
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

Vigil-KV: Hardware-Software Co-Design to Integrate
Strong Latency Determinism into Log-Structured

Merge Key-Value Stores
Miryeong Kwon, Seungjun Lee, and Hyunkyu Choi, KAIST; Jooyoung Hwang,

Samsung Electronics Co., Ltd.; Myoungsoo Jung, KAIST

https://www.usenix.org/conference/atc22/presentation/kwon

Vigil-KV: Hardware-Software Co-Design to Integrate Strong Latency Determinism
into Log-Structured Merge Key-Value Stores

Miryeong Kwon1, Seungjun Lee1, Hyunkyu Choi1, Jooyoung Hwang2, Myoungsoo Jung1

Computer Architecture and Memory Systems Laboratory,
Korea Advanced Institute of Science and Technology (KAIST)1, Samsung2

http://camelab.org

Abstract
We propose Vigil-KV, a hardware and software co-designed
framework that eliminates long-tail latency almost perfectly
by introducing strong latency determinism. To make Get la-
tency deterministic, Vigil-KV first enables a predictable la-
tency mode (PLM) interface on a real datacenter-scale NVMe
SSD, having knowledge about the nature of the underlying
flash technologies. Vigil-KV at the system-level then hides
the non-deterministic time window (associated with SSD’s
internal tasks and/or write services) by internally scheduling
the different device states of PLM across multiple physical
functions. Vigil-KV further schedules compaction/flush oper-
ations and client requests being aware of PLM’s restrictions
thereby integrating strong latency determinism into LSM KVs.
We implement Vigil-KV upon a 1.92TB NVMe SSD proto-
type and Linux 4.19.91, but other LSM KVs can adopt its
concept. We evaluate diverse Facebook and Yahoo scenar-
ios with Vigil-KV, and the results show that Vigil-KV can
reduce the tail latency of a baseline KV system by 3.19×
while reducing the average latency by 34%, on average.

1 Introduction

Log-structured Merge Key-Value stores (LSM KVs) such as
RocksDB [1] and LevelDB [2] are widely adopted in diverse
computing domains to handle large-scale data thanks to their
simplicity, scalability, and high-performance [3–10]. LSM
KVs are also used in many production environments to offer
large-scale storage whose capacity is beyond main memory
subsystems to latency-sensitive applications. For example,
Facebook uses RocksDB as the storage engine of an SQL
database, which is used for social graph processing [11–14].
This type of application considers the query latency (e.g., Get)
of each social action (e.g., view profile, list friends, etc.) as a
first-class citizen. In particular, managing long-tail latency of
reads (and latency consistency) is a matter of meeting diverse
user demands and service-level agreements (SLA) [15–17].

However, we observe that the long-tail read latency of the
Facebook scenario is 10.4× worse than normal read oper-

ations, making the user experience inconsistent. The main
contributor to this long-tail latency is device-level SSD la-
tency, not software or operating system (OS); the execution
times of all the software, including storage stack and user
application, account for only 13% of the long-tail latency
(99.9th percentile). We will give a detailed analysis of this
in Section 3.1. The long-tail latency mainly comes from I/O
interferences caused by two different levels of internal tasks:
i) LSM KV’s internal tasks and ii) SSD’s internal tasks. LSM
KVs periodically perform internal tasks such as compaction
and flushing for their persistence and effectiveness [18–21].
The compaction merges data from the lower to a higher level
of their LSM tree, whereas the flush writes the in-memory
buffer back to the underlying storage in securing more space
to buffer and making the buffered data persistent. Since the
write operations of these internal tasks exhibit long latency
and often stall all incoming requests, many prior studies (e.g.,
TRIAD [22], PebblesDB [23], and SILK [24]) reschedule
additional writes of the internal tasks and serve them at fu-
ture idle times. These LSM KVs would reduce the latency
inconsistency imposed by the internal tasks to some extent,
but we observe that they lead to serious side-effects, which
deteriorate read services and increase memory footprints sig-
nificantly (cf. Section 3.2).

Even with an ideal case of abolishing all the LSM KV’s
internal tasks, the long-tail read latency cannot be eliminated
because of SSD’s internal tasks such as DRAM caching/flush-
ing [25–30], garbage collections [31–39], and read-reclaiming
[40–44]. For example, even in cases where LSM KV solely
reads the underlying SSD at a certain period, it exhibits long
latency on the reads since the SSD internally flushes the
buffered/cached data to its backend storage. Similarly, at any
given time, a garbage collection or read-reclaiming can intro-
duce a set of reads and writes, which also prevent the incoming
requests from being serviced. Note that these internal tasks
are scheduled by the underlying SSD firmware, which makes
the read latency behaviors non-deterministic at the user-level
and increases the latency significantly (cf. Section 2.2).

In this work, we propose Vigil-KV, a hardware and soft-

USENIX Association 2022 USENIX Annual Technical Conference 755

ware co-design to eliminate the long-tail latency of LSM KVs
and make their read services consistently deterministic. Vigil-
KV hardware offers a scheduling interface to remove SSD’s
internal tasks, whereas its software is designed toward elim-
inating the overhead imposed by LSM KV’s internal tasks
without delaying compaction or flushing in-memory buffer
at idle times. To this end, we advocate a predictable latency
mode (PLM) interface, which is recently added to the stan-
dard NVMe protocol [45]. We enable the brand-new interface
on a high-performance NVMe SSD and enforce the read la-
tency deterministic on a specific time window. Obviously,
PLM cannot deliver the latency consistency indefinitely since
SSD’s internal tasks are essential to managing the reliabil-
ity and persistence of the backend’s storage media. For the
host’s finer PLM scheduling, Vigil-KV hardware also imple-
ments NVMe’s NVM set features by internally partitioning
the storage volume into multiple functions.

While PLM has great potential to eliminate the long-tail la-
tency of LSM KVs by having a closer collaboration between
a host and storage, there are several constraints that have not
been analyzed in the literature yet. Specifically, PLM relies
two essential scheduling components, deterministic window
(DTWIN) and non-deterministic window (NDWIN). DTWIN
is the time window to offer predictable latency, whereas ND-
WIN is not. This work reveals three important characteristics
of PLM, which should be considered when the host commu-
nicates with the underlying SSD to achieve the latency con-
sistency: i) write-free on DTWIN ii) fair-scheduling for PLM
windows, iii) device lockdown constraint. First, DTWIN can
be guaranteed only if there is no write request in a DTWIN
period. The reason behind this DTWIN’s write-free con-
straint is that, even though PLM supports the latency con-
sistency by removing SSD’s internal tasks at DTWIN, it can-
not completely eliminate the stalls caused by online write
requests coming from clients. Second, as SSD’s internal tasks
should be performed at some point, the longest-serving time
of DTWIN is determined at design time, and NDWIN should
be preserved and appropriately scheduled before jumping in
DTWIN. Lastly, the host curbs I/O requests when the under-
lying SSD transits from NDWIN to DTWIN. This is because
the transition requires a make-ready time, which must not be
interrupted by any other I/O activities (i.e., device lockdown).

Based on the restrictions that we observe, the software part
of Vigil-KV classifies the requests of LSM KVs at runtime
and carefully assigns them to appropriate PLM time windows
through our device state scheduling. This device state and
request scheduling can make the latency of client-side I/O
requests deterministic and have no long-tail all the time. To
this end, we introduce a PLM driver atop Vigil-KV hardware,
which manages all the device states across different NVM
sets but makes them visible as a single storage volume. This
driver makes sure that there are always n−1 NVM sets having
DTWIN (where n is the total number of data NVM sets) while
allowing an NVM set to schedule SSD’s internal task via ND-

WIN. During the device state management, it also takes into
account the fair-scheduling and lockdown constraints such
that a kernel-level scheduler can focus on assigning the I/O
requests based on the condition of given PLM time windows.
Specifically, Vigil-KV’s kernel-level scheduler packs all I/O
activities coming from LSM KV’s internal tasks into NDWIN
(scheduled by the PLM driver), which takes the overhead of
all the internal tasks off the critical path in I/O services. In
addition, it makes all the incoming read requests (heading to
the NDWIN-scheduled set) non-blocking, inspired by a novel
memory/storage array-level technique [46–49]. The kernel-
level scheduler detects the read requests targeting an NVM
set (configured with NDWIN) and directly serves the corre-
sponding data without touching it at all. Since there are n−1
NVM sets with DTWIN at an any given time (invisible to the
host clients), the scheduler can collect data from them within
the deterministic time window and reconstruct the requested
data (with the help of the PLM driver) thereby making the
target SSD latency consistent constantly.

Even though the Vigil-KV driver and thread can put all
the internal tasks into NDWIN and isolate them from the
client reads, they unfortunately fail to meet the write-free
constraint. This is because of additional writes for providing
atomicity and durability at the system-level (e.g., journaling).
Since these writes can interfere with the reads on DTWIN, we
dedicate an NVM set for the metadata management dealing
with the write-ahead log (WAL) and file system journaling. To
this end, we have a minor modification of RocksDB (but other
LSM KVs can adopt its concept) to give a different priority
to each process based on their nature of I/O activities. This
technique can address the write-free constraint and make the
target SSD be in all DTWIN for client requests consistently.

We prototype Vigil-KV hardware on a 1.92TB Datacenter-
scale NVMe SSD, while implementing Vigil-KV software
using Linux 4.19.91 and RocksDB 6.23.0. To the best of our
knowledge, this is the first paper that implements the PLM
interface in a real SSD and makes the read latency of LSM
KVs deterministic in a hardware-software co-design manner.
We evaluate six Facebook and Yahoo scenarios, and the results
show that Vigil-KV can reduce the tail latency of a baseline
KV system by 3.19× while reducing the average latency on
Get services by 34%, on average.

2 Preliminaries

We will explain RocksDB as representative of LSM KVs in
this section. We will also explain the internal tasks of LSM
KV and SSD in detail and analyze the challenges imposed by
those two different levels of internal tasks.

