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Abstract

While there exist many consistency models for distributed
systems, most of those models seek to provide the basic guar-
antee of convergence: given enough time and no further inputs,
all replicas in the system should eventually converge to the
same state. However, because of Convergence Failure Bugs
(CFBs), many distributed systems do not provide even this
basic guarantee. The violation of the convergence property
can be crucial to safety-critical applications collectively work-
ing together with a shared distributed system. Indeed, many
CFBs are reported as major issues by developers. Our key
insight is that CFBs are caused by divergence, or differences
between the state of replicas, and that a focused exploration of
divergence states can reveal bugs in the convergence logic of
real distributed systems while avoiding state explosion. Based
on this insight, we have designed and implemented Modulo,
the first Model-Based Testing tool using Divergence Resync
Models (DRMs) to systematically explore divergence and
convergence in real distributed systems. Modulo uses DRMs
to explore an abstract state machine of the system and derive
schedules, the intermediate representation of test cases, which
are then translated into test inputs and injected into systems
under test (SUTs). We ran Modulo to check ZooKeeper, Mon-
goDB, and Redis and found 11 bugs (including 6 previously
unknown ones)

1 Introduction

The emergence of cloud-scale applications has driven the
need for distributed storage systems to support them. To
provide availability and scalability, those systems replicate
data across several replicas, which may be distributed in a
single datacenter or even globally across several datacen-
ters [1-5,32,39, 50,57, 62]. To tolerate network partitions
and delays, many of these systems adopt weaker-consistency
guarantees [58, 59], allowing them to replicate data asyn-
chronously. This means that clients connected to different
replicas may observe different states of the data. The exact
order and delay of concurrent operations on replicated data is

governed by a “consistency model,” which attempts to strike
a balance between intuitive behavior (favoring stronger con-
sistency guarantees) and scalability and partition tolerance
(favoring weaker guarantees).

Regardless of these differences, most of consistency mod-
els in practice guarantee a common property, which is that
given enough time and no further modifications to the data,
all replicas will eventually arrive at the same contents for
the data—something we call the convergence guarantee also
known as eventual consistency. However, distributed systems
are inherently designed to be femporarily inconsistent so
that they may continue to respond to requests, even as they
converge to a consistent state by replicating data among the
replicas. We call this temporary inconsistency divergence.
Yet, divergence can cause more than temporary inconsistency
in the presence of failures. Divergence in the presence of fail-
ures may also lead to conflicts, where different replicas have
incompatible states, which can only be resolved by truncating
or removing data from one or more of the replicas. While it
is not the sole cause, we find that a major cause of systems
failing to converge is defects in the convergence logic after the
failure recovery. Such bugs leading to convergence failures
are named Convergence Failure Bugs (CFBs).

Looking into bug databases of a couple of systems for
the period from 2010 to 2017, we found about 10 bugs that
are already reported and fixed by developers and external
users [23,31,33,34,51,55,56,60,64]. They are all marked by
developers as either “Blocker”, “Critical” or “Major” in terms
of severity. This demonstrates that CFBs are perceived by
developers as real, prevalent and important bugs to find and fix.
In some case, the convergence failure is noticed by developers
as visible to clients [31], which can directly cause clients to
make incorrect decisions leading to serious consequences.
Thus, a convergence failure can be crucial to safety-critical
applications collectively working together through a shared
distributed system.

To exercise distributed systems’ convergence logic, more
divergence than would naturally occur during regular use
needs to be generated. This paper presents Modulo, the first
Model-Based Testing tool that systematically explores differ-
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ent divergence states by alternately injecting events that cause
divergence and convergence into the real distributed systems.

Modulo overcomes limitations in previous solutions for de-
tecting CFBs in distributed systems. On one hand, distributed
systems model-checkers [27,29,35,41,42,44,52,61] aim
to provide formal verification of a distributed system, and as
such must ensure that they exhaustively explore the state space
of the system under test (SUT). To achieve exhaustive explo-
ration, they must tightly control all nondeterministic events
so as to drive the SUT through all possible states. Unfortu-
nately, tightly controlling all events leads to the well-known
“state-explosion problem,” as the number of states grows ex-
ponentially with the number of events that are controlled. To
reduce the severity of state-explosion, a smart and insightful
abstraction of target behavior is needed. None of existing
model-checkers has explored the state-space consisting of
divergence and convergence.

On the other hand, random testing approaches, such as
Jepsen [38], do not aim for formal verification but rather sim-
ply to find bugs, and thus they need not exhaustively explore
all states. This frees them from having to control all nonde-
terministic events. Instead, random testing approaches inject
a targeted set of external events (randomly of course) and,
rather than controlling all other events, allow the SUT to
randomly visit states depending on how events interleave nat-
urally during execution. Random testing approaches typically
do not record the states explored, so they cannot provide any
guarantee or measure of state-space coverage. Moreover, be-
cause they do not know which events are important, they may
not be able to provide a sequence of inputs that can reliably
reproduce the bug.

Modulo’s key contributions stem from our observation that
many CFBs arise from flaws in the convergence logic of dis-
tributed systems, and are orthogonal to other functions of the
system. Thus, CFBs can often be reproduced purely by par-
tially controlling only the few events that lead to convergence
and divergence. This partial control allows Modulo to sig-
nificantly reduce the severity of the state explosion problem,
while still enabling it to deeply explore different divergence
states of the SUT.

