
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

IPLFS: Log-Structured File System
without Garbage Collection

Juwon Kim, Minsu Jang, Muhammad Danish Tehseen, Joontaek Oh,
and YouJip Won, KAIST

https://www.usenix.org/conference/atc22/presentation/kim-juwon

IPLFS: Log-Structured File System without Garbage Collection

Juwon Kim Minsu Jang Muhammad Danish Tehseen Joontaek Oh Youjip Won
Department of Electrical Engineering, KAIST

Abstract
In this work, we develop the log-structured filesystem
that is free from garbage collection. There are two key
technical ingredients: IPLFS, a log-structured filesys-
tem for infinite partition, and Interval Mapping, a space-
efficient LBA-to-PBA mapping for infinite filesystem
partition. In IPLFS, we separate the filesystem partition
size from the physical storage size and set the size of the
logical partition large enough so that there is no lack
of free segments in the logical partition during SSD’s
lifespan. This allows the filesystem to write the updates
in append-only fashion without reclaiming the invalid
filesystem blocks. We revise the metadata structure of
the baseline filesystem, F2FS, so that it can efficiently
handle the storage partition with 264 sectors. We develop
Interval Mapping to minimize the memory requirement
for the LBA-to-PBA translation in FTL. Interval Map-
ping is a three level mapping tree. It maintains mapping
only for actively used filesystem region. With Interval
Mapping, the FTL can maintain the mapping for the 264

sector range with almost identical memory requirement
with the page mapping whose LBA range is limited by
the size of the storage capacity. We implement the IPLFS
on Linux kernel 5.11.0 and prototype the Interval Map-
ping in OpenSSD. By eliminating the filesystem level
garbage collection, IPLFS outperforms F2FS by up to
12.8× (FIO) and 3.73× (MySQL YCSB A), respectively.

1 Introduction
Log-structured filesystem [49] has become a popular

storage management system due to its unique append-
only nature. This append-only nature brings signifi-
cant performance advantage against the journaling-based
counterparts in practically all types of storage devices
including hard disk [49,50], flash storage [35], shingled
magnetic recording (SMR) drive [44] and even persistent
memory [55].

The append-only nature of the log-structured filesys-
tem brings another dimension of complexity to the filesys-
tem: the garbage collection. As the log-structured filesys-
tem ages, the filesystem runs out of free segments and
needs to reclaim the obsolete filesystem blocks to make

more free segments. The activity of reclaiming the invalid
blocks is called garbage collection. When the filesystem
performs the garbage collection in the foreground, it
freezes the entire filesystem till it completes [2]. The
garbage collection exposes the underlying log-structured
filesystem under excessive tail latency and lowers the
throughput of the filesystem. The garbage collection also
generates extra write traffics that increase flash wears.

A fair amount of works have been dedicated to mitigate
the overhead of garbage collection in the log-structured
filesystem. They include performing the garbage collec-
tion in the idle period [10,43,47], performing the garbage
collection in a preemptive way [37], selecting the right
victim segment to maximize the garbage collection effi-
ciency, e.g. greedy, cost-benefit, age, etc [27,41]. Some
works proposed to cluster the file blocks with a sim-
ilar lifespan together to improve the efficiency of the
garbage collection [31, 35, 48]. The overhead of device-
level garbage collection is also of serious concern. A large
body of works are dedicated to mitigate the overhead of
the device-level garbage collection [12,36, 61]. When the
log-structured filesystem is used with flash storage, the
overhead of garbage collection may compound due to the
garbage collection activities at the filesystem as well as
at the device [58]. A number of works proposed to enable
the host filesystem to directly manage the flash pages
in the storage and eliminate the device-level garbage
collection [39, 59, 60]. Recently proposed ZNS (zoned
name space) treats the storage device as append-only
log so that address mapping and device-level garbage
collection become much simpler [5, 20]. Despite all these
efforts, the root cause of garbage collection still remains
neglected; the filesystem needs to reclaim the invalid
filesystem blocks to make the free segments.

For several decades, the operating systems have been
separating the logical entity from the associated physical
entity for various types of physical resources. The typical
examples include virtualizing the CPU [13], virtualizing
the memory [15] or virtualizing the entire computer sys-
tem [11,17]. Unlike the other physical resources, modern
operating system still tightly couples the logical stor-
age partition from the physical storage and the size of
the logical partition is bounded by the capacity of the

USENIX Association 2022 USENIX Annual Technical Conference 739

physical storage.
In this work, we design the log-structured filesystem

without garbage collection. We separate the logical par-
tition from the physical storage and allow the filesystem
to define very large logical partition independent of the
capacity of the physical storage. We make the size of
the logical partition large enough so that the filesystem
never runs out of free segments during the lifespan of
the flash storage. With very large logical partition, the
filesystem does not have to reclaim the invalid filesystem
blocks and therefore can eliminate the critical drawbacks
of the log-structured filesystem, the garbage collection.
In the absence of the garbage collection, we can greatly
simplify the log-structured filesystem design.

Our work consists of two key ingredients. First is Log-
structured filesystem for Infinite Partition, IPLFS. The
second is the space-efficient LBA-to-PBA mapping, In-
terval Mapping. For IPLFS, we use F2FS as the baseline
filesystem. Modern IO subsystem uses 64 bit unsigned
long to represent the sector number. IPLFS allows that
the logical storage partition for the log-structured filesys-
tem can grow as large as 264 sectors. When the filesys-
tem writes the disk block in an append-only manner, the
lifespan of flash storage is going to expire long before
it reaches the end of the filesystem partition. IPLFS
ensures that the number of valid blocks does not exceed
the physical storage partition. IPLFS eliminates the al-
location bitmap and the reverse mapping information
from the log-structured filesystem. We develop Discard
Bitmap and Discard Logging to discard the invalid filesys-
tem blocks. To support prohibitively large LBA space,
we develop a space efficient LBA-to-PBA mapping, In-
terval Mapping FTL. Interval Mapping maintains the
LBA-to-PBA mapping information only for the actively
used filesystem regions. The contribution of our work
can be summarized as follows.

• We successfully eliminate the key complication,
garbage collection, from the log-structured filesys-
tem. We analyze the metadata structures of the log-
structured filesystem and redesign the log-structured
filesystem to handle very large filesystem partition.

• In the absence of garbage collection, we greatly simplify
the log-structured filesystem design. We eliminate the
block allocation bitmap and reverse mapping from the
log-structured filesystem. We develop space-efficient
and crash-safe data structures to represent the invali-
dated filesystem blocks that need to be discarded at
the storage, Discard Bitmap and Discard Log.

• We develop space efficient mapping scheme, Interval
Mapping. With tree-based structure, Interval Map-
ping maintains the mapping only for the actively used
filesystem region and can handle the LBA-to-PBA
mapping for 8 ZByte logical storage partition.

• We develop fixed-region mapping and map node com-
paction to reduce the size of the mapping tree. With
map node compaction, the fixed-region mapping peri-
odically reorganizes the structure of the map node in
the Interval Mapping tree to exclude the invalidated
filesystem blocks from the map node.

Via eliminating the garbage collection overhead from
the log-structured filesystem, IPLFS increases the bench-
mark performance by up to 12.8× (FIO) and 3.7×
(MySQL YCSB-A) against F2FS, respectively. With
fixed-region mapping, the memory overhead of Inter-
val Mapping is limited by the size of the physical storage,
not by the logical partition size. The memory overhead
of Interval Mapping is similar to that of page mapping.

2 Background
2.1 Flash Translation Layer

Flash Translation Layer is mainly responsible for three
tasks: LBA-to-PBA mapping, the garbage collection, and
the wear-leveling. All these three features are for hiding
the physical characteristics of the flash storage media: in-
ability to overwrite, asymmetry between the read latency
and write latency and limited erase/write cycles. FTL
maintains a table that holds the physical locations of
the individual logical blocks in the storage device. This
data structure is called mapping table. The size of the
mapping table is proportional to the number of LBA’s
which it needs to map and again it is linearly propor-
tional to the capacity of the storage device visible to the
host. Page mapping maintains mapping information in
page granularity [7]. While it exhibits superior random
write performance [34], it suffers from excessive memory
pressure for the mapping table. Block mapping main-
tains a mapping in the granularity of the flash block,
e.g. 2 MByte. It reduces the memory pressure for the
mapping table but it leaves the SSD under block thrash-
ing [28,34,38]. Hybrid mapping applies block mapping
for data blocks and page mapping for log blocks to reduce
the mapping table size and to avoid block thrashing in
the block mapping [18,28,29,42,45].
DISCARD (or TRIM) command [52] informs the SSD

that a given set of blocks in the storage are no longer
needed by the filesystem. It is proposed to prohibit the
garbage collection module of FTL from blindly migrating
the flash pages whose contents are invalid [25].