2.1 Log-Structured Merge KV Stores
Figure 1a explains the major data structure and corresponding
operations of RocksDB. RocksDB maintains all information

756 2022 USENIX Annual Technical Conference USENIX Association

�

�

�

�

�

�

�

�

�

	

�

�

���

���

��	
�

���

��	
�

����
�

���

���

���

��

����

���

���

��

���

���

�����

����

������

���	

������

��	
����
�

����������

������

���������
�

����

����

����	

��������

(a) Structure. (b) Internal tasks. (c) Example.

Figure 1: Log-Structured Merge KV Stores.

in the log-structured merge (LSM) tree consisting of two
separate structures, each of which is optimized to volatile
memory and block storage. The in-memory data structure,
called Memtable, holds data before turning their state into per-
sistent in an unsorted manner. Memtables allow users/clients
to quickly update by serving the requests from the memory
(rather than storage). The storage data structure manages key
and value (KV) pairs, which are managed in an immutable
form of sorted string table files (SSTFiles). SSTFiles are
maintained in hierarchical levels, each being denoted by L0
(level-0), L1 (level-1), ..., LK (level-K).
Client operations. RocksDB supports various query services
such as Put (writes), Get (reads), Delete, and Scan. Since the
majority of the queries are Put and Get, this work focuses
on those two operations. Users’ Put requests are inserted to
a Memtable as a KV pair by RocksDB if the Memtable is
mutable, meaning that it has available room to update. In de-
fault, RocksDB maintains two Memtables, each taking 64MB
spaces, which are the same as the size of logfiles; we will
explain this in detail with LSM KV’s internal tasks (i.e., flush
and compaction) shortly. If there is no available space in a
Memtable, RocksDB locks down and changes its state from
mutable to immutable, which does not allow further updates.
RocksDB then places another Memtable for the next Put re-
quests while writing the data of the immutable Memtable to
L0 by converting the Memtable to an SSTFile in the back-
ground. Since it is important to secure Memtable(s) in mem-
ory as soon as possible, turning a Memtable into L0 is per-
formed in an unsorted and out-of-order manner. Thus, L0 can
contain multiple SSTFiles associated with the same key. Later,
the SSTFiles at L0 are migrated into a lower level of storage
space (L1) by LSM KV’s internal tasks.

On the other hand, Get requests accompany a series of reads
the value associated with a given key. RocksDB first searches
the key in Memtables and serves the value if there is. In cases
where it fails to find the key in the Memtables, RocksDB scans
all the SSTFiles residing in L0 and searches for the key. This
is because the files are stored in an unsorted way, and it can
be possible for L0 to have multiple SSTFiles corresponding
to the given key. If RocksDB cannot find the key at L0, it goes
L1 and searches again. Since L1’s SSTFiles are compacted
from L0, each file contains a unique key, making RocksDB
faster to search the target KV pair. Note that the unsorted data
structure of L0 allows RocksDB to quickly secure in-memory

(a) DRAM flush. (b) Garbage collection. (c) Read reclaim.

Figure 2: SSD internal tasks.

buffers, thereby preventing Put against stalls, but it introduces
many storage accesses (reads) on Get services.
Internal tasks. Figure 1b illustrates the detailed procedure
of LSM KV’s internal tasks and major software components
associated with the tasks. While Memtables are well designed
toward taking performance advantage of volatile memory
media, their data can be lost when there is a power failure.
To make the KV pairs in the buffer persistent and durable,
RocksDB writes the KV pair as a form of logfiles to a desig-
nated area in the underlying storage, called write-ahead log
(WAL) before its Memtable update. Writing WAL (per re-
quest) is performed as a synchronous operation bypassing the
page cache of the underlying file system for crash consistency
control. Since it is a time-consuming task, RocksDB employs
another internal buffer, called write group existing in front
of Memtables. In the meantime, it checks the space utiliza-
tion of Memtables and L0, and if there is no available space,
Rocks DB enqueues flush and/or compaction tasks item to
reclaim a Memtable and an L0 SSTFile, respectively. These
items include an appropriate pointer for the space reclaiming,
which is all performed by RocksDB’s background threads.
For a Memtable flush, the internal task checks all the keys in
a Memtable, builds an SSTFile, and flushes the SSTFile to L0.
In cases of an L0 compaction, its internal task selects a target
SSTFile. Consider Figure 1c as an example, the SSTFile’s
key ranges from 60 to 120. The task also picks L1’s SSTFiles
whose keys are associated with the compaction target’s keys
(e.g., two L1 SSTFiles, each having 80∼90 and 100∼140,
in the figure). It then performs a merge sort by checking up
all entries of three SSTFiles and letting only the latest infor-
mation remain, which generates a new L1’s SSTFile. Lastly,
RocksDB synchronously writes the new SSTFile and removes
the three old SSTFiles from the underlying SSD.

2.2 SSD Internal Tasks and Challenges

Internal DRAM flush. Since flash writes are slower than its
reads by order of magnitude, high-performance SSDs employ
a large size of internal DRAM, and their firmware buffers
the writes [25–27, 50]. For example, our baseline NVMe
hardware has 3GB DRAM buffering/caching data. These
buffered writes are periodically flushed to the storage backend
with a specific access pattern in favor of increasing bandwidth.
Thus, even though there is no write at all for a certain period,

USENIX Association 2022 USENIX Annual Technical Conference 757

0 2 4 6p0
p90
p99

p99.9
p99.99

CD
F

Latency (ms)

 UserDB ZippyDB
 YCSB-A YCSB-B
 YCSB-D YCSB-F

55
%

69
%

75
%

87
%

92
%

59
%

60
%

59
%

54
%

54
%

54
%

52
%

50
%

52
%

50
%

48
%

50
%

48
%

47
%

48
%

p5
0

p9
0

p9
9

p9
9.

9
p9

9.
99

0

25

50

75

100

La
te

nc
y

Br
ea

kd
ow

n

 S
Q

L
R

oc
ks

D
B

Ke
rn

el
St

or
ag

e

(a) CDF. (b) Breakdown. (c) Time series.
Figure 3: Long tail analysis.

(a) Compaction. (b) Flush.
Figure 4: Limitations internal tasks.

draining the data (buffered previously) can interfere with
incoming read operations. Figure 2a shows the read latency
interfered by SSD’s internal flush; we write a block (64MB) to
SSD before the test and only issue 4KB-sized read requests (in
sequential) without any writes for the test period. As shown in
the figure, the baseline NVMe hardware suffers from massive
latency spikes, which are higher than the typical latency by
7.75× at most, and its latency significantly fluctuates during
the read-only time. This is because the writes introduced by
the internal flush stall the reads until their service completes.

Note that, since the internal flushes are solely managed by
the firmware, host software components cannot unfortunately
control the latency consistency of reads. To remove the latency
fluctuation analyzed above, it requires a tight collaboration
between the host and firmware.
Garbage collection. Flash also has unique device-level char-
acteristics such as erase-before-write and asymmetric I/O
granularity for read/write and erase [51–54]. Because of this
nature, SSD’s firmware writes incoming data into a free block
(erased in advance) instead of its actual location. While this
address remapping (translation) for out-of-updates makes
flash compatible with the existing block devices, it needs
to perform a garbage collection (GC) if there is no free block
[31, 38, 55, 56]. Since GCs are performed on the basis of a
flash block containing hundreds of pages, the valid data resid-
ing in the target block(s) should be safely migrated into a new
location of a block. This internal task introduces block erase
operations even longer than the flash writes and many read-
s/writes for the migration. It exhibits long latency and stalls
many incoming requests before completing the task. Figure
2b shows the read latency while performing GCs (from 195
sec). In this test, reads exhibit sustainable latency (16.2 us),
but their latency sharply increases and reaches as high as 9.8
ms once GCs begin.

While these internal tasks significantly hamper the read
performance, all their activities are essential to secure more
available rooms for further requests and manage the reliability
of the storage backend, which cannot be simply removed or
scheduled by host-side software modules.
Read-reclaiming. Flash is very well optimized for read ser-
vices at the low-level [57–60], but a read-only scenario can
also introduce additional data migration and block erase oper-
ations in certain circumstances. Specifically, when one keeps

reading out a set of pages in a block without an erase, it
stresses the block even without any writes and affects all data
residing in the block together. This read disturbance unfor-
tunately increases error rates often beyond the coverage that
parity-check codes (e.g., ECC [61–64] and LDPC [65–68])
can correct [69–72]. To address the read disturbance issue,
the underlying firmware needs to periodically reset (erase)
the block(s) being intensively touched over the past period.
Once the firmware erases the block, its internal state returns
back to the nominal state, such that the block can endure the
stress imposed by subsequent reads again. To erase the block,
it requires reading the existing data on the target and copy-
ing all of them to a new block. As shown in Figure 2c, this
internal task, called read reclaiming [69], can deteriorate the
read performance seriously. In this test, we intensively read
a set of specific blocks four times as a precondition and read
them again in a random I/O pattern. One can observe from
the figure that the read latency affected by the read reclaim-
ing reaches as high as 2.5 ms, which is 32× longer than the
typical cases.

Even with the ideal situation that only utilizes the under-
lying SSDs as read-dedicated storage, this long-tail latency
imposed by the read reclaiming are inevitable, and thus, it is
necessary to devise new interface and firmware assistance to
get them off the critical path in LSM KV’s read services.