Different distributed systems have different techniques to
converge replicas after a failure. To abstract these differences
so that it can generalize across different systems, Modulo in-
troduces Divergence Resync Models (DRMs), which consist
of an Abstract Execution Model (AEM) and a Concrete Exe-
cution Model (CEM). The AEM describes abstract conditions
for convergence and divergence events. For example, systems
like ZooKeeper and MongoDB require quorum before they
can accept client requests that could cause divergence be-
tween replicas. The AEM for these systems thus specifies
the conditions under which the systems quorum will have
been achieved (i.e., the majority of replicas are available).
The CEM maps the AEM conditions, as well as divergence
and convergence events, to API calls for a specific SUT. Mod-

ulo uses the AEM to generate schedules of abstract events
that alternate between divergence and convergence and the
CEM to execute these schedules on the SUT to search the
convergence code of the system for CFBs.

We ran Modulo on ZooKeeper, MongoDB, and Redis as
SUTs and found 11 CFBs, including 6 new ones that had not
been found before. For each of these bugs, Modulo provides
a schedule of inputs that deterministically triggers the bug. To
find these CFBs, we used 5 DRMs—1 for ZooKeeper, 1 for
MongoDB, and 3 for Redis, which range from 72-782 lines
of code in size.

We made the following novel contributions:

* As far as we know, Modulo is the first systematic test gen-
eration system, specifically designed to discover CFBs.

* We introduce the concept of Divergence Resync Models
(DRMs) that inject events specifically designed to elicit
and discover the existence of CFBs.

* We design, implement and evaluate Modulo, a system
that uses DRMs to find CFBs in real distributed systems.

* We perform an empirical study to demonstrate the ef-
fectiveness of the proposed approach by integrating the
prototype to 3 mature open-source distributed systems:
ZooKeeper, MongoDB, and Redis. Modulo was able to
find several critical CFBs in them.

§2 gives the overview of divergence and convergence, the
core concepts of Modulo and DRMs, and provides an exam-
ple CFB that Modulo can find. §3 describes the architecture
of Modulo and the 5 DRMs we use in this study. We then
document our experience and empirical results of applying
Modulo to mature open-source distributed systems in §4. Sub-
sequently, we present further discussion on Modulo compared
to previous proposals in §5 and discuss related work in §6.
Finally, we draw our conclusions in §7.

2 Overview

2.1 System Model

We model a distributed storage system as a set of replicas,
each of which is a key-value store. In an idealized system, the
storage system consists of one replica, and each write would
transition the key-value store in the system from one state to
the next. However, in the distributed implementation of the
system, each write is applied to one of the replicas, and then
the distributed storage system asynchronously replicates the
write to the remaining replicas until every replica converges
to the same state. Thus, at any given time, there can be sev-
eral replicas that differ from our idealized single replica. Our
target system should manage updates and resolve conflicts to
maintain the convergence of replicas. That is, our proposed
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approach is not designed to test those systems allowing multi-
master updates with gossip protocols where the convergence
property is not guaranteed.

Our approach injects failures into the system-under-test to
drive it into corner cases. Failures are erroneous states where
synchronization between replicas is interrupted, so conver-
gence does not occur without reverting to the normal state
via failure recoveries. Failures may be caused by several rea-
sons, such as crash of replicas, suspension of replicas, and
links failures between replicas. After recovering from failures,
convergence should occur and replicas must have identical
structure in terms of write sequences contained in their log.
Regarding the convergence property, we focus on those sys-
tems that are partially synchronous, although there is nothing
stopping us from applying Modulo to eventually consistent
systems such as Cassandra, which is left as a future work.
Quorum-based systems we tested with Modulo require a quo-
rum to elect a leader, but may ingest writes expecting failures
will be recovered soon. In contrast, Redis does not use leader
election, so it does not require a quorum to start servicing
clients. It lets the sync source to replicate any changes down
to the sync targets recursively.

2.2 Divergence and Convergence

We formally define divergence as the total number of writes
that need to be applied across all replicas to make their key-
value stores equal to the single idealized replica. Convergence
is simply the complement of divergence (i.e., convergence =
—divergence), where the replicas are said to be converged
when divergence is zero. Resynchronization (resync) is an op-
eration implemented by distributed storage systems to achieve
convergence after a failed replica recovers. Resync reduces di-
vergence by replicating writes from a replica to the recovered
replica and may implement conflict resolution to eliminate
write operations that prevent the replicas from achieving con-
vergence. Conflict resolution is particularly complex as it
usually results in data loss, which storage systems seek to
avoid unless absolutely necessary.

Divergence occurs in the natural course of the operation of
a distributed system as writes are applied to replicas. How-
ever, under normal circumstances, the amount of divergence is
usually small, as systems aim to replicate writes fairly quickly,
subject to standard networking and processing delays. How-
ever, failures may further increase divergence. For instance,
replica crashes and network outages can prevent replicas from
replicating operations for an extended period of time. This
will trigger defects related to assumptions about the resources
needed to track outstanding operations or about the length of
time that replicas may be unavailable. Repeated failures may
result in replicas changing leader or master roles, which can
result in conflicts, allowing Modulo to exercise the conflict
resolution logic of distributed systems.