2.2 Lifespan of the Flash Storage
Flash storage can be erased and programmed only a

limited number of times [23]. Table 1 illustrates the TBW
(TeraBytes Written) of flash storage products released
between 2019 to 2020. TBW is the amount of data that

740 2022 USENIX Annual Technical Conference USENIX Association

Manufacturer Model Release TBW

Adata XPG Gammix S50 2019 3,600
Samsung 970 EVO Plus 2019 1,200
Patriot Viper VPR100 2019 3,115
Sabrent Rocket Q 2019 1,800
Samsung S980 PRO 2020 600
Samsung 870 QVO 2020 2,880
T-Force Cardea Zero Z340 2020 1,665

WD Black SN850 2020 1,200
SK hynix Gold P31 2020 750

Table 1: TBW(terabytes written) of the SSD products

Dataset Write volume
(GB/day)

Time to exhaust
address space (M year)

YCSB SSD [56] 1,159 20
Systor [51] 57 422

Nexus 5 [21] 13 1,853

Table 2: Daily write volume and estimated SSD lifespan,
traces are from SNIA open dataset [4]

can be written to the SSD over the lifespan of the drive.
In Table 1, the largest TBW corresponds to 3.6 PByte.

The actual amount of data that is written to the
storage device is much smaller than what the storage
device can sustain. We compute the per-day write volume
from the real IO traces [4](Table 2). They correspond to
IO traces in the Key-value storage [56], SYSTOR [51],
and smartphone [21]. Key-value storage engine generates
the largest amount of write among the three traces; it
writes 1.13 TByte per day to the storage.

The modern OS uses 64 bit, unsigned long type,
variable to represent the sector number (LBA). With
unsigned long type variable, the host can create the
logical partition of 264 sectors. The size of the logical
partition corresponds to 8 ZByte. With 8 ZByte logi-
cal storage partition, the log-structured filesystem can
keep appending the updated blocks at the end of the
active filesystem region without reclaiming the invalid
filesystem blocks. The lifespan of the underlying SSD
will expire long before the filesystem reaches the end of
the logical partition of 8 ZByte. For YCSB-A workload
in Table 2, it will take 20 million years to exhaust the 8
ZByte filesystem partition.

2.3 F2FS, a log-structured file system
F2FS is the log-structured filesystem specifically devel-

oped for the flash storage. Despite the promising charac-
teristics, the preceding log-structured filesystems [49,50]
have failed to be widely deployed in the commodity
hardware with the prime cause for the failure being the
overhead of reclaiming the invalid blocks. F2FS is the
first log-structured filesystem that has gained the pub-
licity successfully. It is the default filesystem for wide
variety of Android devices ranging from smartphone to

automotive [1].
F2FS divides the filesystem partition into two areas:

metadata area and data area. F2FS updates the contents
in the metadata area in an in-place manner and writes
the data area in an append-only manner. The meta-
data area contains the filesystem metadata such as a
superblock, a checkpoint pack, a block allocation bitmap
for each segment (a segment information table, SIT),
and reverse mapping information (the file id and the file
offset) for each segment (segment summary area, SSA).
To avoid the wandering tree problem of the out-of-place
update associated with the log-structured filesystem [8],
F2FS clusters the file index blocks for all files in the
filesystem together in the metadata area (a node address
table, NAT) and updates it in an in-place manner. F2FS
organizes the data area as a set of zones. A zone consists
of a set of sections and a section consists of a set of
segments. The segment is the unit of disk write and the
section is the unit of garbage collection. In most (if not
all) deployment of F2FS, a zone and a section consist of
a single segment.

F2FS defines two block types (node and data) and
three hotness levels (hot, warm, and cold) to represent
the update frequency of a filesystem block. The node
block corresponds to the inode or the index block of
the file. There are total six combinations of block type
and hotness level pair. F2FS maintains the six active
segments in memory for each combination. F2FS places
the blocks of the same type and temperature at the same
active segment. When the active segment is full, it is
flushed to the storage device. F2FS clusters the filesystem
blocks with the same type and hotness level together at
the flash storage. This is to reduce write-amplification
caused by the device level garbage collection.

F2FS reclaims the invalid filesystem blocks either when
the filesystem is idle (background garbage collection) or
when there runs out of free segments (foreground garbage
collection). In background and foreground garbage col-
lection, F2FS uses cost-benefit policy [41] and greedy
policy [27], respectively, in selecting the victim section.

For crash recovery, F2FS reads the most recent check-
point pack from the disk and recovers the filesystem
state with respect to the time of the most recent check-
point. Then, F2FS scans the node area of the filesystem,
and identifies the files that have been made durable via
fsync() after the most recent checkpoint. For each such
file, F2FS compares the node block at the time of check-
point and the node block synchronized to the disk via
fsync() and identifies the newly allocated blocks and
the invalidated blocks in the file. For the newly allo-
cated blocks, F2FS updates the associated filemap. For
invalidated blocks, F2FS invalidates the block allocation
bitmap in the segment information table in memory. Af-
ter reconstructing the allocation bitmap, the recovery

USENIX Association 2022 USENIX Annual Technical Conference 741

LBAs in use

Unallocated

w

0 Time

Time

discardedInvalidated

Figure 1: Active Region w in the logical partition

module creates the discard commands for the invalidated
blocks.

When a filesystem operation invalidates one or more
blocks, e.g. truncate(), or unlink(), F2FS updates
the associated bitmap in the segment information table.
F2FS checkpoints the filesystem state either periodically
or when the garbage collection is triggered. In check-
point, F2FS constructs the discard commands for the
invalidated filesystem blocks. When the checkpoint fin-
ishes, F2FS wakes up the discard thread. The discard
thread dispatches the discard commands in a regular
interval (default = 50 msec). It limits the number of
dispatch commands that are sent at a time (default =
8). It dispatches the discard command only when the
system is idle.

3 Design Overview
3.1 Design Philosophy

The fundamental design philosophy behind IPLFS is
the separation of the logical storage partition from the
physical storage. The log-structured filesystem [49] offers
natural ground to separate the logical partition from the
physical partition due to its level of indirection inherent
in the out-place update filesystem. In the legacy in-place
update filesystems, a file block is bound to the fixed
location in the physical storage when the file block is
allocated. It is non-trivial to separate the logical partition
size from the physical partition size [24]. On the other
hand, the log-structured filesystem dynamically updates
the file mapping information to keep track of the location
of the most recent version of the file block.

The existing log-structured filesystem [32, 35] limits
the size of the logical partition to the size of the associ-
ated storage device and reclaims the invalid filesystem
blocks when it runs out of free blocks in the logical parti-
tion. In this work, we set the size of the logical partition
large enough so that there is no lack of free LBAs during
SSD’s lifespan. Fig. 1 visualizes the usage pattern of the
log-structured filesystem in the very large logical parti-
tion. X and Y axes denote time and LBA, respectively.
As the filesystem ages, file blocks get invalidated. The
window of actively used filesystem region, w, moves to-
wards the higher end of its filesystem partition. Actively

Host

Device

IPLFS

: In-place update : Append-only log

Interval

Mapping

Tree

Meta

Data

Hot

Data

Cold

Data

Warm

Data

Hot

Node

Warm

Node

Cold

Node

FTL

Hot

Data

Cold

Data

Hot

Node

Warm

Node

Cold

Node

Warm

Data

Meta

Data

61 bit LBA space

Flash Memory

Figure 2: Concept: Log-structured filesystem for Infinite
Partition, IPLFS, and Interval Mapping

used filesystem region starts at the lowest valid LBA and
ends at the highest valid (allocated) LBA. Within the
actively used filesystem region, w, some blocks are invalid
and discarded at the storage device. When the size of the
logical partition is very large, only a small fraction of the
logical partition, w, is being accessed by the filesystem.
The storage controller needs to maintain LBA-to-PBA
mapping only for the actively used filesystem region, w.

3.2 Organization
Fig. 2 illustrates the main components of our system.

Eliminating the garbage collection in the log-structured
filesystem is achieved by two ingredients: Log-structured
filesystem for Infinite Partition, IPLFS and FTL for
very large logical partition, Interval Mapping. The first
component is IPLFS. IPLFS uses F2FS as a baseline
filesystem. The in-memory and on-disk structures of
F2FS are carefully trimmed and modified so that it can
handle the logical partition of 261 blocks and that it can
dispense with filesystem level garbage collection.

The second component is a space-efficient FTL, In-
terval Mapping. In most existing LBA-to-PBA mapping
techniques, the number of entries in the mapping table
corresponds to the number of blocks in the logical storage
partition. These techniques become practically infeasible
due to its prohibitive mapping table size when it needs
to map 261 blocks. Interval Mapping maintains an LBA-
to-PBA mapping only for the actively used region in the
logical storage partition. Interval Mapping is multi-level
tree based mapping. By using the multi-level mapping,
Interval Mapping tries to avoid allocating the mapping
table entries for the invalid filesystem blocks.

4 IPLFS
IPLFS never recycles the blocks in the filesystem par-

tition. This very nature enables IPLFS to dispense with
garbage collection at the filesystem layer and yet can

742 2022 USENIX Annual Technical Conference USENIX Association

Node Address Table

(NAT)

Super

Block

(SB)

Checkpoint

(CP)

Segment
Sec!on

…

…

Logging . . .