3 Motivation and Related Work

3.1 Long-tail Latency on Reads
Figure 3a shows the cumulative distribution function (CDF) of
Get latency for diverse RockDB usage scenarios of Facebook
[12, 73] and Yahoo [74]. In this evaluation, we use RocksDB
6.23 [1] on a baseline 1.92TB NVMe hardware that we will
modify in Section 4.1 and use for all the remaining tests.
This baseline employs 3GB internal DRAM and includes 64
TLC NAND flash (64 layers), which are connected to eight
different channels. The detailed environment descriptions are
the same as what we used for Section 7.
Significance of long-tail latency. Thanks to the low device-
level latency of flash, the nominal performance trend of them
is similar to each other; all their Get latencies are under 200us.
However, the Get latencies reach a few ms from three nine

758 2022 USENIX Annual Technical Conference USENIX Association

(P99, 99.9th percental), and all their latencies increase com-
pared to the normal Get latency as high as 15.7×. The main
reason why this long-tail latency is observed across all the
RockDB usage scenarios that we test does not stem from
database or kernel computation but heavy storage accesses.
To be precise, we also decompose the execution time of
UserDB, Facebook’s social graph data processing workload
[12, 73], into Get’s storage latency (Storage), client compu-
tation times (App), database latency (RocksDB), and kernel
latencies (Kernel). As shown in Figure 3b, the computation
of LSM KV’s software stack does not sit on a critical path in
the Get long-tail latency, but Storage takes 87% of the total
execution time thereby dominating Get service times at the
tails. While the computation of latency of software stack is
well balanced with Storage (taking half of the total execu-
tion time), LSM KV’s heavy I/O requests sharply increase the
faction of Storage when it should reclaim Memtables and/or
SSTFiles.
Internal tasks’ performance impacts. Figure 3c shows a
time series analysis for the UserDB workload and compares
its read characteristic with an ideal Get-only workload, which
exhibits I/O patterns the same as UserDB but removes all Put
queries from its execution. One can observe from this analysis
that, when RocksDB flushes Memtable (at 596K index), the
baseline read latency increases from 147us to 2.97ms, and
the read latency does not return for a while. Similarly, once
RocksDB begins to compact SSTFiles, it introduces many
reads and writes to merge KV pairs, which unfortunately
block incoming Get requests thereby exhibiting 30× longer
latency than the normal cases. Note that the latency of reads
being performed in parallel with WAL is not that significant
(compared to flush and compaction), but WAL also makes the
Get latency 10.6× worse than the usual cases.

3.2 Scheduling Internal Tasks

Challenges of system-level approaches. There are many
studies [4, 5, 7–10, 15, 16, 18–20, 22–24] that try to address
the performance degradation imposed by RocksDB’s internal
tasks, such as TRIAD [22], PebblesDB [23], and SILK [24].
There are variant optimization points across these approaches,
but their proposals in general reschedule or delay flush and
compaction into idle or other available times, thereby remov-
ing the long-tail latency. While these system-level approaches
can hide the read/write overhead imposed by LSM KV’s in-
ternal tasks to some extent, they cannot remove the long-tail
latency on Get services because of unavailability to handle
SSD’s internal tasks and side-effects raised by their schedul-
ing. Specifically, postponing the compaction removes the
suspending time for incoming Put services, but it enforces
LSM KV’s L0 accumulatively accommodate SSTFiles with-
out a data migration to L1, thereby increasing the Get latency.
Figure 4a compares two tail latency trends on Gets, each be-
ing served with and without compaction rescheduling. The

Get tail latency is sustainably managed when RocksDB com-
pacts SSTFiles at the right time (lower than 1 ms), but its
tail latency served with the delayed compaction keeps in-
creasing and reaches 3.1 ms, which is 3.6× longer than the
no-scheduling case of RockDB compactions. This is because
Get services require searching the appropriate values (paired
with input keys) from the beginning to the end of RocksDB’s
L0. Since the SSTFiles on L0 are not sorted, the KV searching
introduces many outstanding reads thereby increasing the tail
latency.

On the other hand, as shown in Figure 4b, the delayed
flush of RocksDB also increases the Get tail latency as high
as 27.4×. The reason why the Get tail latency looks more
severe than the rescheudled compaction is that delaying
Memtable flush gobbles up all the in-memory spaces, allo-
cated to Memtable management. Thus, the writes of RocksDB
are all stalled until it secures a Memtable, which in turn makes
the read service suspended seriously.
Device-level latency determinism and limits. The afore-
mentioned SSD’s internal tasks are well-known challenges to
exhibit serious performance drop and long latency [31–44, 75–
77]. Since the internal tasks are invoked in an arbitrary time
period, they render many productions in diverse computing
domains difficult to deploy latency-critical applications in the
environment. Recently, the standard NVMe protocol intro-
duces the predictable latency mode (PLM) interface in an
attempt to make the latency predictable and deterministic.
PLM proposes that SSDs operate in either a deterministic
performance window (DTWIN) or a non-deterministic perfor-
mance window (NDWIN). Based on the NVMe specification
[45], NDWIN is the time period to prepare the next DTWIN.

Note that PLM interface is simply a part of interface proto-
col, which does not enforce specific requirements or design
details for the guarantee of deterministic latency. While this
young interface presents blueprints on how to handle the un-
predictable SSD behaviors in a well-managed manner, PLM
is in practice a just best-effort contract, which only supports
soft latency determinism. For example, we cannot make the
underlying SSD always appropriately work with DTWIN be-
cause SSD’s internal tasks for hiding the flash characteristics
are inevitable to invoke. Even in the ideal case where the
underlying hardware hides all the SSD’s internal tasks with
its maximum efforts, the latency determinism can be easily
broken according to how the host-side LSM KV behaves at
anytime. To support strong latency determinism, it is neces-
sary to have a close collaboration between the host-side LSM
KVs and the underlying storage.

4 High-level View of Vigil-KV

The main goal of this work is to secure an LSM KV system
that has no long-tail latency on Get services to make their
read performance deterministic and consistent. As this strong
latency determinism is infeasible to achieve by scheduling

USENIX Association 2022 USENIX Annual Technical Conference 759

either only LSM KV’s or SSD’s internal tasks alone, Vigil-KV
takes a hardware and software co-design approach. Specifi-
cally, Vigil-KV hardware is designed towards offering basic
scheduling blocks that allow the host to integrate strong la-
tency determinism into the LSM KV. On the other hand, the
software part of Vigil-KV classifies the requests of LSM KVs
at runtime and carefully assigns them to appropriate by fully
utilizing the scheduling blocks that the underlying hardware
provides. This hardware and software co-design approach
can make the latency of client-side Get queries consistently
deterministic and have no long-tail all the time.

4.1 Hardware Support for Fine-Granular Per-
formance Windows

PLM interfaces. As shown in Table 1, Vigil-KV hardware
implements and provides a set of PLM interfaces that allow
the host-side Vigil-KV software to precisely schedule the de-
vice states. The functionalities that our PLM interfaces offer
are largely classified into three: i) PLM setup (PLMConfig()),
ii) NDWIN and DTWIN configuration (PLMWindow()), and
iii) device log queries (GetLogPage()). The table also in-
cludes how the host-side kernel driver can implement those
three semantics using NVMe feature commands. For exam-
ple, a LSM KV system’s kernel driver can turn on or off the
target storage’s PLM mode by configuring a feature ID (PLM
configuration) and enable flag (on/off) through NVMe’s set-
feature [45]. In similar way, it can simply configure the
performance window of Vigil-KV hardware using PLMWin-
dow(). To query the device state/condition information (that
we will reveal in Section 5.2), the LSM KV system can com-
municate with Vigil-KV hardware through GetLogPage()
simply returning the results into 512B data package, called a
log page. Based on a given performance window information,
Vigil-KV hardware prioritizes NDWIN to perform SSD’s in-
ternal tasks as much as possible, and it guarantees that the
internal tasks are not scheduled in DTWIN. As discussed
in Section 3.2, SSD’s internal tasks cannot permanently be
postponed, we regulate the longest-serving time of DTWIN
and reports it to the host through GetLogPage. In addition,
Vigil-KV hardware defines the minimum time of NDWIN
that should be secured to handle SSD’s internal tasks and
exposes the configuration time to the host via the log page.
Thus, Vigil-KV software can utilize this information by re-
ferring into the log page to schedule performance windows
appropriately.
NVM multi-set architecture. To offer a variety of perfor-
mance scheduling options to the host, our hardware also intro-
duces NVM multi-set, which splits the backend storage into
multiple volumes, each being exposed to the host as a sepa-
rate PCIe physical function. Vigil-KV hardware then enables
the PLM interface to each physical function, called NVM set
and makes them work independently by allocating different
internal logic/cores across the sets. This NVM multi-set archi-

PLM
semantics

NVMe
cmd

Field name
OP

CODE
Feature ID
(CDW10)

NVM Set ID
(CDW11)

Feature Enable
(CDW12)

PLMConfig()

Arg1: SetID
Arg2: Enable

Set
Features

PLM
Config

SetID
Enable
(0: Off,
1: On)

PLMWindow()

Arg1: SetID
Arg2: Enable

Set
Features

PLM
Window

SetID
Enable

(0: NDWIN,
1: DTWIN)

GetLogPage()

Arg1: SetID
Get

Features

Return values
Longest-serving time of DTWIN,

Preserved NDWIN, Device lockdown

Table 1: Vigil-KV hardware.

�������

�������

������	

�������

�������

����	�
��

�����������������	�
��

�

�

��

��

� � ��

� �� �

�� � �

��

��

������

Figure 5: Vigil-KV
software.

tecture can grant maximum flexibility to the host-side LSM
KV’s software components, such that they schedule the under-
lying device states (DTWIN and NDWIN) in a finer granular
manner. For example, the LSM KV system can configure
different performance windows within a single NVMe device
by configuring the NVM Set ID of NVMe’s set-feature
(i.e., the codeword 11 of NVMe’s command) differently.

4.2 Software-Defined Strong Latency Deter-
minism for Get services.

Figure 5 shows how Vigil-KV software achieves strong la-
tency determinism by utilizing the finer-granular performance
windows that Vigil-KV hardware provides. It consists of three
major logical components: i) metadata separation, ii) device
state scheduling, and iii) request scheduling.
Managing data, devices, and requests. Vigil-KV software
excludes a physical function from the storage volume and in-
ternally allocates it for metadata management, called meta-set.
PLM of this meta-set is disabled by PLMConfig(), and Vigil-
KV software isolates all WAL and journaling activities from
LSM KV’s regular queries by forwarding the metadata-related
requests to the meta-set. This metadata separation allows the
kv-sets not to be interfered with by the heavy internal writes
for crash consistency management, such that our device state
and request scheduling mechanisms can mainly focus on of-
fering strong latency determinisms for Get services.