A simple example illustrating the concept of divergence

Client
© W(k, v0) W(k, v1) W(k, v2)

== Leader -> Failed delivery
X Failure B Recovery

A k:v0
B
C k:v0

Divergence

Convergence

Figure 1: Divergence and convergence. Replicas A, B and
C diverge their states upon failures of B and C. Since the
leader replica A is alive, the latest state of A can be replicated
to replicas B and C upon their recovery, resulting in the state
convergence.

and convergence is given in Figure 1. The divergence example
starts in an initial state where A is the leader replica and B
and C are non-leader replicas. At time @, 2 write of vO to k,
W (k,v0), is sent by a client to A, A applies the operation and
then replicates it to B and C. At time @ , B fails and, another
write, W (k,v1), is sent to A. Only A and C can apply the write,
thus there is some amount of temporary divergence among
replicas. At time © , C fails, and another write, W (k,v2), is
sent to A. Only A can apply the write, resulting in even more
divergence among the 3 replicas. Convergence can simply be
regarded as the decrease of divergence in the system. At time
@ , B recovers from the failure and rejoins the distributed sys-
tem. Most distributed systems implement resync procedures
that attempt to bring B up to date with the most recent state
on the other replicas. Thus, B can converge with A by repli-
cating W (k,12). At time @ , C recovers and resyncs with A
by replicating W (k,v2), resulting in full convergence among
the 3 replicas. Now, there is no divergence in the system. (i.e.,
all replicas have the same key-value stores).

2.3 An Example Bug

To illustrate the type of bugs Modulo will find, we give an
example of a new bug that Modulo discovered in ZooKeeper
version 3.4.11 [8]. ZooKeeper requires a quorum of replicas
to be online to operate, where quorum is defined as more than
one-half the total number of replicas. In each epoch, which
is a predefined period of time, the replicas in the quorum
elect one of them as the “leader.” All write operations are
serialized through the elected leader, and all other replicas
(called “followers”) replicate operations from the leader.
ZooKeeper replicas employ 2 mechanisms to save data
so that it can be recovered after a crash. First, the replicas
use a write-ahead transaction log that can be replayed after
a failure to recover the state of data that did not properly
persist. Transactions are appended into the log as they get
committed. Because all changes caused by transactions are
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Client @ W(k3, v8)

epoch6

® W(k5, v10)

% Bug: failed to
truncate the log

== Leader -> Failed delivery <«—» Resync
X Failure B Recovery [ ] Log
epoch7

]“ Symptom: v8 is
incorrectly restored

resync
TRUNC

N

resync
ASNAP/ i 0

-
VoV

ksvio @

k8 kx10] replayed

X+« -1
Snapshot { klive-vi

®

kl:vl kl:vl

k3:v3 k3:v3

k5:v10 k5:v10

[k5:v10] [ksx10] replayed

Figure 2: Running example (ZooKeeper Bug#1). The replica B fails to truncate the past log (k3: v8) upon recovery with the
SNAP resync (see, $2.3). To observe this bug, another failure and recovery step is required right after the bug is triggered (@).
Modulo successfully formulated the exact sequences of steps to trigger this previously unknown CFB.

sequentially logged, replaying transactions in the log will
restore the state of a replica. Second, replicas periodically
clear the transaction log and persist a snapshot of in-memory
data to disk, which can then be reloaded into memory after a
failure. Taking a snapshot of memory is considerably slower
than writing transactions into the write-ahead log as they
occur, so ZooKeeper only takes snapshots after the transaction
log has grown to some point or after resync following a failure
depending on the resync logic. For example, in ZooKeeper
3.4.11, taking snapshot occurs on followers if they resync with
a new leader via SNAP or by sending a truncation request,
which are further explained in following paragraphs. The
example is replica C taking a snapshot after the resync at time
@ in Figure 2.

ZooKeeper uses 2 mechanisms to resync replicas after repli-
cas have recovered from a failure. One mechanism is DIFF
resync, where another replica transfers all missing operations
from its transaction log to the recovered replica. The other
mechanism is SNAP resync, where another replica sends its
entire key-value store to the recovered replica. ZooKeeper
picks DIFF resync if the leader’s log contains all transac-
tions required for resync. However, this can lead to problems
as old log entries may be purged by an earlier snapshot. If
ZooKeeper’s resync logic determines the leader does not have
all required transactions in its log, then the SNAP mechanism
will be selected. For example, in ZooKeeper version 3.4.11,
when followers resync with the leader that does not have a
log containing entries that are newer than its snapshot, the
SNAP mechanism is used (e.g., SNAP resync at time © in
Figure 2).

The base case that can happen during the resync is replicat-
ing operations that have not been replicated to those replicas
recovered from a failure. Moreover, it may be necessary for
a recovering replica to truncate its local write-ahead log and
remove conflicting operations. During resync, a leader sends
a truncation request (TRUNC) to a follower. Conflicting op-
erations may exist if one replica had been the leader and
committed some operations that had not yet been replicated

to other replicas before failing, and another replica is subse-
quently elected as the new leader and commits another set of
operations, resulting in two conflicting sets of operations.

We illustrate the example bug in Figure 2. Suppose we
initially have replicas A, B and C and the epoch is at 4. Both
A and B have the same set of key-value pairs k1 : v1, k2 :v2,
k3 :v3, k4 : v4 and k5 : v5. Also, their log contains entries for
all writes creating the key-value set. C has the same key-value
set except for k1 : v6 and its log additionally contains the entry
for the write, W (k1,v6). Currently, A and B are up and C is
down. B is the leader of the epoch 4.

At time @ , A crashes and a write, W(k3,v8), is made,
which B accepts and commits ! Then, B crashes. At time @ ,
A and C restart and resync using TRUNC. C restores its key-
value set by replaying its truncated log and takes a snapshot.
Note that neither A nor C has seen the write, W (k3,v8), yet
at this point. Then, A and C crash and B and C restart. C
becomes the new leader. At time @ , because C has no log
entry newer than its snapshot, C resync with B using the
SNAP mechanism. Yet, C does not send a truncation request
to B, so B accepts and restores using the C’s snapshot but
fails to truncate the write, W (k3,v8), from its log, which is
the root cause of the bug. However, at this point, the bug is
not apparent yet. At time @ , B crashes and another write,
W (k5,v10), is committed on C. Then, C crashes and B and C
restart. Now, C becomes the leader. At time @ , B and C use
DIFF resync to replicate W (k5,v10) from C to B. At time @ ,
B replays its log and restores &3 : v8, while C still has &3 : v3.
Because of the failure to truncate the log entry for k3 : v8 on
B, the replicas believe they have converged when in fact they
have not, and the system fails to reach convergence.

