, second-hand products, travel, and catering

businesses. They are commonly only retrained the top dense

layers. Figure 11(a) reveals that, as the number of model vari-

ants increases, the system memory can be further reduced for

all models by up to 36.3%, and at least by 18.8%. Among

these models, the memory reduction rate for Vgg19 is rel-

atively limited since merely 77MB parameters are shared

among its variants, although it still achieves 13.8% under the

co-location of 32 variants.

Higher function density: Tensor sharing reduces the

memory consumption of functions, improving the func-

tion density by up to 30×. Figure 10 presents the increasing

rate of function density under various memory configurations.

For the LaBSE model with 1.8GB parameters that consume

1.9GB memory, the function density is improved by 20×.

In the case of the Use model, it even achieves an improve-

ment of 30×. For large models, such as Bit-M, a server with

64GB of memory is only capable of maintaining 14 instances.

After sharing tensors, the density increases to 74, i.e., more

than 60 instances can be accommodated in the same machine.

Tensor sharing still significantly improves function deploy-

ment density for models with small memory footprints. For

instance, 1161 and 1720 additional instances can be created

on a 256GB-memory server for Dssm and Textcnn69, respec-

tively.

Figure 10: Function density improvement under various ma-

chine memory capacities.

Accelerating startup: The first-time sharing of tensors re-

duces the startup overhead of inference functions, acceler-

ating the startup speed by 91.56%. The loading of tensors

dominates the startup process. Directly mapping an existing

tensor address to a new instance is much faster than loading

and decoding it from the file on disk; thus, the first-time ten-

sor sharing feature of TETRIS can significantly accelerate the

startup process. Figure 9(b) demonstrates that tensor sharing

from the same function’s previous instance can significantly

speed up the startup process. For example, the model loading

time of Bit-M exceeds 15 seconds in a native system whose

page cache is disabled, which remains to be 7.9s with page

cache acceleration, while tensor sharing can reduce its startup

time to 2.8 seconds. Even for models with fewer tensors, such

as SSD and Textcnn69, the speedup from tensor sharing still

achieves 17.3% and 32.8%, respectively.

Besides the acceleration from sharing tensors of the

same function, cross-function tensor sharing could accelerate

startup even when the model has never been loaded. Although

it may be slower than that from the same function’s instance

due to less redundancy across functions, the speedup still

achieves an average of 46.9% (Figure 11(b)). For Vgg19, the

startup process is still accelerated by 12.3% when compared

with the page cache.

(a) Memory reduction across functions (b) Inter-model acceleration

Figure 11: (a) Memory reduction rate under tensor shar-

ing over the number of model variants. (b) Accelerating the

startup using tensors from the existing instance of a different

function.

(a) Stable (b) Period (c) Burst

Figure 12: CPU consumption of the SS application under

varying workloads.

5.3 Overall Evaluation

We further evaluate the overall efficiency of TETRIS by de-

ploying four applications: SVT, QA-Audio, SS and QA-Text,

and requests towards them are generated using three types of

production traces in Figure 8.

Memory footprint: TETRIS outperforms both INFless

and Photons significantly in memory consumption. Figure

13 presents the normalized mean, median and peak memory

consumption by TETRIS, INFless and Photons. We find that

INFless consumes most of the memory in all experiments

for two reasons: (1) INFless can only reduce memory con-

sumption when the model supports batching. However, for

the applications QA-Audio and SS, there are models (i.e., Fast-

speech2 and Use) that do not support batching. (2) Batching

introduces additional queuing time. While the inference com-

putation on CPU is slow and the SLO is tight, we are not able

to configure a much larger batch size even for batch-enabled

models. (3) INFless prefers to use the fragmented resources

spanning over multiple servers for better accommodating the

residual load and improving the resource utilization, which

exacerbates memory consumption. For the four applications

SVT, QA-Audio, SS and QA-Text under a stable request load,

TETRIS can reduce the mean memory footprint by more than

86%, 64%, 69%, 65%, respectively, and reduce the peak mem-

ory consumption by more than 87%, 68%, 71% and 65%,

respectively. In particular, TETRIS achieves the best memory
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(a) SVT, Stable (b) SVT, Period (c) SVT, Burst (d) QA-Audio, Stable (e) QA-Audio, Period (f) QA-Audio, Burst