On the other hand, the remaining physical functions that
Vigil-KV hardware exposes are allocated to handle incom-
ing LSM KV’s query requests at the kernel-level, which is
referred to as kv-sets. Vigil-KV software then schedules
all the kv-sets device states (i.e., performance windows) to
make n− 1 kv-sets be in DTWIN at any given time (using
PLMWindow()) while allowing NDWIN to be granted to the
underlying kv-sets in a fairly scheduled aspect (round-robin).
n is the total number of physical functions that Vigil-KV can
assign to the SSTFile management. Vigil-KV software classi-
fies LSM KV’s internal tasks and client requests at runtime
and schedules them differently by knowing the underlying de-
vice’s configured performance windows. Specifically, all the
client requests are scheduled to be served from the n−1 kv-
sets, configured with DTWIN. In contrast, Vigil-KV software

760 2022 USENIX Annual Technical Conference USENIX Association

(a) Partitioning. (b) Prototype.

Figure 6: Vigil-KV hardware prototype.

schedules all the requests coming from LSM KV’s internal
tasks with a kv-set, scheduled by NDWIN (if there is), but
regulates the number of the internal tasks’ requests not to
make NDWIN be too much long, thereby having always n−1
kv-sets configured with DTWIN. We will explain the details
of this device state and request scheduling in Section 6.2.
Data reconstruction for NDWIN. Vigil-KV pushes all the
LSM KV’s and SSD’s internal tasks into NDWIN, which are
scheduled across different kv-sets in a round-robin manner.
While handling requests over NDWIN is essential for both
the LSM KV and SSD, the client requests, particularly Get
services, targeting the kv-set scheduled with NDWIN can be
blocked, thereby exhibiting the long-tail latency. To address
this, Vigil-KV encodes parity bits and writes them with inter-
nal tasks at NDWIN. Specifically, when Vigil-KV stores an
SSTFile, it splits the file into multiple chunks and stripes those
chunks across kv-sets at NDWIN. Since we ensure that there
are n−1 kv-sets configured DTWIN at any given moment,
Vigil-KV reads out the data from other kv-sets, reconstructs
the original data, and serves them without touching the ND-
WIN kv-set. This data reconstruction inspired by emerging
“array-level” memory and storage techniques [48, 78–81] can
obviously remove the long tail latency on Get services, but
its reconstruction time can increase the average latency com-
pared to ideal storage making all kv-sets DTWIN consistently.
Thus, Vigil-KV also minimizes NDWIN to avoid unnecessary
data reconstruction at the physical function level. Note that,
as the parity bits are generated per chunk (not per SSTFile) in
our scheme, it does not need to recalculate the parities after
compaction. The details of this technique and implementation
will be described in Section 6.2.

5 Hardware Prototype and Characterizations

5.1 Enabling PLM with NVM Multi-Sets
Partitioning an SSD. Modern SSDs employ many flash
packages, which are connected to multiple embedded cores
through multiple memory buses, called channels. All flash
packages per channel are managed by a specific micro-coded
controller, called flash memory controller (FMC). For exam-
ple, our baseline hardware (SSD) contains eight flash pack-
ages, each containing eight flash memory banks, and all of
them are connected to four cores through eight channels and
FMCs. Since each FMC manages the underlying flash pack-

�����

����	
���

�����

�	���������

�����

����	
���

����� �����

�

�

�

�

�

�

����

����	

�

�

�

�

����

���������

���

������

��		��

�

�

�

�

	

�

8KB
128KB 4MB

128MB
5

10
15
20

D
ev

ic
e

Lo
ck

do
w

n

Written Data

(m
s)

max=
20ms

0 2 4 6 810

(a) Firmware. (b) Device lockdown.

Figure 7: PLM and its constraint.

ages in a self-governing manner, we modify the baseline hard-
ware to partition the single storage space into multiple spaces.
Specifically, as shown in Figure 6a, we allocate each core to
every two FMCs and make all the cores work independently
as a (separate) physical function. As each physical function
should not interfere with each other, we also evenly split the
internal DRAM space into multiple spaces, each being allo-
cated to a different physical function. Figure 6b shows our
prototype of Vigil-KV hardware. There are four physical func-
tions, each being able to be indicated by a different identifier
from the host (cf. Table 1’s NVMSet ID). Flash firmware is in-
stantiated per core, such that a physical function performance
is not interfered with by other physical functions.
Integrating PLM. To implement DTWIN, each firmware
of Vigil-KV hardware employs multiple queues, each being
associated with the host command control and internal task
management (Figure 7a). Specifically, the internal job queue
(IJQ) is dedicated to a firmware module that manages address
translation while legacy I/O queues (LIQ) are allocated to the
firmware part that manages the host (NVMe) interface. The
requests in Vigil-KV hardware can be therefore classified into
legacy and internal tasks and served differently using IJQ and
LIQ. Specifically, if a physical function is configured with
DTWIN (using PLMWindow()), our firmware only handles
the requests coming from LIQ and suspends all the requests
of IJQ in both foreground and background. This device can
immediately serve the incoming (client) read requests without
an interruption of SSD’s internal tasks. However, the firmware
cannot suspend the requests of IJQ if there is no room, which
enforces the host schedule DTWIN appropriately. We will
explain this constraint in detail shortly.

5.2 PLM Constraint and Behavior Analysis
DTWIN/NDWIN conditions. While resource partitioning
and queue isolation (IJQ/LIQ) can remove the read latency
spikes imposed by SSD’s internal tasks, unfortunately, mak-
ing deterministic latency consistent is not that simple; it
needs a strong collaboration with the host. First, read ser-
vices on DTWIN suffer interference from a write, which was
buffered in a previous NDWIN state. To eliminate this inter-
ference, Vigil-KV’s firmware explicitly flushes the internal
buffer before jumping into DTWIN and disables the buffer
for further writes in DTWIN. Note that offering DTWIN with
fewer restrictions is the mission that our hardware targets to

USENIX Association 2022 USENIX Annual Technical Conference 761

(a) vs. Baseline (b) Fair-scheduling. (c) Isolation.

Figure 8: Performance characterization of prototype.

achieve, but it should not lose any data during I/O services
with DTWIN. Thus, it is necessary to clear the internal buffer
and bypass it before DTWIN and in the middle of DTWIN,
respectively. During the internal buffer flush, the host should
not further write data in order to clearly wipe it out, which
is called device lockdown condition. Figure 7b analyzes the
device lockdown times varying based on how much data were
written in the previous NDWIN. All the workloads that we
tested [12, 74] write tens of MB during NDWIN. it is suffi-
cient for the host to hold the data (if there is) by under 20
ms. Similarly, when there is a write on DTWIN, our hardware
returns the performance window from DTWIN to NDWIN
in order to guarantee strong durability and consistency of the
written data. The host therefore makes sure that there is no
write on DTWIN, called DTWIN’s write-free condition.

DTWIN must also not hurt the current level of reliability
management that the existing flash firmware provides. Specif-
ically, the underlying flash media can be stressed only with
reads even though there is no write or internal task because of
the read disturbance issue (Section 2.2). Thus, Vigil-KV hard-
ware regulates the most extended time window for DTWIN,
called maxDTWIN, by considering the worst case where the
heavy reads on a specific block can corrupt all the page data
therein. Similarly, NDWIN should be continued for a cer-
tain level of the time duration, called minNDWIN, which is
the shortest time to complete SSD’s internal tasks (data mi-
gration and block erases) and the accumulated requests in
IJQ during maxDTWIN. Obviously, these maxDTWIN and
minNDWIN periods are strongly correlated because IJQ is
limited to queue SSD’s internal tasks. By considering this,
the host should schedule DTWIN and NDWIN fairly, called
fair-scheduling condition. Based on preliminary profiles, we
configure maxDTWIN and minNDWIN as 60 and 4 seconds,
respectively.

Note that all these information such as the device lockdown
time, maxDTWIN, and minNDWIN are exposed to the host
through GetLogPage() (cf. Table 1).
Performance characterization and validation. Figure 8a
compares the read latency trends between the baseline device
and our Vigil-KV hardware prototype. While the baseline
device exhibits multiple latency spikes (∼402us), the reads
with Vigil-KV hardware are all served by 74us, on average,
and it is guaranteed for the latency to be under 200us. Note
that, when we change DTWIN to NDWIN by calling PLMWin-
dow() at 128 seconds, the read latency reaches as high as 736

����������

�	
 �	
 �	

������������

�� ��� ���

���

�
�����

�������

������

�	�	�������	���

����

�������	��

����

���
�� ���

��
�����!��

��"����	���

�	�	��������

������

��� ��� ���

	� 	� 	

����	

Figure 9: Implementation of Vigil-KV software stack.

us as SSD’s internal tasks are scheduled in that performance
window correctly. When we schedule DTWIN and NDWIN
one by one (by satisfying the fair-scheduling), as shown in
Figure 8b, the performance behaviors mentioned above are
all guaranteed across multiple DTWINs. At the same time,
the hardware is busy handling the accumulated internal tasks
in NDWIN. Lastly, Figure 8c compares the baseline device
that collocates reads and writes within a single storage space
and Vigil-KV hardware isolating the interference across mul-
tiple physical functions. One can observe from this figure that
the read latency of the baseline device severely fluctuates and
reaches as high as 2 ms. In contrast, the read latency on a phys-
ical function of Vigil-KV hardware is not interfered with by
the writes heading to other physical functions even though we
turned off the PLM interface for the physical function. This is
because we partition each physical function with completely
different resources. Note that Vigil-KV software utilizes this
performance isolation for metadata management, which can
make kv-sets free from managing the write-free condition
in cases of writing WAL and journaling to the underlying
storage.

6 Details of Vigil-KV Software

While there are constraints for PLM management, Vigil-KV
hardware opens the opportunity to schedule performance win-
dows across different physical functions being mapped to
NVM sets in a finer granule manner. Vigil-KV software sep-
arates LSM KV’s internal tasks, including metadata man-
agement from client Get services, and schedules them with
NDWIN having SSD’s internal tasks together. In addition, the
software part of Vigil-KV reconstructs data in cases where it
cannot serve the data because NDWIN services, which can in
turn allow LSM KVs to have DTWIN consistently, providing
strong latency determinism.