This example illustrates several key features of the CFBs
that Modulo is designed to discover. First, a long series of very
specific steps is required to trigger the bug—far larger than
are likely to happen simply due to randomized stress testing.
The series of steps is essentially the alternating sequence of

'W (k2,v7) injected at the epoch 3 and W (k4,19) injected at the epoch 5
are not shown in the figure.
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Modulo Parameters: | | DRM: (O

- numOps AEM : ( 5 Verification Result

- numReplicas ( Y< 2 AX=BX=CX

; CEM | %)
T
Modulo__| \ CEr" System-Under-Test
l Schedule Files l ~ 1. CrashA
( Schedule Concrete 2, CrashC
Generator | Schedule 1 | | EXecutor 3. W(k1,v3)
_____ Bl - | -

AEM 1Schedule 2 | || Divergence: T[4 waitfor
~No : [0,1,0] Commit
AN c , 5. CrashB

. onvergence:

C =) )| [AC] 1. RestartA
) J : 5| 2- RestartC
AEM State CEM State 3. Wait for
Exploration Exploration Resync

Figure 3: Modulo Architecture. Gray boxes are input and out-
put of Modulo. Blue boxes are Modulo components. Yellow
boxes are DRM components.

convergence and divergence that causes the CFB to surface.
Modulo specifically targets the generation of such sequences
using DRMs, which we discuss in Section 3. Second, because
the sequence is very deep, it would be very difficult to find
such bugs through a naive search of the entire state space of
all the replicas. However, the root cause and nature of the bug
make it orthogonal to the detailed internal state of the replicas,
which can be influenced by internal events such as thread
interleaving and the order of lock acquisitions. Instead, it is
the generation of divergence and convergence events between
the replicas in ZooKeeper that triggers the bugs, which are
the events that Modulo seeks to explore. By focusing only
on controlling events related to divergence and convergence,
such as replica failure and recovery, Modulo is able to explore
deep sequences such as these without being constrained by
state explosion.

3 Modulo

As shown in Figure 3, Modulo consists of 2 core components:
a schedule generator and a concrete executor. To use Modulo,
the user provides a DRM and 2 parameters: numReplicas,
which indicates the number of replicas, and numOps, which
indicates the total number of writes that will be applied to
the SUT. Modulo then uses the DRM to produce a schedule
of divergence transitions (D —) and convergence transitions
(C —), which are then executed by the concrete executor on
the SUT. D — cause more divergence in a system while C —
cause convergence among available replicas. After executing
each schedule, the concrete executor waits for the SUT to be
quiescent after pre-configured time duration. Then, it checks
whether all replicas in the SUT have converged (i.e., have
identical state) by reading values of each key and compare
those across replicas. Finally, the result is recorded in a file
for more detailed analysis.

A DRM contains 2 subcomponents: an Abstract Execution
Model (AEM) and a Concrete Execution Model (CEM). The

AEM describes the conditions under which € — and D —
may take place. For example, an SUT may require a quorum
of replicas to be available before write operations will be
accepted and divergence may occur, which would be specified
in the AEM. AEMs describe such requirements abstractly in
terms of the AEM state, given in Table 1, such that a single
AEM may be used to test multiple SUTs. For example, both
ZooKeeper and MongoDB require quorums, so an AEM that
models quorums is used to test both, while an AEM that does
not model quorums may be needed to test systems that do
not rely on quorum. The output of the schedule generator
in Modulo is a set of schedule files, which are consumed by
the concrete executor. We describe this further in §3.3. The
concrete executor uses the CEMs to map C — and D — in
the schedules to concrete operations that drive a SUT into the
states dictated by the schedule. As such, CEMs are necessarily
specific to the SUT.

An AEM specifies a finite state machine of the system-
under-test and the CEM translates transitions in the AEM
into corresponding transitions on the system-under-test. The
user is required to abstract away unnecessary details in the
AEM to limit the state space being tested to interesting states.
The relationship between the AEM and the CEM can thus
be viewed as the AEM specifying the state space to test and
the CEM translating tests specified by that state space into
concrete tests to run on the actual SUT. Modulo exhaustively
explores the AEM’s finite state machine. Failures are detected
directly on the SUT when it fails to converge after a certain
amount of time. There are differences in the DRMs to test
each SUT differently. For instance, Redis’s DRMs need a way
to model the link failures and recoveries between pairs of
replicas, different from ZooKeeper’s and MongoDB’s DRM.

We describe the most generic form of AEMs and CEMs
below, which can be flexibly extended to more sophisticated
models. Table | and 2 are for the baseline AEM used for
ZooKeeper and MongoDB. Our baseline AEM abstract away
the role of replicas, but the leader is distinguished during
concrete execution of CEM to find out to which replica a
write should be injected. For more complex AEMs like the
one used for Redis, we need to extend states and transitions
of AEM to model the network link failures.