(g) SS, Stable (h) SS, Period (i) SS, Burst (j) QA-Text, Stable (k) QA-Text, Period (l) QA-Text, Burst

Figure 13: Normalized memory consumption by four applications under stable, period and bursty workloads.

efficiency in the SVT case because its Resnet152 models ben-

efit more from tensor sharing as they are built from the same

set of pretrained parameters. Resnet152 is also computation-

ally intensive and limits the chance for packing requests to

share runtimes. Photons consumes much less memory than

INFless since it executes requests concurrently within the

same instance without batch queuing time, however tensor

redundancy across function instances still exists. Because of

tensor sharing, TETRIS can further decrease the mean mem-

ory consumption by more than 68%, 33%, 37%, and 21%, and

the peak memory consumption by more than 67%,43%,39%,

and 22% for the applications, respectively.

Efficient runtime sharing: The combined optimization of

batching and concurrent execution in TETRIS outper-

forms either INFless’s batching or Photons’s concurrent

execution. As illustrated in Figure 13, Tetris-RO can reduce

more memory footprint than INFless and Photons in cases

of SVT, QA-Audio, and QA-Text: Tetris-RO can select con-

figurations flexibly by exploring the various combinations of

batch size, concurrency and CPUs. Taking SVT as an exam-

ple, Photons only chooses to execute at most 2 concurrent

requests within each instance due to its fixed mapping be-

tween concurrency and CPUs, while Tetris-RO can greedily

activate 3 concurrent threads. For the QA-Audio application,

although Photons greedily packs 4 requests into the same in-

stance, Tetris-RO could further decrease runtime redundancy

by concurrently executing 2 requests with a batch size of 6.

For the QA-Text application consisting only of small models,

the average memory consumption is still reduced by 21%

from the runtime sharing.

Although Tetris-RO consumes more memory than Photons

in the SS application case, Tetris-RO requires much fewer

CPU resources. Figure 12 illustrates that Tetris-RO and IN-

Fless allocate CPU resources averagely by 42% and 39%

less than Photons. This outcome is because each time Pho-

tons increases concurrency, it also requires a fixed amount of

additional CPUs, resulting in excessive CPU allocations.

SLO guarantee: TETRIS can guarantee the latency SLO

of inference workloads. Figure 14(a) demonstrates that both

TETRIS and INFless achieve a low SLO violation rate (< 4%)

for all applications. For SVT and SS, TETRIS outperforms

INFless since more CPUs are allocated for each instance

in TETRIS to support concurrent processing. For QA-Audio

and QA-Text, the SLO violation rate of TETRIS is slightly

higher than that of INFless since it uses a larger batch size in

runtime sharing, introducing additional batch queuing time.

Overall, TETRIS achieves significant improvement in memory

efficiency at the cost of a negligible increase in the SLO

violation rate.

Cost savings: The reduction of memory consumption by

TETRIS saves considerable monetary cost for inference

service providers. To further demonstrate the benefits of

TETRIS, we conduct a large-scale simulation with a combina-

tion of the mentioned applications, and gradually increase the

RPS from 100 to 5000. As illustrated in Figure 14(b), TETRIS

reduces memory of 61.5GB and 20.2GB per 100 requests,

compared to that of INFless and Photons, respectively. If fol-

lowing the pricing model of $0.0504 per hour according to the

r6g.medium service at AWS EC2, such memory reduction can

be transformed into $0.000861 and $0.000283 cost savings

per 100 requests. If considering the local life website, which

serves 1.9 billion requests per day, TETRIS could reduce the

monetary cost by $16,359 per day, about $5.97 million per

year.

5.4 Overhead

The implementation of TETRIS does not require modifications

to the ML model, the virtualization sandbox, or the underlying

operating system. Developers are simply required to submit

the model (instead of the function code) as the model itself

contains sufficient information for deployment.