-
� �LBA space

LBA space

Hot

Data

Warm

Data

Cold

Data

Hot

Node

Warm

Node

Cold

Node

Meta

Data

Figure 3: Multi-area Partition of IPLFS

maintain its append-only update nature. IPLFS consists
of three key design ingredients: (i) multi-area partition
layout, (ii) garbage collection-less metadata design, and
(iii) discard map and discard logging.

4.1 Multi-area Partition Layout
We partition the entire filesystem partition of IPLFS

into seven areas of the same size (Fig. 3). One area (the
first one) is used for hosting the metadata of IPLFS.
It holds the filesystem metadata information such as
superblock and the node address table. Existing log-
structured filesystems treat the filesystem partition as
a single log [49,50] or two logs [35]. IPLFS has six logs
each of which accommodates the filesystem blocks of the
same type and hotness level. Via clustering the filesystem
blocks with similar update frequency together, IPLFS
maintains the size of the actively used filesystem region
small. We use MSB 3 bits of the LBA address as the area
identifier. The size of each area is 258 blocks, 1 ZByte.

4.2 Metadata Design
We carefully design the metadata structure of IPLFS

so that it can handle the very large filesystem parti-
tion. Particular care has been taken to minimize any
changes in the on-disk layout of its baseline filesystem,
F2FS. Log-structured filesystem provides two essential
metadata: reverse mapping and block allocation bitmap.
These data structures have two main usages: the filesys-
tem level garbage collection and the block discard. These
two data structures are no longer used for the filesystem-
level garbage collection because IPLFS does not per-
form garbage collection. IPLFS cannot use the reverse
mapping and block allocation bitmap for block discard
purpose, either, due to the prohibitively large logical
partition. The size of the block allocation bitmap and
the size of the reverse mapping information are linearly
proportional to the size of the filesystem partition. Given
the filesystem partition of 264 sectors, 8 ZByte, the size
of the block allocation bitmap and the reverse mapping
corresponds to 512 PByte and 8 EByte, respectively.
IPLFS cannot afford the storage space for block alloca-
tion bitmap and reverse mapping.

...

...

S

0

M-1

01

Hash Table

Section: N Segments

0 100 0

S: Start block number of Section

Dirty flags

...

Seg 0

... 01 0

Seg 1

... 00 1

Seg N-1

... 0

Section bitmap

...

Figure 4: Discard Bitmap

IPLFS retains the node address table (NAT) in F2FS
as is. The number of entries of the node address table
corresponds to the maximum number of inodes in the
filesystem partition. The number of inodes in the filesys-
tem is limited by the capacity of the physical storage,
not by the size of the logical filesystem partition. The
size of node address table does not increase even though
the size of the logical partition is very large.

In IPLFS, we remove the block allocation bitmap
(Segment Information Table) and reverse mapping in-
formation (Segment Summary Area) from its baseline
filesystem, F2FS and develop a new metadata structure
for discarding the filesystem blocks, Discard Bitmap and
Discard Log.

4.3 Discarding the Invalid Blocks
The log-structured filesystem maintains the block al-

location bitmap for two reasons: to represent the space
utilization of the individual segments and to keep track
of the newly invalidated filesystem blocks. Former is for
the filesystem-level garbage collection purpose and the
latter is for discarding the filesystem blocks. In IPLFS,
the former reason for maintaining the allocation bitmap
disappears but the latter reason remains outstanding.

Eliminating the block allocation bitmap, we develop
a new data structure, discard bitmap, that represents
the newly invalidated filesystem blocks since the last
checkpoint. IPLFS maintains the discard bitmap in per-
section basis. In IPLFS, a section consists of more than
one segments. A discard bitmap consists of two com-
ponents: the start LBA of the section and the bitmap
itself. When the filesystem invalidates the block, it sets
the associated discard bit at the discard bitmap. IPLFS
organizes a set of the discard bitmaps using the hash
table. Fig. 4 illustrates the structure of the set of discard
bitmaps. M and N correspond to the number of hash
buckets in the hash table and the number of segments
in a section. The hash table uses the section number as
a hash key.

When a filesystem block is invalidated, IPLFS searches
the hash table for the associated discard bitmap. If the
discard bitmap is found, IPLFS updates the discard

USENIX Association 2022 USENIX Annual Technical Conference 743

bitmap with the newly invalidated block. If the associ-
ated discard bitmap does not exist, IPLFS allocates the
discard bitmap for the section which the newly invalid
block belongs to, and sets the associated bit of the block
that needs to be invalidated. Then, IPLFS inserts the
newly created discard bitmap at the hash table.

There is a trade-off between the section size and the
filesystem performance. With a larger section size, the
hash table for the discard bitmaps becomes larger. With
a smaller section size, there exists more discard bitmaps
in the hash table and the latency for searching the hash
table becomes longer. Through experiment, we find that
the section size of 1 GByte renders the reasonable balance
between the filesystem performance and the memory
pressure. In the later part of this paper, the section size
is set as 1 GByte, i.e. 512 segments.

In each checkpoint, IPLFS scans the hash table and
constructs the discard commands for each discard bitmap.
After constructing the discard commands, it removes the
discard bitmap from the hash table. IPLFS issues the
discard commands periodically, e.g. in 50 msec inter-
val. As in F2FS, IPLFS allocates a separate thread for
dispatching the discard commands. IPLFS issues the dis-
card commands in a more aggressive fashion than F2FS
does. IPLFS dispatches the discard commands no mat-
ter whether there is a pending I/O or not. In F2FS, the
dispatch thread issues the discard commands only when
there is no pending I/O. In IPLFS, the dispatch thread
issues up to sixteen discard commands each time when
it wakes up. F2FS takes particular care to prohibit the
discard command from interfering with the foreground
IO requests [3]. We find in our platform (OpenSSD),
the aggressive discard policy renders better benchmark
performance since it makes the SSD garbage collection
more efficient and reduces the write amplification.

4.4 Discard Logging
In the absence of the block allocation bitmap, IPLFS

is subject to the Storage Leak. Storage Leak denotes the
situation where the flash page contains invalid filesystem
block and the filesystem never reclaims the associated
flash page. Assume that the system crashes while there
are outstanding discard commands. As a result of the
system crash, the outstanding discard commands are
lost. In F2FS, the recovery routine creates the discard
commands based upon the recovered allocation bitmap.

Discard Log AreaHeader Footer

Discard logStart LBA

Checkpoint Pack

.

Size

Figure 5: Checkpoint Pack with Discard Logs

checkpoint

SA SB SC

Roll-forward Recovery

b

c

a a

b’

at checkpoint at SB

b

c

(fsync for file B)

log

Crash

file B file B

Figure 6: Roll-forward Recovery in IPLFS

Unlike F2FS, IPLFS does not have allocation bitmap
and cannot reconstruct the discard commands that are
lost due to crash. The flash pages associated with the
lost discard commands will remain valid permanently
even though they will no longer be used.

To save IPLFS from Storage Leak, we develop a mech-
anism called Discard Logging. In Discard Logging, IPLFS
checkpoints the information associated with the discard
commands prior to issuing the discard commands to the
storage. With discard logging, IPLFS guarantees that
discard command is made durable at the storage before
it is issued to the storage. With Discard logging, IPLFS
can recover the outstanding discard commands when the
system crashes unexpectedly.

IPLFS allocates a certain region, Discard Log Area at
the checkpoint pack (Fig. 5). At each checkpoint, IPLFS
scans the discard bitmap and creates the discard com-
mands. After it finishes creating the discard commands,
IPLFS logs the information associated with the discard
commands, [startLBA, Length], at the discard log area of
the in-memory checkpoint pack. After it finishes prepar-
ing the checkpoint pack, it synchronizes the checkpoint
pack to the disk. After the checkpoint, IPLFS wakes up
the discard thread for issuing the discard commands.

When the system crashes, IPLFS recovers the discard
commands in two phases. In roll-backward recovery, the
recovery module reads the most recent checkpoint pack
and reconstructs the discard commands with respect to
the discard logs. In roll-forward recovery, IPLFS identifies
the fsynced files after the most recent checkpoint. IPLFS
compares the node block that is found at the roll-forward
recovery phase and the node block at the time of the
checkpoint. IPLFS then identifies the changes in the
block allocation and updates the filemap with respect
to the newly allocated node blocks. Based upon the
difference on the block allocation, IPLFS identifies the
invalidated filesystem blocks and constructs the discard
commands for the invalidated blocks. Fig. 6 illustrates
how IPLFS reconstructs the discard commands. At the
time of the checkpoint, the node block of file B consists
of three file blocks, a, b and c. After the checkpoint, the
file block b is updated to b’ and file block c is truncated
in file B. Then, file B is synchronized to disk through

744 2022 USENIX Annual Technical Conference USENIX Association

Time

LBA

Figure 7: active region of the filesystem, Ij : active region
at time tj

fsync(). After fsync(), node block of file B refers to
two blocks, a and b’. Block b’ is newly allocated and block
b and block c are invalidated. In roll-forward recovery,
IPLFS updates the filemap of file B to refer to a and b’
and creates the discard command for discarding b and c.