3.1 Abstract Execution Model

The AEM specifies a state machine, whose state space Mod-
ulo explores to produce the schedule of C — and D —. At
each state, Modulo systematically performs C — and D —
depending on whether the guard conditions specified in the
AEM are met or not. The guard conditions are boolean func-
tions over the state of the AEM. During D —, Modulo simu-
lates a client that sends zero or more write operations from
the sequence of write operations W : (wy|n € {0..numOps}),
where numOps is the parameter specified as part of the test
configuration. The term replicaState is a vector of length
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Variable Description

Transition Description

replicaState List of non-negative integer values. State of all replicas

that defines the latest write operation applied

onlineStatus  List of boolean values. Status of the replica indicating

if the replica is online or offline

Table 1: AEM State Description.

numReplicas, with each element indicating the index of the
latest write operation in W that a particular replica has ob-
served. The term onlineStatus is also a vector of length
numReplicas, which stores the status of each replica as ei-
ther online, meaning that the replica is available, or offfine,
meaning that the replica is unavailable because it has failed
for reasons such as a crash or a link failure.

Modulo performs C — and D — on the AEM according to
the transition descriptions given in Table 2. For D —, Modulo
fails zero or more replicas, followed by zero or more write
operations from the write sequence (though obviously there
should be either non-zero replica failures or non-zero writes).
For example, consider the replicaState of a 3-replica system,
which can be represented by a tuple [R4,Rp, Rc| with each
element corresponding to a replica’s replicaState. Recall that
the replicaState is the index of the latest write that the replica
has ideally replicated. Thus, a divergence transition that ap-
plies a write to replica A, which is replicated to replica B,
will change the replicaState from [1,1, 1], to [2,2, 1]. Because
replica C did not replicate the write due to a failure, its repli-
caState does not increase. For C —, Modulo returns one or
more replicas back to operation and initiates resync. In cases
where resync is automatic, the AEM will simply model all
online replicas as achieving the latest write index. However,
some systems, like Redis, allow manual resync between a
subset of replicas, in which case the AEM may explore states
with different subsets of replicas resynchronizing. In general,
if the type of resync or failure that can occur depends on the
abstract AEM state, then the AEM model will specify the type
of resync or failure for each C — and D — in the generated
schedules accordingly. If it does not, then the CEM will run
the SUT several times with the same schedule, trying out the
different SUT-specific failure and resync methods. The CEM,
which we discuss in §3.2, specifies many of the details on
how replica failures are caused and how Modulo can tell if
resync is complete.

Modulo’s schedule generator applies symmetry reduc-
tion [15] to remove schedules that have identical states. For
example, in a system with replicaState of [3,3, 1], where repli-
cas A and B have replicated up to write #3 while replica C has
only replicated up to write #1, failing replica A or replica B is
symmetrical, so Modulo will only produce one schedule for
both of those cases. One notable caveat is that some systems,
such as ZooKeeper, distinguish one leader replica from the
others. We can extend AEMs in a straightforward way by

convergence  replicaState: set each online replica’s write index
to the latest write that the replica can resynchronize to
onlineStatus: set one or more replicas to online
divergence replicaState: increase replica’s write index based on

number of writes applied
onlineStatus: set zero or more replicas to offline

Table 2: AEM Transition Description.

adding a state variable to track which replica is the leader, and
a leader and the non-leader will be considered not identical
for the purposes of symmetry reduction.

An AEM produces schedules for a CEM to interpret and
inject events to a SUT. The following is the schedule we used
to find our example ZooKeeper bug, which was generated by
using Q/C/Z-DRM (see §3.3) with the modulo parameters
numOps = 5 and numReplicas = 3. The example Figure 2
illustrates what happens between 3 and . Note that we use
integer values to indicate the degree for divergence but to iden-
tify replicas for convergence (i.e., O for A, 1 for B and 2 for C).

D —: Divergence, C —: Convergence

@ D — [0, 0, 1] // introducing divergence by making C
commit a write W (k1,v6) while other replicas are failed;
then fail C

@ C — [0, 1] // introducing convergence by recovering
failures of A and B and having them resync; C remains
failed

®D—10,1,0]

@ C — [0, 1] // epoch 4 begins; B becomes a leader

® D —1[0,1,0]// W(k3,v8) is committed on B

® C — [0, 2] // resync TRUNC; C takes a snapshot

@ D — [1, 0, 0] // skipped in the figure

C — [1, 2] // SNAP resync; truncation fails (Bug)
@D —10,0,11/ W (k5,v10) is committed on C

C — [1, 2] // resync DIFF; Bug manifests

A1) c— 0]

3.2 Concrete Execution Model

The purpose of a CEM is to translate the abstract C — and
D — in the schedules generated from an AEM into concrete
actions that can be performed on an SUT, to drive it down
the individual schedules. For example, a D — may indicate
that one of the replicas advances its write index while the
others do not, which the CEM may translate as failing 2
replicas and then injecting a write into the SUT. As such,
the concrete executor and CEM share some similarities with
concrete model-checkers, except that the Modulo’s concrete
executor only explores C — and D — sequences specified by
the schedules generated by the AEM, and thus only control the
aspects of the concrete state that map onto the abstract state
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of the AEM, namely whether replicas are online or offline,
and what writes are replicated by each replica.

In most cases, C — and D — can be mapped to a set of
SUT-specific APIs to write keys in the SUT and to check if
resync has completed. In some cases, CEMs may also need
to monitor log files to infer whether the certain aspects of
resynchronization, such as leader election, have completed.
Finally, in some extreme cases, we may need to instrument the
SUT itself to reveal such interfaces to the CEM. For example,
if we wanted to make the leader replica explicit when the
system does not provide such information, we can replace the
default leader election protocol with the one that can explicitly
report the result of the leader election to our tool. Different
SUTs have different requirements that must be met before
they can accept writes. For example, some systems require
a leader to be elected before they can ingest writes. These
requirements must also be encoded in the CEM so that writes
specified in the abstract schedule are correctly applied to the
concrete SUT.