6.1 Vigil-KV Stack Implementation

Figure 9 shows the implementation of our Vigil-KV soft-
ware stack. RocksDB connects Vigil-KV hardware through
existing file system interfaces and performs SSTFile-related
services on /dev/kv. Underneath the file systems, we locate
our Vigil-KV driver operating with two kernel threads, reqd
and devd, each scheduling block I/O (bio) requests and our
hardware’s device states, respectively. Vigil-KV driver maps

762 2022 USENIX Annual Technical Conference USENIX Association

��������

������ ������ ���	
���

���

���

���

���

���

���

����

��������	��� �
������

��������	��� �
������

����������������������

����������������������������������� ����

	�������

	��������� �

�����������

���	
���
��

��
��������������������������
��������������������������

�������
�������
������� ����

������
	����������

�

�

�

�

�

�

�

�

�

��������

���������	�
��

���	
���������

�

�

�

�

�

�

�

�

�

	

�

�

�

�

	

�

�

�

����

�������	
���������

�
�������

�������

�����
��

����
	����

�� �� �� ��

(a) Timeline. (b) Equations. (c) Under/Overflow. (d) Dynamic schedule. (e) Example.

Figure 10: Performance window management.

multiple physical functions that Vigil-KV hardware exposes
to different NVM sets (meta-set and kv-sets) at the system’s
initialization. reqd is similar to Linux existing multiple de-
vice md driver for striping data chunks and bios across differ-
ent kv-sets, but it schedules them being aware of underlying
device states. Specifically, reqd ensures the scheduled bio re-
quests satisfy the write-free condition on DTWIN. In addition,
it makes sure that the client’s read requests are not stalled due
to LSM KV’s internal tasks by performing the data reconstruc-
tion on-the-fly. On the other hand, devd schedules the device
states for kv-sets by considering the fair-scheduling condition
and device lockdown time. More details of this device state
scheduling will be explained shortly.

To make read latency predictable, the Vigil-KV driver also
bypasses Linux page cache and block layer, which can make
the read latency fluctuate and/or be difficult to manage to
some extent. For example, Since kv-sets are only managed
internally, the bio structures for kv-sets (e.g., logical block
address and offsets) are different from the bio requests that the
page cache manages. Instead, the Vigil-KV driver employs an
internal buffer, called plm_cache, which buffers bio requests
of kv-sets in a form of Linux stripe list. The plm_cache size
can be configured by the user as a kernel parameter at the boot
time. When reqd schedules the including bio requests to un-
derlying kv-sets, it thus uses stripe requests. Since the Vigil-
KV driver bypasses the page cache, it also offers plm_sync
system call (a variant of file system’s fsyc) to RocksDB. This
plm_sync makes sure that the Vigil-KV driver completely
flushes plm_cache before Memtables, WAL, and SSTFiles
are deleted because of LSM KV’s internal tasks. The reason
why our Vigil-KV driver bypasses the block layer and directly
communicates with the nvme driver is that the block layer’s
bio merging and ordering can break determinism. For exam-
ple, the requests of LSM KV’s internal tasks are scheduled for
NDWIN, but they can be issued at DTWIN by the block layer.
Note that as reqd schedules LSM KV’s internal tasks and
client requests differently, it is required to deliver the priority
information from LSM KV to the Vigil-KV driver. To this end,
we have a minor modification on RocksDB and journaling
block device daemon (jbd2), which can be easily applied to
other LSM KVs. When RocksDB creates background threads,
it calls a system call, ioprio_set that configures I/O priority
as ‘internal task’. ioprio_set delivers the priority by storing
its information into io_context of process control block,

task_struct. Since Get queries and WAL are managed by
all the same thread of RocksDB, we modify WriteImpl()
such that it configures I/O priority as ‘WAL’ by calling io-
prio_set before performing WriteToWAL(). Journaling is
also classified by ioprio_set before committing a transac-
tion (e.g., jbd2_log_do_checkpoint()).

6.2 Performance Window Management

Device state scheduling. As shown in Figure 10a, devd
schedules DTWIN and NDWIN to make sure that there are
always n−1 kv-sets, configured with DTWIN. Therefore, all
the client requests are served from DTWIN or reqd’s data
reconstruction. When devd schedules performance windows
to meet the fair-scheduling and device downtime constraints,
there are two more technical challenges. Even though reqd
reads the data from kv-sets configured with DTWIN, the read
request can be delayed because of the outstanding reads issued
previously and not yet completed. These delayed reads can
be served at NDWIN, which cannot in turn offer the strong
latency determinism. Similarly, the writes issued to NDWIN
can be practically served at DTWIN because of the outstand-
ing writes as well as the time delay caused by SSD’s internal
tasks to some extent. This situation is less desirable than the
former as it can break the write-free condition on DTWIN.

We classify DTWIN and NDWIN more specifically by
considering those two unavailabilities further. DTWIN is
split into ADT (available DTWIN) and UDT (unavailable
DTWIN), and similarly, NDWIN is also separate into avail-
able/unavailable NDWIN (AND/UND). Since UDT and UND
can have such outstanding operations on reqd, devd sched-
ules NDWIN and DTWIN with a time unit as long as
nonDTWIN. nonDTWIN includes UDT, AND, UND, and
the device lockdown time windows (Lockdown), and each
of the windows should satisfy the condition described by
Equations 10b. devd profiles kv-sets’ bandwidth and then
estimates UDT and UND by dividing the total amount of data
volume for the outstanding requests with the read and write
bandwidth of kv-sets, respectively. Note that, in contrast to
the read bandwidth, the write bandwidth on DTWIN can vary.
We thus use the worst-case bandwidth of writes for the UND
estimation.
Dynamic adjustment for NDWIN. When devd controls per-
formance windows of the underlying kv-sets per nonDTWIN

USENIX Association 2022 USENIX Annual Technical Conference 763

(=ADT), there are two challenges that it needs to address as
shown in Figure 10c: NDWIN underflow and overflow. In
cases where the amount of internal tasks of LSM KV and/or
SSD at NDWIN, reqd wastes computation for data recon-
struction and can increase the read latency when there is
heavy read traffic; we observed that, when one increases QPS
(queries per second) from 60K to 150K, the read latency in-
creases by 26%, on average. While minimizing the data recon-
struction involvement (NDWIN) is the matter, NDWIN can
break determinism if too many the internal tasks are issued.
We also preliminary evaluated all our workloads and observed
that 48.3% of compaction scheduled at NDWIN (excluding
UDT, UND, and Lockdown) are executed at DTWIN.

As shown in Figure 10d, devd adjusts NDWIN at runtime
to address the underflow and overflow situation. Specifically,
devd begins scheduling NDWIN (per ADT) by setting it as
long as minNDWIN to minimize the involvement of reqd’s
data reconstruction and spreads buffered bio requests (stored
on plm_cache) across different minNDWIN. If the outstand-
ing requests are accumulated more than a threshold, it maxi-
mizes NDWIN to serve LSM KV internal tasks’ I/O as fast as
possible. For example, as shown in Figure 10e, devd exam-
ines reqd’ queues containing outstanding bio requests at the
time epoch 1 (t1). In this case, all the outstanding requests
are served/completed before t2. However, since the requests
associated with LSM KV internal tasks at t3 are not resolved
by t4, devd maximizes NDWIN. Note that, Vigil-KV applies
dynamic NDWIN adjustment for plm_cache by using the
user-defined memory limits as adjustment threshold.

7 Evaluation

7.1 Experimental Setup

Prototype and environments. We implement a prototype
of Vigil-KV hardware on a 1.92TB datacenter-scale NVMe
SSD for research purposes. Vigil-KV hardware employs four
physical functions, and they equally divide the hardware re-
sources such as 3GB LPDDR4 DRAM, eight channels, and
64 TLC NAND flash dies into four. Note that the baseline
hardware is not that different from the Vigil-KV hardware. It
has hardware resources the same as Vigil-KV hardware, but

Short
description.

Get
(%)

Put
(%)

Get
$ hit (%)

Flush
write (GB)

Compaction
write (GB)

FB

UserDB All social graph actions 54 46 25 2.4 8.8
ZippyDB Read ObjStorage meta 42 58 86 8.9 17.5

Y
C

SB

A Log user action 66 34 17 3.6 19.2
B Update/read photo tag 95 5 23 0.2 1.3
D Read latest record 95 5 83 0.5 1.8
F Update user record 74 26 45 3.1 15.6

Table 2: Important characteristics of evaluated workloads.

it only employs a single physical function. We perform the
evaluation on a 12-core AMD Ryzen 9 5900X, 96GB DRAM,
and Vigil-KV hardware by running Vigil-KV software im-
plemented on RocksDB 6.23.0 and Linux 4.19.91. For the
evaluation, we set the size of plm_cache as 2GB.
Workloads. We evaluate six workloads that use an LSM KV
as their backend storage engine. (two from Facebook [12] and
four from Yahoo [74]) For social network services, Facebook
uses UserDB and ZippDB workloads that serve social graph
data and object (e.g., image or video) storage metadata as a
form of key-value, respectively. The key-value cache hit ratio
of UserDB is only 25% due to its irregular key access pattern,
whereas that of ZippyDB is 86% because of its read-latest
characteristics of social contents. Yahoo also provides repre-
sentative LSM KV access patterns of various cloud services,
such as write-intensive (YCSB-A), read-intensive (YCSB-B),
read-latest (YCSB-D), and read-modify-write intensive (YCSB-
F). In the table, also analyze the amount of writes caused by
internal tasks (compaction) during our evaluations.
Configurations. We evaluate six different LSM KV hardware
and software combinations.

• Base [1]: the representative conventional LVM KV (e.g.,
RocksDB) with the baseline hardware.

• SILK [24]: the state-of-the-art software supports of LSM
KV with the baseline hardware.

• PLM: Vigil-KV hardware with a simple driver, which utilizes
the PLM interfaces (cf. Section 4.1).

• I-PLM: based on PLM, we add the metadata isolation support
(cf. Section 6.1).

• R-Vigil: based on I-PLM, we add the device state schedul-
ing support (cf. Section 6.2).