5 Interval Mapping

5.1 Design
We develop a space-efficient LBA-to-PBA mapping,

called Interval Mapping. It is similar to interval tree
[16] in that each leaf node has an interval of LBA’s
associated with it. Unlike interval tree, the height of
the interval mapping tree is fixed to three. Limiting the
height of the tree, the interval mapping increases the
fan-out degree of the root node to accommodate the
new leaf nodes. In designing the LBA-to-PBA mapping,
we exploit the fact that in IPLFS, the actively used
filesystem region moves towards the higher end of the
logical storage partition as the filesystem ages. Fig. 7
illustrates how the active region moves with time. At
t1, the active region corresponds to I1. At t2, the active
region corresponds to I2.

In IPLFS, there are 261 blocks in the logical storage
partition. With 16 KByte flash page size, the page map-
ping table size for this storage partition corresponds to
4EByte. None of the existing mapping techniques such as
block mapping [18], hybrid mapping [29,34,38,40,46], or
superblock-based mapping [26] can reduce the mapping
table size for LBA space of 261 blocks to a manageable
one. Interval Mapping addresses the prohibitive map-
ping table size requirement in IPLFS. Flash storage for
IPLFS uses the page mapping for the metadata area
and Interval Mapping for each of six data areas. Storage
controller identifies the interval mapping tree for the
incoming LBA using the most significant three bits of
LBA.

Interval Mapping is organized as three level
tree (Fig. 8). We limit the height of the mapping tree
to three to reduce the number of memory accesses as-
sociated with the address translation. Interval Mapping
organizes a storage area as an array of zones. The zone is
an array of mapping segments. The size of the zone and
the size of mapping segment correspond to 16 GByte
and 16 MByte, respectively.

Active Interval

[Mapping Interval, Active Interval]

Mapping Interval

Mapping segments (1024)

[Start LBA, Region size]

Region Mapping 1

16MB

UnusedActive Invalid

RnR2 R3

[Start LBA]

Root node

Zone node

Map node

region

Figure 8: Structure of Interval Mapping Tree

A root node has a number of zone nodes as children.
The sub-tree rooted at each zone node maintains a map-
ping for a single zone. When the interval tree is first
created, the fan-out degree of the root node is set to 32.
We increase the root node size to accommodate more
child nodes when it is necessary. The maximum size of
the root node is currently set to 1 MByte. With 1 MByte
root node, the root node can have 218 child nodes and
can map up to 4 PByte of logical storage partition. It
can be increased if the root node needs to map larger
LBA region.

A single Zone node has 1024 Map Nodes as its child
nodes. A map node maintains the LBA-to-PBA mapping
for a single mapping segment. In map node, we avoid
using plain table based mapping structure. Instead, for
the compact mapping organization of the map node, we
develop a new technique, fixed-region mapping, for the
LBA-to-PBA mapping.

5.2 Mapping Interval and Active Inter-
val

Interval Mapping defines two important concepts as-
sociated with mapping: the Mapping Interval and the
Active Interval. Mapping Interval is a region of the log-
ical partition that the interval mapping tree needs to
map. Mapping interval is represented by the start LBA
of the first zone and the start LBA of the last zone in
the mapping interval, respectively. When the storage
partition is created, Interval mapping creates six interval
mapping trees for individual data areas of the IPLFS
filesystem partition. Mapping interval is initialized when
the mapping tree is first created. The start LBA of each
mapping interval corresponds to the first LBA of asso-
ciated filesystem area. Initially, each mapping interval
consists of thirty-two zones, 512 GByte.

Active Interval is a window of actively used zones
within the associated mapping interval. Active interval

USENIX Association 2022 USENIX Annual Technical Conference 745

Active interval

Mapping interval

>

=

= 2

Figure 9: Updating the Mapping Interval

is similar to the active region in Fig. 7. The active inter-
val starts at the first valid zone of the mapping interval
and ends at the last valid zone of the associated mapping
interval. If all filesystem blocks in a zone become invalid,
the zone becomes invalid. The start of the active interval
is updated to the following valid zone in the active in-
terval when the first zone of the active interval becomes
invalid. The end of the active interval is extended to the
newly allocated zone if the new zone is appended to the
active interval to accommodate more blocks.

As the filesystem ages, active interval moves towards
the higher end of the logical partition. When the end
of active interval nearly reaches the end of the mapping
interval and there is little room to grow, Interval Mapping
creates the new root node with the new mapping interval
which can better accommodate the current active interval.
The details of updating the mapping interval are as
follows. First, we compute the mapping interval for the
newly created root node. If the length of the current
active interval is less than 1024 zones, the length of the
new mapping interval is set as twice the length of the
current active interval. Otherwise, it is initialized as the
length of the current active interval plus sixteen zones.
Second, we allocate the new root node with updated
mapping interval. Third, we copy the child pointers of
the old root node to the new root node.

The start of the mapping interval of the newly created
root node is initialized to the start of the current active
interval. The active interval of the new root node inherits
the current active interval. Fig. 9 illustrates an example
of creating the new root node with updated mapping
interval. σ is the minimum number of free zones which
the interval tree needs to maintain. If the number of
free zones in the mapping interval becomes less than σ,
Interval Mapping updates the mapping interval creating
the new root node. For an interval mapping tree, the
mapping interval can be updated multiple times. When
the mapping interval is updated, IPLFS allocates the
new root node each time. Let i be the number of times
when the mapping interval is updated for the associated
mapping tree. zi

m and zi
a denote the number of zones

in the mapping interval and the number of zones at
the active interval of the ith version of the root node,
respectively. The new mapping interval starts at the
same zone as the start of the current active interval. The
length of the new mapping interval is twice the length
of the current active interval, zi+1

m = 2zi
a. The length of

the new active interval is the same as the length of the

current active interval, zi+1
a = zi

a.
FTL creates the new root node and updates the map-

ping interval in non-blocking way so that it can minimize
the interference with the foreground IO request for ad-
dress translation or for allocating the new zone. When
a new zone node needs to be inserted at the root node
while the new root node is being created, the newly
created zone node is appended at the new root node
and the active interval of the new root node is updated
accordingly. For address translation, FTL uses the old
root node if the incoming LBA belongs to the active
interval of the old root node. Otherwise, it uses the new
root node for address translation.

5.3 Fixed-Region Mapping
A Map Node maintains the mapping for single map-

ping segment, 16 MByte by default. The total size of the
map nodes accounts for 99.9% of the entire mapping tree.
It is critical that map node data structure is carefully
designed to minimize the memory requirement as well
as the mapping latency in Interval Mapping. To address
the two objectives, we develop a new mapping technique
called fixed-region mapping. Fixed-region mapping parti-
tions a mapping segment into the same size regions with
a given region size. Map node maintains the LBA-to-
PBA mapping in per-region basis. Fixed-region mapping
allocates the mapping table only for the valid regions,
i.e. the region that has one or more valid blocks. Map
node maintains a region directory which has the location
of the per-region mapping tables. If the region is invalid,
the associated entry in the region directory is NULL. To
reduce the size of mapping table, each mapping table
specifies the start LBA of the active region and excludes
the mapping for invalid blocks at the beginning of the
associated region.

The region size plays a key role in the mapping effi-
ciency of the map node. Mapping efficiency is the ratio
of the number of the valid mapping entries against the
total number of mapping entries. As the region size gets
smaller, the mapping segment is partitioned into smaller
regions and the number of invalid regions is likely to in-
crease. As the region size becomes smaller, the mapping
efficiency improves but the region directory becomes
larger. As the region size becomes larger, the mapping
segment consists of smaller number of regions. With
larger size region, the region directory becomes smaller
but the mapping efficiency becomes worse. We need to
find the right region size that can maximize the map-
ping efficiency and minimizes the map node size. Interval
Mapping sets the region size as the size of the smallest
hole in the mapping segment. To avoid that the region
size becomes too small, we set the minimum region size,
256 KByte. When the region size corresponds to the size
of the smallest hole, it is guaranteed that there can be

746 2022 USENIX Annual Technical Conference USENIX Association

0xE0x0

0 1 2 3 4 5

Region Directory

Region (size 6)

0 1 2 4

Invalid

Valid
Region

Mapping

3 5

Hole (size 10) Hole (size 6)

0x1A

0x0E 0x1A

LBA region

Map Node

LBA 0x0

Figure 10: Mapping Segment and Map Node

only one active region in the associated region. Active
region is a consecutive array of valid blocks in a region.

A map node consists of the three components: the
range of the mapping segment, the region directory, and
the array of mappings for individual regions. The num-
ber of entries in the region directory corresponds to the
number of regions of the map node. The mapping infor-
mation for each region consists of the start address of
the active region and associated LBA-to-PBA mapping.
Fig. 10 illustrates the mapping segment and the organi-
zation of the associated map node. There are 32 blocks
in the mapping segment. There are two holes with 10
blocks and 6 blocks, respectively. The region size of this
map node is set to 6. Map node partitions the mapping
segment into six regions. In Region 0, there are four valid
blocks. Region 1 does not have any valid blocks. The
directory entry for region 1 is NULL since it does not
have any valid blocks. There are three active regions in
the mapping segment. The second active region spans
across region 2 and region 3. The map node allocates a
single region map for the active region that spans region
2 and region 3.