For each type of transition specified by the AEM, the CEM
may have several ways of realizing that transition, allowing
multiple concrete test sequences to be generated from a single
abstract schedule. For example, some SUTs treat different
types of failures differently (i.e., replica crash vs a network
partition). The CEM may run the same schedule but select
a different failure type at each D —. Similarly, there can be
different options during C —. Another place where CEM may
have several options is what concrete set of writes, in terms
of key names and values, will be used to realize the abstract
writes in the AEM. In most cases, a set of unique values to a
small set of keys suffices.

Below we show how our Q/C/Z-DRM’s CEM in-
terprets and injects events into a SUT for realizing
divergence and convergence transitions to manifest
our example bug. setData (<k>,<v>) sets <k> to <v>.

To realize, D — [0, 1, 0]:

(D Crash A // no need to crash C, as it is already down
@ setData (<k3>,<v8>) to B

(3 Wait for commit on B

@ Crash B

To realize, C — [0, 2]:

(D Restart A

@ Restart C

(® Wait for resync completion

3.3 DRM Examples

Overview. Table 3 shows the description of DRMs we have
implemented to test ZooKeeper, MongoDB, and Redis in our
experiments. We name the DRMs according to the following
format: The first letter indicates whether the SUT requires a
quorum of replicas (i.e., more than one-half of the replicas
must be online) to receive write requests or not. Our DRM

models support both systems that require quorum (Q) and
those that are stand-alone (S). The second is how replica fail-
ures are injected in the model. For failure methods, Modulo
can forcibly kill replicas with the signal SIGKILL to simulate
crash failures (C), suspend replicas with the signal SIGSTOP
to simulate systems stalled due to a sudden burst of heavy load
(S), prevent replicas from communicating to simulate link fail-
ures (L) or decommission replicas from a cluster to simulate
replica replacement (D). The third is which SUT it is writ-
ten for, either ZooKeeper (Z), MongoDB (M), or Redis (R).
Models are named using the scheme <quorum_requirement>
[<failure_modes>/<SUT>.

Also, the user-specified portion of each DRM is presented
in Table 3. We had to manually write between 72 to 782
lines of code, which is the result of the effort trying to re-
duce the manual effort required for each DRM. We put the
majority of the code overlapped across DRMs into library
or template classes that users can use or extend. We believe
we can further reduce the number of codes to write manually.
Even for S/CL/R-DRM which required the largest codes for
us to write has a large portion of the code that can be further
implemented as a library or a template class. Therefore, we
think the manual effort required to use DRMs is not heavy
and it can become even lighter as the library and templates
get mature.

Methodology. In implementing DRMs, we learned a couple
of key lessons. First, one should write DRMs in a top-down
approach. Think about the most general behavior first. Then,
one can extend it by inheriting the most part while overriding
only for differences. By doing so, users can reduce the amount
of the code they need to write significantly. For instance, write
a DRM that injects only one type of failure first. Then, users
can write a DRM that can inject multiple types of failures by
reusing many lines of code.

Second, focus on the behavior that matters to find target
bugs. Users may have a specific type of CFBs they want
to find foremost. For instance, ZooKeeper has suffered from
errors in transaction log handling. To create more complicated
cases, crashing and restarting is important because transaction
log is backed by files where a new file is created everytime a
new epoch begins. However, focusing on crash failures may
not be effective for other systems that rely heavily on full
resync using a single transaction log file or that may always
use a snapshot resync. For those systems, exploring various
network partition failures may be more effective.

Third, pay attention to configuration parameters. Dis-
tributed systems rely on various configuration parameter val-
ues and their behaviors depend on them. For example, Redis
maintains a log of transactions failed replicas missed for a
certain timeout period in case a failed replica comes back.
Normally, this speeds up resync if the replica returns before
the timeout. Modelling divergence behavior to wait longer
than the timeout before triggering resync will cause the log to
be prematurely discarded and replication fail silently without
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attempting to use full resync or SNAP resync.
We now describe some interesting aspects of some models
we built in more detail below.

Q/C/Z-DRM. This model is used for ZooKeeper, which re-
quires a quorum of replicas to be online to start servicing
requests. This DRM only models crash failures. Since a quo-
rum is required, a D — is only allowed when enough replicas
to form a quorum are online, but at the same time C — are not
enabled when all replicas are online because there is no diver-
gence to resolve. This model simply uses kill -9 to send a
SIGKILL signal, simulating crash failures. Since a quorum is
required, the model is restricted in that it must ensure a quo-
rum of replicas is available before it can start injecting write
operations, otherwise the write operation will be rejected by
the SUT. Also, after C —, it needs to pause before executing
the next D — in order to ensure that resync is complete. In
ZooKeeper prior to version 3.5, log messages are scanned to
confirm the existence of a leader that guarantees the resync
completion. As of 3.5, it is not the case, so we use timeout.

Q/C/M-DRM. We reuse the same AEM as the Q/C/Z-
DRM’s. This demonstrates how AEMs can be reused for
different SUTs. To confirm the resync completion, we use
an MongoDB API call to query the internal document,
“replSetGetStatus,” to retrieve the timestamp of the lat-
est transaction committed on each replica. Then, we wait until
those timestamps of every replica becomes same. In case
replicas never converge, potentially due to a CFB, it uses an
internal time out.