• O-Vigil: based on R-Vigil, we add the dynamic non-
determinism scheduling support (cf. Section 6.2).

(a) p99.9 tail latency.
Figure 11: Tail latency.

(a) Base and SILK. (b) PLM and I-PLM. (c) R-Vigil. (d) O-Vigil.
Figure 12: Time series analysis of representative workload (UserDB).

764 2022 USENIX Annual Technical Conference USENIX Association

0 3 6 9
p0

p90
p99

p99.9
p99.99

0 2 4 6
p0

p90
p99

p99.9
p99.99

0 1 2 3
p0

p90
p99

p99.9
p99.99

Get Latency (ms)

UserDB YCSB-A YCSB-D

Get Latency (ms) Get Latency (ms)

 Base SILK PLM I-PLM R-Vigil O-Vigil

UserDB
ZippyDB

YCSB-A
YCSB-B

YCSB-D
YCSB-F

0

100

200

N
or

m
al

 L
at

en
cy

 (u
s) Base SILK PLM

 I-PLM R-Vigil O-Vigil

(a) UserDB. (b) YCSB-A. (c) YCSB-D.
Figure 13: CDF graphs.

(a) Average latency.
Figure 14: Normal cases.

Since Vigil-KV adopts the concept of array-level memory
and storage techniques making three NVM sets as a single
storage volume, we use conventional multiple device (md)
driver for Base and SILK as well to satisfy the fair perfor-
mance comparison among the configurations that we tested.

7.2 Long-tail Latency Analaysis

We analyze the long-tail latency on Get services by executing
all the Facebook and Yahoo workloads atop the six configura-
tions. As shown in Figure 11, UserDB, YCSB-A, and YCSB-F
show longer p99.9 tail latency than others due to their high
Put service ratio, which increases the LSM KV and SSD in-
ternal tasks. Meanwhile, ZippyDB and YCSB-D further exhibit
shorter tail latency than YCSB-B thanks to their high key-value
cache hit ratio, which can reduce the number of reads inter-
fered with by internal tasks. To understand how six different
configurations impact long-tail latency, Figure 12 analyzes
time series by selecting UserDB as a representative workload.
It shows both storage read latency (left axis with black line)
and write throughput (right axis with red line), which allow us
to infer how much LSM KV and SSD internal tasks interfere
with Get queries and when the internal tasks occur.
Base vs. SILK. As shown in Figure 11, SILK only reduces
5% of the tail compared to Base, on average. Even though
UserDB can capture the user idle behaviors while YCSB work-
loads cannot, still there was not an enough idle time to sched-
ule LSM KV internal tasks as shown in Figure 12a. Thus, the
delayed compaction starts to interfere with Get services from
2600 seconds in SILK, and the storage read latency spikes.
SILK vs. PLM. PLM experiences the tail similar to Base (5.4%
longer than SILK), which indicates that Vigil-KV hardware
cannot guarantee latency determinism without Vigil-KV soft-
ware. As shown in the top of Figure 12b, Vigil-KV hardware
is in NDWIN most of the time (red background) since WAL
or journaling breaks the DTWIN’s write-free condition.
PLM vs. I-PLM. Therefore, I-PLM isolates WAL and jour-
naling to dedicated meta-set and securing NDWIN (white
background) as shown in the bottom of Figure 12b. Since
UserDB has a higher Put service ratio than others, it experi-
ences 24.4% shorter long-tail latency compared to PLM, while
others achieve 12% shorter long-tail latency, on average.
I-PLM vs. R-Vigil. As shown in Figure 12c, R-Vigil

schedules NDWIN across three kv-sets and guarantees latency
determinism as much as possible by reconstructing reads
with DTWIN kv-sets. Thus, it can reduce long-tail latency by
48.2% compared to I-PLM, on average. As shown in Figure
11, especially for high Put service workloads (YCSB-A and
YCSB-C), they exhibit 70% shorter long-tail latency than I-
PLM. However, R-Vigil still exhibits long-tail latency due to
NDWIN overflow (cf. 736 ∼ 809 seconds in Figure 12c).
R-Vigil vs. O-Vigil. Therefore, O-Vigil strongly guar-
antees the latency determinism with out dynamic NDWIN ad-
justment. O-Vigil reduces long-tail latency by 33.5% than R-
Vigil, on average, while high Put service workloads (UserDB,
YCSB-A and YCSB-F) can achieve shorter long-tail latency
59%. As shown in Figure 12d, O-Vigil dynamically sched-
ules LSM KVs internal tasks.

Note that O-Vigil not only reduces the long-tail latency
of the Base by 3.19×, on average, but also guarantees under
500us Get service latency across all the workloads.

7.3 Analysis of Different-level Latency

Tail latency distribution. To understand the impact of Vigil-
KV for the different levels of tail-latency, we analyze the CDF
of Get latency for three representative workloads, such as
UserDB, YCSB-A, and YCSB-D. Since UserDB and YCSB-A are
high Put service ratio workloads, the long-tail of Get latency
start from p99 as shown in Figures 13a and 13b. On the other
hand, as YCSB-D has higher Get service ratio workloads and
most of the Get is serviced from the key-value cache, the
long-tail of Get latency start from p99.9 as shown in Figure
13c. Thus, for the YCSB-D workload, O-Vigil achieves 78%
shorter p99.99 long-tail latency than Base, while only 11% of
the long-tail is reduced at p99.9 latency. Not only for YCSB-D,
O-Vigil can further mitigates the p99.99 long-tail latency of
UserDB and YCSB-A by 69% and 94%, respectively.

Note that Vigil-KV can also guarantee the strong latency
determinism (us-scale latency of Get service) more than four
nines long-tail latency (p99.99) as shown in Figure 13.
Normal cases. Since Vigil-KV adds more software supports
than conventional LSM KV, it is important to analyze the Get
service latency of normal cases to check whether Vigil-KV
slows down the average Get latency or not. Figure 14 shows
the average latency of Get services for all the workloads and

USENIX Association 2022 USENIX Annual Technical Conference 765

200 400 600 800
0

250

500

750

M
em

or
y

U
sa

ge
 (M

B)

Timeline (s)

 RocksDB PLM Cache

Compaction
Memory limit

Memory Limit (MB)
50 100 200 400 800

1600
0

20
40
60
80

100

Av
g

La
te

nc
y

(u
s)

(a) Usage. (b) Limit.

Figure 15: Memory consumption.

configurations, and we observed that Vigil-KV (O-Vigil) re-
duces the average Get latency by 34% compared to Base (not
increases the average Get latency). This is because of two
reasons: 1) Vigil-KV isolates the write I/O traffic of meta-
data (e.g., WAL and filesystem journaling) from the read I/O
traffic of Get service, and 2) Vigil-KV minimizes the data
reconstruction as much as possible. Note that, the reason why
ZippyDB and YCSB-D show shorter average Get latency com-
pared to other workloads is that they have a high key-value
cache hit ratio (which is not related to Vigil-KV solutions).

7.4 Memory Consumption and Scan Service
Time series analysis. Figure 15a shows memory consump-
tion of application-level (e.g., RocksDB’s Memtable) and
kernel-level (e.g., Vigil-KV driver’s plm_cache) during work-
load execution. We select ZippyDB as a representative work-
load since there is a large amount of storage writes by com-
paction internal tasks (cf. Table 2). While RocksDB period-
ically flushes Memtables to the underlying storage to main-
tain a certain threshold (e.g., 64MB) of the application-level
write buffer, Vigil-KV has to cache/buffer write requests until
the target kv-set reaches NDWIN. Thus, the memory usage
of plm_cache increases when LSM KV internal tasks (e.g.,
Memtable flush and compaction) occur. However, Vigil-KV
supports dynamic adjustment for NDWIN being aware of the
memory limits of plm_cache which can regulate the maxi-
mum memory consumption.
Sensitivity test. To understand the impact of plm_cache’s
memory limits to the average latency of Get services, we
perform sensitivity tests by increasing the memory limits from
50MB to 1.6GB as shown in Figure 15b. While extremely low
memory limit (e.g., 50MB) exhibits long normal latency of
more than 80us, a few hundreds of MB plm_cache is enough
to serve normal Get latency without performance degradation.

Note that, although Vigil-KV delays LSM KV internal
tasks until target kv-sets reach NDWIN, it does not increase
memory footprints or degrade the Get latency, unlike prior
studies (e.g., TRIAD [22], PebblesDB [23], and SILK [24]).
Performance with Scan. Vigil-KV mainly considers improv-
ing the performance of Get queries as a first-class citizen.
This is because Get of most large-scale workloads (Facebook
[12] and Yahoo [74]) account for 78% of the total queries in
the workloads that we tested. While Scan in contrast accounts

p
p90
p99

p99.9
p99.99

p99.999

0 1 2
Average p99.90.0

0.2

0.4

0.6

Sc
an

 L
at

en
cy

 (m
s)

 SILK
 O-Vigil

1.6x

Scan Latency (ms)

C
D

F

 SILK
 O-Vigil

4x

(a) SILK vs. O-Vigil. (b) CDF analysis.

Figure 16: Performance analysis of Scan queries.

for 3% of the total queries, its query latency may also be im-
portant for a specific workload such as scanning many posts
in parallel (e.g., YCSB-E).

In this subsection, we compare the latency behaviors of
Vigil-KV (O-Vigil) with those of SILK by evaluating YCSB-
E as the representative of Scan-sensitive workloads (95% and
5% for Scan and Put, respectively). Figure 16a shows the
comparison for the average (p50) and p99.9 latency. Since
RocksDB performs readahead and prefetch in default, the se-
quentially of Scan exhibits many cache hits. Similar to YCSB-
D, this in turn benefits the average latency marginal as Scan
operations of both O-Vigil and SILK from memory than de-
vices in most cases. However, such readahead and prefetch
techniques cannot avoid every I/O request and hide all the
read latency that the underlying SSD exposes. Vigil-KV can
support deterministic latency for such cases, thereby offering
1.6× shorter p99.9 latency of SILK. This performance benefit
becomes more promising as the degree of the long-tail latency
gets higher. As shown in Figure 16b, even though there are
few Put operations, they lead LSM KV internal tasks, which
can make p99.9∼p99.999 tail-latency much longer. Vigil-KV
can remove such long-tail latency with hardware/software
co-designed strong latency determinism, thereby improving
the tail latency by 1.6× ∼ 4×.