Interval Mapping periodically reorganizes the map
node. We call it map node compaction. It updates the
region size for the mapping segment and reconstructs the
per-region mapping tables with respect to the updated
regions. This is to reduce the map node size by eliminat-
ing the mappings for the invalid flash pages. When the
map node is first created, the region size is set to size
of the mapping segment. When the FTL invalidates the
mapping table entry at the map node, it examines the
mapping efficiency. If the mapping efficiency becomes
smaller than a certain threshold, (50%), the FTL inserts
the map node to the compaction candidate list. The
compaction thread periodically scans the compaction
candidate list (default 30s), and estimates the size of the
reorganized map node with the updated region size. If
the map node can become smaller by more than 30%
after compaction, FTL reorganizes the map node. Fig. 11
illustrates the map node compaction. Before the com-
paction, the original map node has a single region that
has 16 mapping entries and three active regions. There
are two holes of four blocks and five blocks. For com-
paction, the region size is updated to four (the minimum

62##-(5+K$5C$(. 62#+L'D$

4$5-'(+>

J(:2;-D

I2;-D

>

>

6-(-C"C+?';$

7 8 9

4M7

4$5-'(+62##-(5+7

4M8 4M9

> 7 8 9

62##-(5 K$5C$(. 62#+L'D$

Figure 11: Reorganizing the Map Node

hole size). The mapping region is partitioned into four
regions based upon the new region size, four. After com-
paction, the map node has three region mappings, each
of which includes two, two and three mapping entries,
respectively. As a result of map node compaction, the
map node size decreases by approximately half.

The memory overhead of Interval mapping is almost
the same as the memory overhead for page mapping.
Assume that the storage size is 512 GByte and flash
page size is 16 KByte. The page mapping consists of a 4
KByte block bitmap (for subpage mapping [30]) and a
mapping table. The page mapping requires 144 MByte
(16 MByte for bitmap and 128 MByte for mapping table).
The interval mapping consists of a root node, 32 zone
nodes, and 215 map nodes with sizes 128Byte, 4096Byte,
and 4624Byte, respectively. The size of Interval Mapping
corresponds to 144.6 MByte.

6 Evaluation
We implement IPLFS on F2FS (Linux 5.11.0) and In-

terval Mapping on OpenSSD (230GByte, 8 channels) [33],
respectively. A default FTL in OpenSSD uses page map-
ping and maps LBA to PBA of different channels in a
round-robin way. So does Interval Mapping FTL. We
use a PC server with Intel CPU i7-4770K (3.50GHz, 4
cores), and 8 GByte DRAM for the experiment.

6.1 Eliminating the Garbage Collection

FIO 1. We examine the performance benefit of elim-
inating the filesystem-level garbage collection. We use
FIO [6]. The logical storage partition is 30 GByte. In
this experiment, four threads perform random write on
28GByte file. We measure the throughput in every 2 sec.
Since the F2FS partition is almost full at the beginning
of the experiment, it quickly runs out of free segment.
On the other hand, the logical partition size is set to be
much smaller than the physical storage size. This is to
prohibit the storage device from running FTL garbage
collection. The effect of eliminating the filesystem level
garbage collection is substantial. In Fig. 12a, the perfor-
mance of F2FS drops to 1/10 when it starts to perform
garbage collection. IPLFS performance remains steady
at its full speed till the experiment finishes.

USENIX Association 2022 USENIX Annual Technical Conference 747

0 200 400 600 800 1000 1200
Time (s)

0

25

50

75
Th

ro
ug

hp
ut

 (k
iop

s)

total=48GiB

total=168GiB

F2FS GC
starts.

IPLFS
F2FS

(a) Only with F2FS garbage collection. Time: 600s, file
size: 28GByte, partition size: 30GByte

0 200 400 600 800 1000 1200
Time (s)

0

25

50

75

Th
ro

ug
hp

ut
 (k

iop
s)

total=284GiB

total=239GiB

F2FS GC and
device GC starts.IPLFS

F2FS

(b) F2FS garbage collection and FTL garbage collec-
tion. Time: 1200s, file size: 210GByte, partition size:
230GByte.

Figure 12: FIO (random write) Throughput: IPLFS vs.
F2FS. The number indicates the total write volume.

FIO 2. We examine the performance impact of
filesystem-level garbage collection as well as device-level
garbage collection. Fig. 12b illustrates the result. We set
the size of the logical partition to 230 GByte, which is
the physical storage capacity of OpenSSD. We perform
the random write on 210 GByte file. When F2FS starts
garbage collection, the throughput decreases to nearly
1/10. While IPLFS is free from filesystem level garbage
collection, the underlying flash storage is not. When
OpenSSD starts device-level garbage collection, the FIO
performance of IPLFS decreases to 60%. The filesystem-
level garbage collection bears more significant impact
on the benchmark performance than the device-level
garbage collection does.

MySQL. We run YCSB-A workload with MySQL and
examine how database operations are interfered by the
filesystem garbage collection. YCSB A workload [14]
consists of the same amount of reads and updates. To

Read/Avg. Update/Avg. Update/95% Update/99%0

100

200

La
te

nc
y (

m
s)

3.6 12.6 23.3 41.5
6.6

38.2

121.5

207.5IPLFS F2FS

(a) Latency

0 100 200 300 400 500
Time (s)

0

5

Th
ro

ug
hp

ut
(k

iop
s)

IPLFS F2FS

(b) Throughput

Figure 13: MySQL latency and throughput: YCSB-A,
record size: 1KB, record count: 5M, operation count: 1M
(read:update=1:1), threads: 50, partition size: 18GB.

0.6 0.7 0.8 0.9
Disk Utilization

1.0

1.2

1.4

W
rit

e
Am

pli
fic

at
ion

 F
ac

to
r

IPLFS
F2FS

(a) WAF

0.6 0.7 0.8 0.9
Disk Utilization

0

50

100

150

Th
ro

ug
hp

ut
 (M

B/
s)

IPLFS
F2FS

(b) Throughput

Figure 14: IPLFS vs. F2FS: fileserver benchmarks under
varying disk utilization, file size: 2 MByte, partition size:
230GByte

quickly trigger the filesystem level garbage collection, the
filesystem is 90% full at the beginning of the experiment.
Fig. 13a illustrates the average read and update laten-
cies of IPLFS and F2FS, respectively. The average read
latency and the average update latency of IPLFS are 1/2
and 1/3 of those of F2FS, respectively. The absence of
garbage collection improves the tail latency of the filesys-
tem significantly. The tail latencies of update at 95%
and at 99% in IPLFS are 5.2× and 5× lower than those
of F2FS. Fig. 13b illustrates the throughput. IPLFS’s
throughput remains steady throughout the experiment.
F2FS renders the similar performance to IPLFS at the
beginning but the performance decreases substantially
when it starts running the garbage collection.

6.2 Discard Policy of IPLFS
We examine how the more aggressive discard policy af-

fects the FTL garbage collection and the application per-
formance. We use fileserver workload in Filebench [53],
where 50 threads create, update and delete 2 MByte
files. Fig. 14a shows the write amplifications in IPLFS
and F2FS. IPLFS exhibits lower write amplification than
F2FS in all disk utilizations. Fig. 14b depicts the through-
put under varying disk utilization. IPLFS improves the

(a) IPLFS

(b) F2FS

Figure 15: Block trace: Filebench fileserver workload,
Partition size: 30GB

748 2022 USENIX Annual Technical Conference USENIX Association

throughput by as much as 24% against F2FS. Aggressive
discard policy of IPLFS saves the FTL garbage collec-
tion from migrating the invalid filesystem blocks. As a
result, IPLFS renders substantial improvement in write
amplification and the benchmark performance.

We examine the IO traces in IPLFS and F2FS, re-
spectively. In IPLFS and F2FS, the logical partition
sizes correspond to 1 ZByte and 30 GByte, respectively.
Fig. 15a and 15b illustrate the results. IPLFS never re-
cycles the filesystem blocks and keeps appending the
blocks throughout the experiment. On the other hand,
F2FS recycles the invalid filesystem blocks in round-
robin manner. We observe that IPLFS issues the discard
command a lot more frequently than F2FS does. This is
because F2FS issues discard command only when there
is no pending IO. In this experiment, F2FS rarely finds
that there is no pending IO.