S/S/R-DRM. This DRM does not require a quorum to start
servicing clients. It models a chain replication where any
replica can become a sync source and a sync target °. Any
write committed by a sync source will be replicated to its
sync targets. Sync targets cannot have more than one sync
source, but sync source can have multiple sync targets. This
DRM considers suspend failures instead of crash failures.
Also, this DRM starts with an initial state where no replica
is connected with another replica. For recovery, we check if
the replica is connected with another one and, if not, then
we establish new links with other replicas. This model uses
kill -STOP and kill -CONT to suspend and resume Re-
dis processes, respectively. To confirm the completion of
resync, this model employs the hybrid of 2 methods. First, it
uses the info API call to read the master_link_status,
master_sync_in_progress, aof_rewrite_in_progress
and rgb_bgsave_in_progress variables that indicate
whether resync is complete. Second, we found that just rely-
ing on these variables can cause the CEM to miss some cases
when resync is complete. Thus, the CEM also uses a timeout
to ensure forward progress. We believe this reduces unneces-
sarily long timeout, and demonstrates how flexible Modulo

2See:  https://redislabs.com/ebook/part-2-core-concepts/
chapter-4-keeping-data-safe-and-ensuring-performance/
4-2-replication/4-2-3-masterslave-chains/

can be. Unlike ZooKeeper and MongoDB where resync is
automatically triggered by recovering failures, Redis does not
automatically trigger resync after a new replica joins. Instead,
Redis requires a slaveof API call to be explicitly invoked to
trigger resync. Thus, this CEM explicitly has replicas estab-
lish links between sync sources and a sync targets using the
API call, as specified in schedules by its AEM.

S/L/R-DRM. This DRM models link failures only, causing
a replica stop replicating data from its sync source. When it
recovers a partitioned replica, it considers all possible scenar-
ios of re-establishing replication links. This model simulates
link failures using the Redis APl command slaveof no one,
which tells a replica that it has no sync source, causing it to
stop replicating data from its sync source. When a link is
re-established, the slaveof API is used.

S/CL/R-DRM. This model uses both crash and link failures.
In addition, C — can pick one of 2 kinds of resync strategies.
One is online resync and the other one is offline resync. Online
resync is a built-in resync mechanisms of Redis that gets
triggered by re-establishing links between sync sources and
sync targets. Offline resync, on the other hand, is a manual
resync procedure that can be performed by an administrator.
An administrator may manually copy the snapshot of a sync
source to a sync target and then may have the sync target start
off on the snapshot copy. Because, it considers both types
of failures, it generates a larger state-space than the previous
AEMs.

3.4 Implementation

Modulo is implemented in Java and comprises roughly 8.4K
lines of code. Schedule generation is implemented in about
281 lines of code, and concrete execution takes about 766 lines
of code. Our DRMs total 7.3K lines of code where the AEMs
and CEMs consist of 2.8K and 4.6K lines of code, respectively,
including DRM examples, a library and templates.

A significant part of the DRM implementation consists
of SUT log parsing, API interaction and analysis code to
infer the state of SUT replicas. To give a concrete example,
ZooKeeper records whether a replica is a leader or not in its
log message file as follows:

LEADING - LEADER ELECTION TOOK - 230
Follower sid: 0 : info
Synchronizing with Follower sid: O

Similarly, a follower replica will log the following messages:

FOLLOWING - LEADER ELECTION TOOK - 217
Resolved hostname: 127.0.0.1 to address:
Getting a diff from the leader 0x100000009

Thus, the DRM can scan log message files of ZooKeeper look-
ing for messages containing either LEADING or FOLLOWING
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Name AEM CEM Lines of Code
(Parameters) (AEM/CEM/Total)
Q/C/Z-DRM Only considers crash failures. Using kill -9 to send SIGKILL for crash failures. USER 54/59/113

(numOps = {1..5},
numReplicas = {3..5})

C — ensures the quorum exists before D —.
Crashes all replicas at the end of D —

Confirm the quorum exists before writes. LIB 339/620/959
Using log scanning to confirm the leader for versions

before 3.5, but, as of 3.5, relying on timeout.

Q/C/M-DRM
(same as above)

Same as Q/C/Z-DRM

USER 54/117/171
LIB 339/907/1246

Using an API to retrieve “replSetGetStatus”
and compare timestamps of the last transaction
on each replica to wait for resync completion

S/S/R-DRM
(numOps = {1..2},
numReplicas = {4})

Only considers suspend failures.

Considers all replicas initially partitioned.

As recovering suspend failures, establish links
between the recovered replica and an online
replica.

USER 33/39/72
LIB 955/1240/2195

Using kill -STOP and kill -CONT to simulate
suspend and resume. Using the ‘info’ API and
timeout to wait for resync completion. Using
the ‘slaveof” API to trigger resync

S/L/R-DRM
(numOps = {1},
numReplicas = {3})

Only considers link failures between
an arbitrary pair of replicas.
Considers replicas initially connected
in a single ‘slave chain.’

The ‘slaveof” API is used for link failures
and recoveries.

Initially, forming links as a single

slave chain.

USER 0/110/110
LIB 955/1240/2195

S/CL/R-DRM
(numOps = {1,2},
numReplicas = {2})

Considers both link and crash failures.
Considers two types of resync strategies:
online resync and offline resync.

USER 405/377/782
LIB 955/1240/2195

For the offline resync strategy, a script
copying over snapshots and starting up
a replica with the snapshot is used.