8 Conclusion

In this paper, we propose Vigil-KV, a hardware and software
co-designed framework that eliminates long-tail latency by
introducing strong latency determinism into LSM KVs. We
evaluate diverse Facebook and Yahoo scenarios with Vigil-
KV, and our empirical evaluation shows that Vigil-KV can
reduce the tail latency of the baseline KV system by 3.19×
while reducing the average latency by 34% as well.

Acknowledgement

The author thanks to anonymous reviewers for their con-
structive feedback. This work is mainly supported by Sam-
sung (G01200447) and Samsung HiPER. This work is also
in part supported by NRF’s 2021R1A2C4001773, IITP’s
2021-0-00524 & 2022-0-00117, KAIST start-up package
(G01190015), and KAIST IDEC. Myoungsoo Jung is the
corresponding author.

766 2022 USENIX Annual Technical Conference USENIX Association

References

[1] Facebook. Rocksdb: A persistent key-value store for
fast storage environments. https://rocksdb.org.

[2] Sanjay Ghemawat and Jeff Dean. Leveldb. https:
//github.com/google/leveldb.

[3] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael
Stumm. Evolution of development priorities in key-
value stores serving large-scale applications: The
rocksdb experience. In 19th USENIX Conference on
File and Storage Technologies (FAST 21), 2021.

[4] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal navigable key-value store. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, 2017.

[5] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson.
Slimdb: A space-efficient key-value storage engine for
semi-sorted data. Proceedings of the VLDB Endowment,
2017.

[6] Siying Dong, Mark Callaghan, Leonidas Galanis,
Dhruba Borthakur, Tony Savor, and Michael Strum. Op-
timizing space amplification in rocksdb. In CIDR, 2017.

[7] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Har-
iharan Gopalakrishnan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Wisckey: Separating keys
from values in ssd-conscious storage. ACM Transac-
tions on Storage (TOS), 2017.

[8] Alexander Conway, Abhishek Gupta, Vijay Chi-
dambaram, Martin Farach-Colton, Richard Spillane,
Amy Tai, and Rob Johnson. Splinterdb: Closing the
bandwidth gap for nvme key-value stores. In 2020
USENIX Annual Technical Conference (USENIXATC
20), 2020.

[9] Yongkun Li, Zhen Liu, Patrick PC Lee, Jiayu Wu, Yin-
long Xu, Yi Wu, Liu Tang, Qi Liu, and Qiu Cui. Dif-
ferentiated key-value storage management for balanced
i/o performance. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), 2021.

[10] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. Kvell: the design and implementation of
a fast persistent key-value store. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
2019.

[11] Yoshinori Matsunobu, Siying Dong, and Herman Lee.
Myrocks: Lsm-tree database storage engine serving face-
book’s social graph. Proceedings of the VLDB Endow-
ment, 2020.

[12] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, modeling, and benchmarking
rocksdb key-value workloads at facebook. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), 2020.

[13] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman,
Jens Axboe, Siying Dong, Kim Hazelwood, Chris Pe-
tersen, Asaf Cidon, and Sachin Katti. Reducing dram
footprint with nvm in facebook. In Proceedings of the
Thirteenth EuroSys Conference, 2018.

[14] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael
Stumm. Rocksdb: Evolution of development priorities
in a key-value store serving large-scale applications.
ACM Transactions on Storage (TOS), 2021.

[15] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H Noh, and Young-ri Choi. Slm-db: single-
level key-value store with persistent memory. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), 2019.

[16] Russell Sears and Raghu Ramakrishnan. blsm: a general
purpose log structured merge tree. In Proceedings of
the 2012 ACM SIGMOD International Conference on
Management of Data, 2012.

[17] Hyeontaek Lim, Bin Fan, David G Andersen, and
Michael Kaminsky. Silt: A memory-efficient, high-
performance key-value store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, 2011.

[18] Niv Dayan and Stratos Idreos. Dostoevsky: Better space-
time trade-offs for lsm-tree based key-value stores via
adaptive removal of superfluous merging. In Proceed-
ings of the 2018 International Conference on Manage-
ment of Data, 2018.

[19] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing lsms for nonvolatile memory with novelsm. In
2018 USENIX Annual Technical Conference (USENIX-
ATC 18), 2018.

[20] Junsu Im, Jinwook Bae, Chanwoo Chung, Sungjin Lee,
et al. Pink: High-speed in-storage key-value store with
bounded tails. In 2020 USENIX Annual Technical Con-
ference (USENIXATC 20), 2020.

[21] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and
Yinlong Xu. Spandb: A fast, cost-effective lsm-tree
based kv store on hybrid storage. In 19th USENIX
Conference on File and Storage Technologies (FAST
21), 2021.

USENIX Association 2022 USENIX Annual Technical Conference 767

https://rocksdb.org.
https://github.com/google/leveldb.
https://github.com/google/leveldb.

[22] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy
Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan
Gupta, and Pavan Konka. Triad: Creating synergies be-
tween memory, disk and log in log structured key-value
stores. In 2017 USENIX Annual Technical Conference
(USENIXATC 17), 2017.

[23] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. Pebblesdb: Building key-value stores
using fragmented log-structured merge trees. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles (SOSP), 2017.

[24] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. Silk: Preventing latency spikes in log-structured
merge key-value stores. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), 2019.

[25] Hyojun Kim and Seongjun Ahn. Bplru: A buffer man-
agement scheme for improving random writes in flash
storage. In FAST, 2008.

[26] Ping Huang, Pradeep Subedi, Xubin He, Shuang He,
and Ke Zhou. Flexecc: Partially relaxing ecc of mlcssd
for better cache performance. In 2014 USENIX Annual
Technical Conference (USENIXATC 14), 2014.

[27] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Yang-
Suk Kee, and Moonwook Oh. Durable write cache in
flash memory ssd for relational and nosql databases. In
Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, 2014.

[28] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.
Dftl: a flash translation layer employing demand-based
selective caching of page-level address mappings. Acm
Sigplan Notices, 2009.

[29] Heeseung Jo, Jeong-Uk Kang, Seon-Yeong Park, Jin-
Soo Kim, and Joonwon Lee. Fab: Flash-aware buffer
management policy for portable media players. IEEE
Transactions on Consumer Electronics, 2006.

[30] Sooyong Kang, Sungmin Park, Hoyoung Jung, Hyoki
Shim, and Jaehyuk Cha. Performance trade-offs in us-
ing nvram write buffer for flash memory-based storage
devices. IEEE Transactions on Computers, 2008.

[31] Arash Tavakkol, Mohammad Sadrosadati, Saugata
Ghose, Jeremie Kim, Yixin Luo, Yaohua Wang,
Nika Mansouri Ghiasi, Lois Orosa, Juan Gómez-Luna,
and Onur Mutlu. Flin: Enabling fairness and enhancing
performance in modern nvme solid state drives. In 2018
ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2018.

[32] Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah,
Joonhyuk Yoo, and Mahmut T Kandemir. Hios: A
host interface i/o scheduler for solid state disks. ACM
SIGARCH Computer Architecture News, 2014.

[33] Myoungsoo Jung, Wonil Choi, Miryeong Kwon,
Shekhar Srikantaiah, Joonhyuk Yoo, and Mahmut Tay-
lan Kandemir. Design of a host interface logic for gc-
free ssds. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 2019.

[34] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin
Lee, Changwoo Min, and Sam H Noh. Alleviating
garbage collection interference through spatial separa-
tion in all flash arrays. In 2019 USENIX Annual Techni-
cal Conference (USENIXATC 19), 2019.

[35] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. Real-time
garbage collection for flash-memory storage systems
of real-time embedded systems. ACM Transactions on
Embedded Computing Systems (TECS), 2004.

[36] Pan Yang, Ni Xue, Yuqi Zhang, Yangxu Zhou, Li Sun,
Wenwen Chen, Zhonggang Chen, Wei Xia, Junke Li, and
Kihyoun Kwon. Reducing garbage collection overhead
in ssd based on workload prediction. In 11th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 19), 2019.

[37] Narges Shahidi, Mahmut T Kandemir, Mohammad Ar-
jomand, Chita R Das, Myoungsoo Jung, and Anand
Sivasubramaniam. Exploring the potentials of parallel
garbage collection in ssds for enterprise storage systems.
In SC’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis. IEEE, 2016.

[38] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D Davis, Mark S Manasse, and Rina Panigrahy.
Design tradeoffs for ssd performance. In USENIX An-
nual Technical Conference. Boston, USA, 2008.

[39] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao
Tong, Swaminathan Sundararaman, Andrew A Chien,
and Haryadi S Gunawi. Tiny-tail flash: Near-perfect
elimination of garbage collection tail latencies in nand
ssds. ACM Transactions on Storage (TOS), 2017.

[40] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo,
and Onur Mutlu. Error characterization, mitigation, and
recovery in flash-memory-based solid-state drives. Pro-
ceedings of the IEEE, 2017.

[41] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo,
and Onur Mutlu. Errors in flash-memory-based solid-
state drives: Analysis, mitigation, and recovery. arXiv
preprint arXiv:1711.11427, 2017.

768 2022 USENIX Annual Technical Conference USENIX Association

[42] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu.
Read disturb errors in mlc nand flash memory: Charac-
terization, mitigation, and recovery. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2015.

[43] Bryan S Kim, Jongmoo Choi, and Sang Lyul Min. De-
sign tradeoffs for ssd reliability. In 17th USENIX Con-
ference on File and Storage Technologies (FAST 19),
2019.

[44] Keonsoo Ha, Jaeyong Jeong, and Jihong Kim. An in-
tegrated approach for managing read disturbs in high-
density nand flash memory. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 2015.

[45] NVM Express, Inc. NVM express specification. https:
//nvmexpress.org/specifications.