6.3 Address Translation Overhead

Address Translation Latency. We examine the over-
head of address translation in Interval Mapping and page
mapping (Fig. 16a). We run FIO with four threads. They
perform random write on 10 GByte file. Interval Map-
ping yields 88% longer mapping latency than the page
mapping. This is because Interval Mapping performs
multiple index lookups for address translation. When
creating a new mapping entry, Interval Mapping exhibits
3.3× longer latency than the page mapping.
End-to-end Latency. We measure the micro-
benchmark performance under Interval mapping and
the page mapping. Fig. 16b shows the latencies of read
and write (direct IO) in FIO benchmark. The read la-
tency and the write latency of Interval Mapping and
page mapping are almost identical. This result shows
that the overhead of accessing the NAND flash and the
overhead of transferring the data blocks between the
host and storage device account for dominant fraction
of IO latency and FTL overhead is not significant.

6.4 Map Node Size
We examine the memory overhead of fixed-region map-

ping. We run fileserver workload with 50 threads. Each
thread creates, updates and deletes 2 MByte files.

Get Set0.00

0.25

0.50

0.75

Av
er

ag
e

La
te

nc
y (

us
)

0.32

0.65

0.17 0.2

Interval
Page

(a) FTL mapping latency
read write0

200

400

600

IO
 L

at
en

cy
 (u

s)

308

676

306

671Interval
Page

(b) Direct I/O latency.

Figure 16: FTL Overhead: Interval Mapping vs. page
mapping

 0

 25

 50

 75

 100

 0 2 4 6 8 10 12 14 16

P
(X

<
x

)
(%

)

Region Size (MB)

WARM DATA
WARM NODE

HOT DATA
HOT NODE

Figure 17: CDF of region size

 0
 10
 20
 30
 40
 50
 60

64K 256K 512K Min. Hole 1M 4M 8M 16M

T
re

e
 S

iz
e

 (
M

B
)

Region Size (Byte)

Figure 18: Mapping Tree size under varying region sizes

Region Size. We examine the IO volume associated
with write and discard. We also examine the size of holes
for each filesystem area (Table 3). The median hole size
varies widely subject to the area type. Median hole size
of the warm data area is 2860 KByte while that of the
hot data area is 8 KByte. IO’s for warm data area (write
and discard) account for dominant fraction of all IO’s
(99% of write, 99% of discard).

We examine the region size distribution (Fig. 17). Re-
gion size is set as the size of the smallest hole in the
associated mapping segment. For the warm data are,
3/4 of the region sizes are greater than 1 MByte. Sub-
sequently, most of the map nodes have sixteen or less
number of regions. Recall that the size of mapping seg-
ment is 16 MByte. The size of region directory accounts
for approximately 1% of the map node size. In map node
design, the size of the region directory is negligible.
Minimum Hole Size for region size. We compare
the sizes of the mapping trees when the region size is
fixed and when the region size is chosen dynamically to
the size of the smallest hole in mapping segment. Fig. 18
shows results. The mapping tree becomes the smallest
when we use the the minimum hole size as the region
size. For small region size (64 KByte), the tree size is
13% larger than the tree size when we use the minimum
hole size as region size. This is due to the increase in
the region directory size. In a map node with 64 KByte
region size, the region directory accounts for 13% of
the total size of the mapping tables. The mapping tree
size becomes larger when we use large fixed region size

Log type W/D volume (GB) Median (KB) 75% (KB) 90% (KB)

Warm Node 1.99 / 1.69 32 32 80
Warm Data 305.9 / 170.4 2860 6352 11764
Hot node 0.4 / 0.38 48 232 816
Hot Data 0.87 / 0.36 8 24 40

Table 3: Statistics on the hole size, Filebench fileserver
workload. Average file size: 2MByte, runtime: 1600s,
W/D volume: total volume of Write/Discard

USENIX Association 2022 USENIX Annual Technical Conference 749

 0

 40

 80

 0 200 400 600 800 1000 1200 1400 1600

T
re

e
 S

iz
e

 (
M

B
)

Time (s)

Compaction On Compaction Off

Figure 19: Mapping Tree size

(1 MB or larger) than when we use the minimum hole
size as a region size. This is because with the larger
region size, the fixed-region mapping fails to exclude
the mappings for invalid flash pages and the mapping
efficiency becomes worse.
Reorganizing the Map Node. We examine the ef-
fectiveness of map node compaction. We configure the
compaction period to 30s and a compaction ratio thresh-
old to 0.7. Total size of the files is 160GByte. When
the benchmark finishes, the active interval in the filesys-
tem partition corresponds 305GByte. Fig. 19 illustrates
the sizes of mapping trees in two cases: when the In-
terval Mapping periodically reorganizes the map node
and when it does not. Without compaction, the map-
ping tree size increases as the filesysem ages and reaches
over 80 MByte. This is because the active interval be-
comes larger and the Interval Mapping allocates new
map nodes as the active interval expands. With map
node compaction, the mapping tree size stays at around
40 MByte. Mapping table size remains almost the same
as the mapping table size for 160 GByte even though
the active interval expands to 305 GByte.

7 Related Works
IO stack largely consists of two layers: the host (filesys-

tem and block device layer) and the device (SSD). A
body of works try to migrate the FTL overhead from
the storage device to the host. They include DFS [24],
ParaFS [60], Application Managed Flash [39], and Or-
cFS [59]. In these works, the software overhead at the
host side increases; the host side software directly man-
ages the flash pages and performs essential managerial
activities such as garbage collection and wear-leveling.
Nameless Write eliminates the address translation layer
from the IO stack [62]. Migrating the device’s functional-
ity to the host has its cost. Flash storage needs expose its
physical nature, e.g. physical flash page location, page
size or block size, to the host. ZNS saves the device
from the FTL overhead [9, 20]. On the contrary to these
works, IPLFS aims at reducing the host side overhead,
the filesystem level garbage collection with reasonable
increase in the device firmware complexity.

IPLFS shares the same idea with DFS [24] in that
IPLFS separates the logical filesystem partition from the
physical storage capacity and fully exploits 264 logical
partition size. Despite of the similarity, the underlying

philosophies and the approaches of the two lie at the
other ends of spectrum. DFS migrates the garbage collec-
tion from the device to the host whereas IPLFS migrates
the garbage collection from the host to the device. DFS
introduces new indirection layer to separate the logi-
cal partition from the physical storage. Host side’s IO
stack becomes heavier to handle LBA-to-PBA mapping,
garbage collection, and etc. It requires the flash device
to expose physical details to the host. IPLFS does not re-
quire new layer nor any physical information of the flash
storage. Separating the logical partition from the physi-
cal storage, IPLFS becomes simpler and lighter-weight
than its original counter part, F2FS.

A number of works proposed to make the garbage
collection more efficient. Kim et al. [31] proposed to
distinguish the hot data and the cold data according
to the program context. Wu et al. [54] proposed to op-
timize background segment cleaning scheduler based
on Q-learning algorithm. Gwak et al. [19] optimized a
foreground segment cleaning. A few works proposed to
trigger background segment cleaning during system idle
time. [10, 22, 47] Lee et al. [37] proposed preemptive
garbage collection. Yan et al. [57] proposed copying valid
pages in victim block to another block so that the copies
handle IO operations to victim block.

To reduce the mapping table size, Kang et al. proposed
to use larger granularity mapping [26]. Zhou et al. [63]
increased the cache hit ratio of the page-level mapping
information by employing a two-level LRU list. Liu et
al. [42] proposed the FTL, which enables partial erase
operation in 3D NAND flash storage.

8 Conclusion
In this work, we propose IPLFS, a log-structured

filesystem for infinite partition. Separating the logical
filesystem partition size from the physical storage size
and making the logical filesystem partition size virtu-
ally infinite, we free the log-structured filesystem from
recycling the invalid filesystem blocks. To maintain the
mapping information for the prohibitively large logical
filesystem partition, we develop Interval-Mapping which
maintains the LBA to PBA mapping only for the actively
used filesystem region. With IPLFS and Interval map-
ping combined together, we relieve the log-structured
filesystem from the overhead of reclaiming the invalid
blocks, the garbage collection.
Acknowledgements We are deeply indebted to our
shepherd Youyou Lu for helping us to shape the final ver-
sion of this paper. We are also grateful to the anonymous
reviewers for their valuable comment and feedback. We
like to thank Jay Hyun for his inspiring comment at the
inception stage of this work. This work was supported
by IITP, Korea (grant No. 2018-0-00549), and by NRF,
Korea (grant No. NRF-2020R1A2C3008525).

750 2022 USENIX Annual Technical Conference USENIX Association

References

[1] crosshatch: switch userdata filesystem from ext4 to
f2fs. https://android.googlesource.com/dev
ice/google/crosshatch/+/a0d74ba2c0b943c637
0288b13ade0cf6c4868da2.

[2] Garbage collection semaphore in f2fs. https://
elixir.bootlin.com/linux/latest/source/fs/
f2fs/f2fs.h#L1706.

[3] Idle checking code in the f2fs discard procedure.
https://elixir.bootlin.com/linux/v5.11/s
ource/fs/f2fs/segment.c#L1548.

[4] SNIA Block I/O Traces. http://iotta.snia.org
/traces/block-io.

[5] Zoned Namespaces (ZNS) SSDs. https://zoneds
torage.io/introduction/zns/.