Profiling overhead: TETRIS relies on the offline profiling

phase to estimate latency under various CPU, batch size, and

concurrency configurations. Since inference on CPU typically

incurs high latency, the exploration space of combinations of

batch size and concurrency is actually limited. The automatic

profiler can test each inference model under various config-

urations and generate profiles within several minutes. In a

real system, as inference services are invoked repeatedly, the

profiling only generates a one-time cost and the profiles can
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(a) SLO violation rate (b) Cost savings (c) Profiling time (d) Inference time (e) Concurrent loading

Figure 14: (a) SLO violation rate. (b) Memory consumption and financial cost per 100 requests under varying workloads. (c)

Average profiling time for models used in the evaluation. (d) Inference latency distribution. (e) Average loading latency over the

number of concurrent loading function instances with models from Table 4.

be reused for later invocations. As depicted in Figure 14(c),

profiling an inference model takes an average of 12 minutes.

Inference latency: The memory address mapping method

in TETRIS does not introduce latency overhead. We mea-

sure the latency distribution of the models in Table 4. Figure

14(d) demonstrates that, compared to the latency yielded by

deploying on the TensorFlow Serving framework directly,

there is no performance degradation observed after using

TETRIS.

Lock contention: When multiple instances are created si-

multaneously, the contention on the tensor lock may cause

startup overhead. We measure the average model loading la-

tency without page cache and compare it with the baseline of

the TensorFlow Serving framework. Figure 14(e) indicates

that TETRIS still outperforms the baseline by employing ran-

domization in the tensor loading process, thereby reducing

much of the lock contentions. Once a tensor is loaded into

memory successfully, TETRIS need only to map the memory

address for newly launched instances, whereas the baseline

still requires expensive file reading and decoding.

6 Related Work

Memory deduplication: Prior works [3, 8, 21, 47, 70] have

proposed eliminating redundant data loaded in memory by

scanning, comparing, and merging duplicated pages. How-

ever, such page-level scanning methods could incur colossal

overhead and lag for large, high-density serverless inference

functions. As they are effective at the kernel level, TETRIS is

compatible with these methods and can be used in conjunction

to reduce memory consumption further.

Model compression: Large inference models can also be

substantially compressed through fine-grained model design,

pruning and quantization techniques (e.g., [24, 25, 31, 56]).

However, unlike TETRIS, these methods involve model modi-

fications. The compressing process may also reduce inference

accuracy, resulting in side effects for businesses [53]. TETRIS

and model compression can coexist.

Inference runtime optimizations: The memory footprint of

inference can also be reduced by optimizing memory alloca-

tion during inference runtime [13, 35, 40, 41, 55]. However,

these optimizations are either framework-specific or require

model conversion, whereas TETRIS is orthogonal to these

optimizations and can be employed together to further reduce

memory consumption. Moreover, they may require developers

to redesign or retrain the model, increasing the development

burden, whereas TETRIS requires no model modifications.

Serverless inference: The existing serverless inference sys-

tems [1, 6, 71, 74] generally focus on improving inference

throughput without violating the SLOs. Instead of improving

memory efficiency, they primarily optimize the allocation of

computational resources (e.g., CPU and GPU). TETRIS ex-

plores solving the memory efficiency problem in serverless

inference and can be integrated into such systems. Trims [12]

accelerates the data shipping between CPU and GPU through

sharing existing models in GPU memory, whereas TETRIS

explores sharing tensors among function instances.

7 Conclusion
Modern applications (such as IoT data processing, advertis-

ing recommendations, autonomous driving, and e-commerce)

continuously rely on inference services. It is expected that

serverless inference can reduce the maintenance cost for

service providers, however, memory resources can be eas-

ily and massively harvested in existing serverless infer-

ence systems. Our proposal, TETRIS, can significantly re-

duce the memory footprint of inference services through

runtime sharing and tensor sharing. TETRIS can be easily

integrated into serverless platforms as a user-space plug-

in. With TETRIS, cloud providers can deploy an order of

magnitude more instances in each server without violating

the SLOs, thus significantly decreasing the deployment and

maintenance costs. The prototype of TETRIS is available at

https://github.com/JelixLi/Tetris.

In the future, we would like to further optimize the GPU

memory efficiency of serverless inference systems.
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