[46] Gyuyoung Park, Miryeong Kwon, Pratyush Mahapatra,
Michael Swift, and Myoungsoo Jung. Bibim: A proto-
type multi-partition aware heterogeneous new memory.
In 10th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 18), 2018.

[47] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon
Koh, Nam Sung Kim, Mahmut Taylan Kandemir, and
Myoungsoo Jung. Revamping storage class memory
with hardware automated memory-over-storage solu-
tion. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE,
2021.

[48] Jie Zhang, Gyuyoung Park, David Donofrio, John Shalf,
and Myoungsoo Jung. Dram-less: Hardware acceler-
ation of data processing with new memory. In 2020
IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2020.

[49] Huaicheng Li, Martin L Putra, Ronald Shi, Xing Lin,
Gregory R Ganger, and Haryadi S Gunawi. loda: A
host/device co-design for strong predictability contract
on modern flash storage. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Princi-
ples, 2021.

[50] Shucheng Wang, Ziyi Lu, Qiang Cao, Hong Jiang, Jie
Yao, Yuanyuan Dong, and Puyuan Yang. Bcw: Buffer-
controlled writes to hdds for ssd-hdd hybrid storage
server. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), 2020.

[51] Stan Park and Kai Shen. Fios: a fair, efficient flash i/o
scheduler. In FAST, 2012.

[52] Yu Cai, Onur Mutlu, Erich F Haratsch, and Ken Mai.
Program interference in mlc nand flash memory: Charac-
terization, modeling, and mitigation. In 2013 IEEE 31st
International Conference on Computer Design (ICCD).
IEEE, 2013.

[53] Xavier Jimenez, David Novo, and Paolo Ienne. Wear
unleveling: Improving nand flash lifetime by balancing
page endurance. In 12th USENIX Conference on File
and Storage Technologies (FAST 14), 2014.

[54] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joon-
won Lee. A superblock-based flash translation layer for
nand flash memory. In Proceedings of the 6th ACM &
IEEE International conference on Embedded software,
2006.

[55] Bryan S Kim, Hyun Suk Yang, and Sang Lyul Min. Au-
tossd: an autonomic ssd architecture. In 2018 USENIX
Annual Technical Conference (USENIXATC 18), 2018.

[56] Myoungsoo Jung, Ramya Prabhakar, and Mahmut T.
Kandemir. Taking garbage collection overheads off the
critical path in ssds. In Middleware 2012 - ACM/I-
FIP/USENIX 13th International Middleware Confer-
ence, Montreal, QC, Canada, December 3-7, 2012. Pro-
ceedings, volume 7662 of Lecture Notes in Computer
Science, pages 164–186. Springer, 2012.

[57] Guanying Wu and Xubin He. Reducing ssd read latency
via nand flash program and erase suspension. In FAST,
2012.

[58] Sungjoon Koh, Changrim Lee, Miryeong Kwon, and
Myoungsoo Jung. Exploring system challenges of ultra-
low latency solid state drives. In 10th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage
18), 2018.

[59] Sungjoon Koh, Junhyeok Jang, Changrim Lee,
Miryeong Kwon, Jie Zhang, and Myoungsoo Jung.
Faster than flash: An in-depth study of system chal-
lenges for emerging ultra-low latency ssds. In IEEE
International Symposium on Workload Characterization,
IISWC 2019, Orlando, FL, USA, November 3-5, 2019.
IEEE, 2019.

[60] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon
Koh, Changlim Lee, Mohammad Alian, Myoungjun
Chun, Mahmut Taylan Kandemir, Nam Sung Kim, Ji-
hong Kim, and Myoungsoo Jung. Flashshare: Punching
through server storage stack from kernel to firmware for
ultra-low latency ssds. In Andrea C. Arpaci-Dusseau
and Geoff Voelker, editors, 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2018, Carlsbad, CA, USA, October 8-10, 2018, pages
477–492. USENIX Association, 2018.

USENIX Association 2022 USENIX Annual Technical Conference 769

https://nvmexpress.org/specifications
https://nvmexpress.org/specifications

[61] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash reliability in production: The expected and
the unexpected. In 14th USENIX Conference on
File and Storage Technologies (FAST 16), pages
67–80, Santa Clara, CA, February 2016. USENIX
Association. ISBN 978-1-931971-28-7. URL
https://www.usenix.org/conference/fast16/
technical-sessions/presentation/schroeder.

[62] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai.
Error patterns in mlc nand flash memory: Measurement,
characterization, and analysis. In 2012 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE).
IEEE, 2012.

[63] Alaa R Alameldeen, Ilya Wagner, Zeshan Chishti, Wei
Wu, Chris Wilkerson, and Shih-Lien Lu. Energy-
efficient cache design using variable-strength error-
correcting codes. ACM SIGARCH Computer Archi-
tecture News, 2011.

[64] Chun-Yi Liu, Jagadish B Kotra, Myoungsoo Jung, Mah-
mut T Kandemir, and Chita R Das. Soml read: Rethink-
ing the read operation granularity of 3d nand ssds. In
Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, 2019.

[65] Qiao Li, Liang Shi, Chun Jason Xue, Kaijie Wu, Cheng
Ji, Qingfeng Zhuge, and Edwin H-M Sha. Access charac-
teristic guided read and write cost regulation for perfor-
mance improvement on flash memory. In 14th USENIX
Conference on File and Storage Technologies (FAST 16),
2016.

[66] Kai Zhao, Wenzhe Zhao, Hongbin Sun, Xiaodong
Zhang, Nanning Zheng, and Tong Zhang. Ldpc-in-ssd:
Making advanced error correction codes work effec-
tively in solid state drives. In 11th USENIX Conference
on File and Storage Technologies (FAST 13), 2013.

[67] Hongbin Sun, Wenzhe Zhao, Minjie Lv, Guiqiang Dong,
Nanning Zheng, and Tong Zhang. Exploiting intracell
bit-error characteristics to improve min-sum ldpc de-
coding for mlc nand flash-based storage in mobile de-
vice. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2016.

[68] Meng Zhang, Fei Wu, Xubin He, Ping Huang, Shunzhuo
Wang, and Changsheng Xie. Real: A retention error
aware ldpc decoding scheme to improve nand flash read
performance. In 2016 32nd Symposium on Mass Storage
Systems and Technologies (MSST). IEEE, 2016.

[69] M Jung and M Kandemir. Revisiting widely-held expec-
tations of ssd and rethinking implications for systems.
SIGMETRICS’13, 2013.

[70] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai.
Threshold voltage distribution in mlc nand flash mem-
ory: Characterization, analysis, and modeling. In 2013
Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2013.

[71] Neal Mielke, Todd Marquart, Ning Wu, Jeff Kessenich,
Hanmant Belgal, Eric Schares, Falgun Trivedi, Evan
Goodness, and Leland R Nevill. Bit error rate in nand
flash memories. In 2008 IEEE International Reliability
Physics Symposium. IEEE, 2008.

[72] Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur
Mutlu, and Erich F Haratsch. Vulnerabilities in mlc
nand flash memory programming: Experimental analy-
sis, exploits, and mitigation techniques. In 2017 IEEE
International Symposium on High Performance Com-
puter Architecture (HPCA). IEEE, 2017.

[73] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. Linkbench: a database
benchmark based on the facebook social graph. In Pro-
ceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data (MOD), 2013.

[74] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, 2010.

[75] Wonil Choi, Myoungsoo Jung, Mahmut Kandemir, and
Chita Das. Parallelizing garbage collection with i/o to
improve flash resource utilization. In Proceedings of
the 27th International Symposium on High-Performance
Parallel and Distributed Computing, 2018.

[76] Benny Van Houdt. A mean field model for a class of
garbage collection algorithms in flash-based solid state
drives. ACM SIGMETRICS Performance Evaluation
Review, 2013.

[77] Ming-Chang Yang, Yu-Ming Chang, Che-Wei Tsao,
Po-Chun Huang, Yuan-Hao Chang, and Tei-Wei Kuo.
Garbage collection and wear leveling for flash memory:
Past and future. In 2014 International Conference on
Smart Computing. IEEE, 2014.

[78] Sangwon Lee, Miryeong Kwon, Gyuyoung Park, and
Myoungsoo Jung. Lightpc: hardware and software co-
design for energy-efficient full system persistence. In
Proceedings of the 49th Annual International Sympo-
sium on Computer Architecture, pages 289–305, 2022.

[79] Mahesh Balakrishnan, Asim Kadav, Vijayan Prab-
hakaran, and Dahlia Malkhi. Differential raid: Rethink-
ing raid for ssd reliability. ACM Transactions on Storage
(TOS), 2010.

770 2022 USENIX Annual Technical Conference USENIX Association

https://www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder
https://www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder

[80] Bo Mao, Hong Jiang, Suzhen Wu, Lei Tian, Dan Feng,
Jianxi Chen, and Lingfang Zeng. Hpda: A hybrid parity-
based disk array for enhanced performance and reliabil-
ity. ACM Transactions on Storage (TOS), 2012.

[81] Tianyang Jiang, Guangyan Zhang, Zican Huang, Xi-

aosong Ma, Junyu Wei, Zhiyue Li, and Weimin Zheng.
Fusionraid: Achieving consistent low latency for com-
modity ssd arrays. In 19th USENIX Conference on File
and Storage Technologies (FAST 21), 2021.

USENIX Association 2022 USENIX Annual Technical Conference 771

	Introduction
	Preliminaries
	Log-Structured Merge KV Stores
	SSD Internal Tasks and Challenges

	Motivation and Related Work
	Long-tail Latency on Reads
	Scheduling Internal Tasks

	High-level View of Vigil-KV
	Hardware Support for Fine-Granular Performance Windows
	Software-Defined Strong Latency Determinism for Get services.

	Hardware Prototype and Characterizations
	Enabling PLM with NVM Multi-Sets
	PLM Constraint and Behavior Analysis

	Details of Vigil-KV Software
	Vigil-KV Stack Implementation
	Performance Window Management

	Evaluation
	Experimental Setup
	Long-tail Latency Analaysis
	Analysis of Different-level Latency
	Memory Consumption and Scan Service

	Conclusion