[6] Jens Axboe. Fio-flexible i/o tester synthetic bench-
mark. https://github.com/axboe/fio, 2005.

[7] Amir Ban. Flash file system, U.S. Patent 5404485,
Apr. 1995.

[8] Artem B Bityutskiy. JFFS3 design issues, 2005.
http://www.linux-mtd.infradead.org.

[9] Matias Bjørling, Abutalib Aghayev, Hans Holm-
berg, Aravind Ramesh, Damien Le Moal, Gregory R
Ganger, and George Amvrosiadis. ZNS: Avoiding
the Block Interface Tax for Flash-based SSDs. In
Proc. of 2021 USENIX Annual Technical Confer-
ence (ATC), 2021.

[10] Trevor Blackwell, Jeffrey Harris, and Margo Seltzer.
Heuristic cleaning algorithms in log-structured file
systems. In Proc. of 1995 USENIX Technical Con-
ference Proceedings, 1995.

[11] Edouard Bugnion, Scott Devine, Kinshuk Govil,
and Mendel Rosenblum. Disco: Running commod-
ity operating systems on scalable multiprocessors.
ACM Transactions on Computer Systems (TOCS),
15(4):412–447, November 1997.

[12] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. Real-
Time Garbage Collection for Flash-Memory Stor-
age Systems of Real-Time Embedded Systems.
ACM Transactions on Embedded Computing Sys-
tems, 3(4):837–863, November 2004.

[13] Melvin E Conway. A multiprocessor system de-
sign. In Proc. of the fall joint computer conference
(AFIPS), 1963.

[14] Brian F Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears. Bench-
marking cloud serving systems with YCSB. In Proc.
of the 1st ACM symposium on Cloud computing,
2010.

[15] Robert C Daley and Jack B Dennis. Virtual memory,
processes, and sharing in Multics. Communications
of the ACM, 11(5):306–312, 1968.

[16] H. Edelsbrunner. Dynamic Rectangle Intersection
Searching. Forschungsberichte: Institut für Informa-
tionsverarbeitung. Inst., 1980.

[17] Robert P. Goldberg. Survey of virtual machine
research. IEEE Computer, 7(6):34–45, 1974.

[18] Aayush Gupta, Youngjae Kim, and Bhuvan Ur-
gaonkar. DFTL: a flash translation layer employ-
ing demand-based selective caching of page-level
address mappings. ACM Sigplan Notices, 44(3):229–
240, 2009.

[19] Hyunho Gwak, Yunji Kang, and Dongkun Shin. Re-
ducing garbage collection overhead of log-structured
file systems with GC juornaling. In Proc. of 2015
International Symposium on Consumer Electronics
(ISCE), 2015.

[20] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and
Jooyoung Hwang. ZNS+: Advanced zoned names-
pace interface for supporting in-storage zone com-
paction. In Proc. of 15th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), 2021.

[21] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
Slacker: Fast distribution with lazy docker contain-
ers. In Proc. of 14th USENIX Conference on File
and Storage Technologies (FAST), 2016.

[22] Martin Jambor, Tomas Hruby, Jan Taus, Kuba Kr-
chak, and Viliam Holub. Implementation of a Linux
Log-Structured File System with a Garbage Collec-
tors. In Proc. of ACM Special Interest Group on
Operating Systems (SIGOPS), 2007.

[23] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee,
and Jihong Kim. Lifetime improvement of NAND
flash-based storage systems using dynamic program
and erase scaling. In Proc. of 12th USENIX Con-
ference on File and Storage Technologies (FAST),
2014.

[24] William K. Josephson, Lars A. Bongo, David Flynn,
and Kai Li. DFS: A file system for virtualized flash
storage. In Proc. of 8th USENIX Conference on
File and Storage Technologies (FAST), 2010.

USENIX Association 2022 USENIX Annual Technical Conference 751

https://android.googlesource.com/device/google/crosshatch/+/a0d74ba2c0b943c6370288b13ade0cf6c4868da2
https://android.googlesource.com/device/google/crosshatch/+/a0d74ba2c0b943c6370288b13ade0cf6c4868da2
https://android.googlesource.com/device/google/crosshatch/+/a0d74ba2c0b943c6370288b13ade0cf6c4868da2
https://elixir.bootlin.com/linux/latest/source/fs/f2fs/f2fs.h#L1706
https://elixir.bootlin.com/linux/latest/source/fs/f2fs/f2fs.h#L1706
https://elixir.bootlin.com/linux/latest/source/fs/f2fs/f2fs.h#L1706
https://elixir.bootlin.com/linux/v5.11/source/fs/f2fs/segment.c#L1548
https://elixir.bootlin.com/linux/v5.11/source/fs/f2fs/segment.c#L1548
http://iotta.snia.org/traces/block-io
http://iotta.snia.org/traces/block-io
https://zonedstorage.io/introduction/zns/
https://zonedstorage.io/introduction/zns/
https://github.com/axboe/fio
http://www.linux-mtd.infradead.org

[25] Dong Hyun Kang and Young Ik Eom. iDiscard:
enhanced Discard () scheme for flash storage devices.
In Proc. of IEEE International Conference on Big
Data and Smart Computing (BigComp), 2018.

[26] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and
Joonwon Lee. A superblock-based flash transla-
tion layer for NAND flash memory. In Proc. of
the 6th ACM & IEEE International conference on
Embedded software (EMSOFT), 2006.

[27] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Mo-
toda. A flash-memory based file system. In Proc.
of USENIX Technical Conference (TCON), 1995.

[28] Bum Soo Kim and Gui Young Lee. Method of driv-
ing remapping in flash memory and flash memory
architecture suitable therefore, U.S. Patent 6381176,
Apr. 2002.

[29] Jesung Kim, Jong Min Kim, S.H. Noh, Sang Lyul
Min, and Yookun Cho. A space-efficient flash trans-
lation layer for CompactFlash systems. IEEE Trans-
actions on Consumer Electronics, 48(2):366–375,
August 2002.

[30] Jung-Hoon Kim, Sang-Hoon Kim, and Jin-Soo Kim.
Subpage programming for extending the lifetime of
NAND flash memory. In Proc. of 2015 Design, Au-
tomation & Test in Europe Conference & Exhibition
(DATE), 2015.

[31] Taejin Kim, Duwon Hong, Sangwook Shane Hahn,
Myoungjun Chun, Sungjin Lee, Jooyoung Hwang,
Jongyoul Lee, and Jihong Kim. Fully automatic
stream management for multi-streamed ssds using
program contexts. In Proc. of 17th USENIX Con-
ference on File and Storage Technologies (FAST),
2019.

[32] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi
Hifumi, Seiji Kihara, and Satoshi Moriai. The
linux implementation of a log-structured file sys-
tem. ACM Special Interest Group on Operating
Systems (SIGOPS), 40(3):102–107, July 2006.

[33] Jaewook Kwak, Sangjin Lee, Kibin Park, Jinwoo
Jeong, and Yong Ho Song. Cosmos+ OpenSSD:
Rapid Prototype for Flash Storage Systems. ACM
Transactions on Storage (TOS), 16(3):1–35, July
2020.

[34] Hunki Kwon, Eunsam Kim, Jongmoo Choi, Donghee
Lee, and Sam H Noh. Janus-FTL: Finding the opti-
mal point on the spectrum between page and block
mapping schemes. In Proc. of the 10th ACM interna-
tional conference on Embedded software (EMSOFT),
2010.

[35] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A new file system for flash
storage. In Proc. of 13th USENIX Conference on
File and Storage Technologies (FAST), 2015.

[36] Junghee Lee, Youngjae Kim, Galen M. Shipman,
Sarp Oral, and Jongman Kim. Preemptible I/O
Scheduling of Garbage Collection for Solid State
Drives. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 32(2):247–
260, 2013.

[37] Junghee Lee, Youngjae Kim, Galen M Shipman,
Sarp Oral, Feiyi Wang, and Jongman Kim. A semi-
preemptive garbage collector for solid state drives.
In Proc. of IEEE International Symposium on Per-
formance Analysis of Systems and Software (IS-
PASS), 2011.

[38] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung,
Dong-Ho Lee, Sangwon Park, and Ha-Joo Song. A
log buffer-based flash translation layer using fully-
associative sector translation. ACM Transactions on
Embedded Computing Systems (TECS), 6(3), 2007.

[39] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu,
Jihong Kim, and Arvind. Application-managed flash.
In Proc. of 14th USENIX Conference on File and
Storage Technologies (FAST), 2016.

[40] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and
Jihong Kim. LAST: locality-aware sector transla-
tion for NAND flash memory-based storage systems.
ACM Special Interest Group on Operating Systems
(SIGOPS), 42(6):36–42, 2008.

[41] Henry Lieberman and Carl Hewitt. A real-time
garbage collector based on the lifetimes of objects.
ACM Communications, 26(6):419–429, 1983.

[42] Chun-yi Liu, Jagadish Kotra, Myoungsoo Jung, and
Mahmut Kandemir. PEN: Design and evaluation
of partial-erase for 3d nand-based high density ssds.
In Proc. of 16th USENIX Conference on File and
Storage Technologies (FAST), 2018.

[43] Jeanna Neefe Matthews, Drew Roselli, Adam M
Costello, Randolph Y Wang, and Thomas E Ander-
son. Improving the performance of log-structured
file systems with adaptive methods. ACM Special
Interest Group on Operating Systems (SIGOPS),
31(5):238–251, 1997.

[44] A. Palmer. SMR in Linux Systems. In Proc. of
2020 Linux Storage and Filesystems Conference
(VAULT), 2020.

752 2022 USENIX Annual Technical Conference USENIX Association

[45] Yubiao Pan, Yongkun Li, Huizhen Zhang, Hao
Chen, and Mingwei Lin. GFTL: Group-level
mapping in flash translation layer to provide ef-
ficient address translation for NAND flash-based
SSDs. IEEE Transactions on Consumer Electronics
(TCE), 66(3):242–250, April 2020.

[46] Chanik Park, Wonmoon Cheon, Jeonguk Kang,
Kangho Roh, Wonhee Cho, and Jin-Soo Kim. A
reconfigurable FTL (flash translation layer) archi-
tecture for NAND flash-based applications. ACM
Transactions on Embedded Computing Systems
(TECS), 7(4):1–23, July 2008.

[47] Dongil Park, Seungyong Cheon, and Youjip Won.
Suspend-aware segment cleaning in log-structured
file system. In Proc. of 7th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStor-
age), 2015.

[48] Eunhee Rho, Kanchan Joshi, Seung-Uk Shin,
Nitesh Jagadeesh Shetty, Jooyoung Hwang,
Sangyeun Cho, Daniel DG Lee, and Jaeheon Jeong.
FStream: Managing flash streams in the file system.
In Proc. of 16th USENIX Conference on File and
Storage Technologies (FAST), 2018.

[49] Mendel Rosenblum and John K Ousterhout. The
design and implementation of a log-structured file
system. ACM Transactions on Computer Systems
(TOCS), 10(1):26–52, February 1992.

[50] Margo I Seltzer, Keith Bostic, Marshall K McKu-
sick, Carl Staelin, et al. An Implementation of a
Log-Structured File System for UNIX. In Proc. of
USENIX Winter, 1993.

[51] Amir Ali Semnanian, Jeffrey Pham, Burkhard En-
glert, and Xiaolong Wu. Virtualization technology
and its impact on computer hardware architecture.
In Proc. of IEEE 8th International Conference on
Information Technology: New Generations (ITNG),
2011.

[52] Frank Shu. Data set management commands pro-
posal for ata8 acs2. https://studylib.net/doc
/7497677/non-volatile-cache-command-prop
osal-for-ata8-acs.

[53] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A flexible framework for file system
benchmarking. USENIX Login, 41(1):6–12, 2016.

[54] Chao Wu, Cheng Ji, and Chun Jason Xue. Reinforce-
ment learning based background segment cleaning
for log-structured file system on mobile devices. In
Proc. of 2019 IEEE International Conference on
Embedded Software and Systems (ICESS), 2019.

[55] Jian Xu and Steven Swanson. NOVA: A log-
structured file system for hybrid volatile/non-
volatile main memories. In Proc. of 14th
USENIX Conference on File and Storage Technolo-
gies (FAST), 2016.

[56] Gala Yadgar, MOSHE Gabel, Shehbaz Jaffer, and
Bianca Schroeder. SSD-based Workload Character-
istics and Their Performance Implications. ACM
Transactions on Storage (TOS), 17(1):1–26, 2021.

[57] Shiqin Yan, Huaicheng Li, Mingzhe Hao,
Michael Hao Tong, Swaminathan Sundarara-
man, Andrew A. Chien, and Haryadi S. Gunawi.
Tiny-Tail Flash: Near-Perfect Elimination of
Garbage Collection Tail Latencies in NAND SSDs.
In Proc. of 15th USENIX Conference on File and
Storage Technologies (FAST), 2017.

[58] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Ta-
lagala, and Swaminathan Sundararaman. Don’t
Stack Your Log On My Log. In Proc. of USENIX
2nd Workshop on Interactions of NVM/Flash with
Operating Systems and Workloads (INFLOW), 2014.

[59] Jinsoo Yoo, Joontaek Oh, Seongjin Lee, Youjip Won,
Jin-Yong Ha, Jongsung Lee, and Junseok Shim. Or-
cFS: Orchestrated file system for flash storage. ACM
Transactions on Storage (TOS), 14(2):1–26, 2018.

[60] Jiacheng Zhang, Jiwu Shu, and Youyou Lu. ParaFS:
A log-structured file system to exploit the inter-
nal parallelism of flash devices. In Proc. of 2016
USENIX Annual Technical Conference (ATC), 2016.

[61] Qi Zhang, Xuandong Li, Linzhang Wang, Tian
Zhang, Yi Wang, and Zili Shao. Lazy-RTGC: A Real-
Time Lazy Garbage Collection Mechanism with
Jointly Optimizing Average and Worst Performance
for NAND Flash Memory Storage Systems. ACM
Transactions on Design Automation of Electronic
Systems (TODAES), 20(3):1–32, 2015.

[62] Yiying Zhang, Leo Prasath Arulraj, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. De-
indirection for flash-based SSDs with nameless
writes. In Proc. of 10th USENIX Conference on
File and Storage Technologies (FAST), 2012.

[63] You Zhou, Fei Wu, Ping Huang, Xubin He, Chang-
sheng Xie, and Jian Zhou. An efficient page-level
FTL to optimize address translation in flash mem-
ory. In Proc. of the 10th European Conference on
Computer Systems (EuroSys), pages 1–16, 2015.

USENIX Association 2022 USENIX Annual Technical Conference 753

https://studylib.net/doc/7497677/non-volatile-cache-command-proposal-for-ata8-acs
https://studylib.net/doc/7497677/non-volatile-cache-command-proposal-for-ata8-acs
https://studylib.net/doc/7497677/non-volatile-cache-command-proposal-for-ata8-acs

A Artifact Appendix

Abstract
Our artifact consists of two parts: IPLFS and Interval

Mapping FTL. IPLFS is a log-structured filesystem with
Infinite logical partition. Interval Mapping FTL is flash
translation layer that maintains mapping for Infinite
logical partition.

Scope
This artifact can be used to validate all experiments

that measure throughput, latency and block trace in the
paper.

Contents
IPLFS artifact is implemented on the top of F2FS

in Ubuntu 5.11.0. The IPLFS artifact does not con-
duct garbage collection, and does not have metadata for
garbage collection, such as a block allocation bitmap (a
segment information table) and reverse mapping infor-
mation (segment summary area). To replace the block
allocation bitmap, discard bitmap is implemented in the
IPLFS artifact. The IPLFS artifact also conducts discard
logging to prevent storage leak. As specified in the paper,
the IPLFS artifact partitions infinite logical space into
seven areas.

Interval Mapping artifact is implemented on the top of
OpenSSD. The design of the Interval Mapping artifact
is three level tree, as written in the paper. The root
node, zone node, and map node are all implemented in
the artifact. We implement Expansion of root node and
Compaction of map node in the artifact. In the artifact,
there are total seven Interval Mapping trees to support
for multi-area partition layout of IPLFS.

Hosting
The IPLFS artifact is uploaded in Github reposi-

tory, https://github.com/ESOS-Lab/IPLFS. A branch
named ’IPLFS-stable’ contains IPLFS source code, and
IPLFS format utility (f2fs-tools). A branch named ’orig-
inal_kernel’ is vanilla kernel which is compared with
IPLFS for experiment in the paper.

The Interval Mapping artifact is uploaded in
Github repository, https://github.com/ESOS-
Lab/Interval_Mapping. A branch named ’main’
is the artifact mainly used for the experiments in the
paper. If you try measuring ’get’ and ’set’ latencies
of Interval Mapping FTL, please use branches named
‘exp-getlatency’ and ‘exp-setlatency’, which print out
the latencies of ’get’ operation and ’set’ operation,
respectively. A branch named ’expansion+compaction’

is Interval Mapping that conducts root node expansion
and map node compaction in the foreground.

Requirements
Interval Mapping FTL is built on Cosmos+ OpenSSD,

the PCIe-based SSD platform on which open source
SSD firmware can be developed. To operate the Interval
Mapping artifact, OpenSSD is required.

754 2022 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background
	Flash Translation Layer
	Lifespan of the Flash Storage
	F2FS, a log-structured file system

	Design Overview
	Design Philosophy
	Organization

	IPLFS
	Multi-area Partition Layout
	Metadata Design
	Discarding the Invalid Blocks
	Discard Logging

	Interval Mapping
	Design
	Mapping Interval and Active Interval
	Fixed-Region Mapping

	Evaluation
	Eliminating the Garbage Collection
	Discard Policy of IPLFS
	Address Translation Overhead
	Map Node Size

	Related Works
	Conclusion
	Artifact Appendix