Table 3: The summary/comparison of DRM Examples. The naming convention indicates the quorum requirement, failure modes,
and the target SUT. Below the name, we also present modulo parameter values we used. AEM and CEM give more detailed
descriptions of each subcomponent of the given DRM example. Only the differences of each DRM compared to the one above is
specified. The rightmost column shows the lines of code (LOC) for user-specified portion of DRMs (USER) and for a library and
templates users use (LIB)—only the part directly interfacing with user-specified portion is counted. Since each DRM may use

different template, there can be difference in LOC for LIB.

indicating which role they have switched to. The DRM needs
to keep track which replica is the leader in order to success-
fully inject write operations to cause divergence, because only
the leader replica can ingest write operations.

4 Evaluation

We present our results from running Modulo on 3 mature,
open-source, distributed storage systems: ZooKeeper, Mon-
goDB, and Redis.

4.1 Bug Discovery

In Table 4, we summarize the CFBs found and tabulate the
time Modulo took to find each of the bugs, as well as the num-
ber of transitions of the schedule manifesting the bug. More
detailed description is provided in Appendix A. Those bugs
labelled with “New!" had not been reported until we discov-
ered. Our evaluation study has been conducted between 2017
and 2020— ZooKeeper Bug #1 and ZooKeeper Bug #2 were
found in 2017, while ZooKeeper Bug #3, ZooKeeper Bug #4,
and ZooKeeper Bug #5 were discovered in 2020. We note that
some bugs are quite complex, requiring a specific sequence
of more than 10 transitions to trigger the bug. Also, DRM
state space is evaluated in terms of the number of schedules
generated for different DRMs and different modulo parameter

values. Lastly, we show the state coverage measurement over
time for the setting used to test the most recent ZooKeeper
version.

4.2 Testing Performance

Table 4 also shows how much time our prototype took to find
each bug mentioned above. The performance was measured
on a machine with an 2.83GHz Intel Core2 Quad CPU and
8GB of RAM. We found that the limiting factor for the testing
speed of Modulo is (1) the speed of the underlying distributed
system and (2) how easily Modulo can infer that the system
has converged after a C — so that it can inject a D —. In
general, distributed systems do not prioritize speed during
replication operations, and the lack of interfaces to infer when
they are done can lead to slower testing as in the case of
MongoDB. Without an interface that allows the CEM to tell
if convergence had been achieved, Modulo had to check the
timestamp of the keys on every replica to see if they were
the same. In addition, MongoDB can take a long time to
achieve convergence, forcing the CEM to use a very high
timeout value (10 minutes in our experiments). In contrast,
the CEMs for ZooKeeper and Redis can infer that convergence
has occurred in other ways that do not require either checking
or a timeout. We believe it should be possible to modify
MongoDB to allow Modulo to infer whether convergence has
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Bug ID DRM Root Cause Elapsed  Time/ # of
Time Schedule  Trans.

ZooKeeper Bug #1(New!) [8] Q/C/Z-DRM Fail to truncate operations due to missing invocation 11 hours 33 sec 11
ZooKeeper Bug #2(New!) [9] Q/C/Z-DRM Fail to truncate operations due to file handling mistake 2 hours 39 sec 11
ZooKeeper Bug #3(New!) [10]  Q/C/Z-DRM Fail to replicate operations due to an incomplete log 23 min 33 sec 7
ZooKeeper Bug #4(New!) [11]  Q/C/Z-DRM Fail to truncate operations due to a pointer handling mistake 47 min 30 sec 10
ZooKeeper Bug #5(New!) [12]  Q/C/Z-DRM Fail to truncate operations due to missing invocation 20 hours 37 sec 10
MongoDB Bug #1 Q/C/M-DRM  Fail to truncate operations due to incomplete timestamp information 18 min 6 min 3
MongoDB Bug #2(New!) [36]  Q/C/M-DRM  Fail to replicate operations due to incomplete protocol design 4 hours 5 min 5
Redis Bug #1 [25] S/S/R-DRM Fail to invoke snapshot sync due to incomplete protocol design 6 hours 6 min 6
Redis Bug #2 [53] S/CL/R-DRM  Fail to replicate operations due to lacking resync related information 11 min 14 sec 4
Redis Bug #3 [53] S/CL/R-DRM  Fail to replicate operations due to lacking resync related information ~ 2 min 6 sec 3
Redis Bug #4 [22] S/L/R-DRM Fail to truncate operations due to incomplete protocol design 2 min 33 sec 2

Table 4: CFB Analysis Summary.

DRM numOps  numReplicas  # of Schedules
Q/C/Z 1 3 6

2 3 80

3 3 1035

4 3 13381

5 3 172993

3 4 3428

3 5 54655
S/S/R 2 4 13586
S/L/R 2 3 263
S/ICL/R 1 2 8

2 2 96

Table 5: DRM State Space Size (# of Schedules).

occurred without the needing to rely on timeouts and intend
to explore this in the future.

4.3 DRM State Exploration

Table 5 shows several examples of the DRM state space size
in terms of the number of schedules generated. As the number
of numOps or numReplicas increase, the number of sched-
ules generated quickly grows. The largest number of sched-
ules were generated for Q/C/Z-DRM with numOps = 5 and
numReplicas = 3 which we used to test ZooKeeper 3.4.11
and found the example bug. Nevertheless, as we reason in
§5, the state space for Modulo to search is much smaller than
explicit state model-checkers.

In Figure 4, we measured how state space coverage is in-
creased during our evaluation finding bugs in the version
of ZooKeeper, 3.7. We fixed numReplicas at 3 and varied
numOps from 1 to 4, which increases the time taken. For
each numOps setting, we ran tests separately one after an-
other. Bugs can be found by schedules with no particular
probability distribution. Considering this, it is important to
run each test exhaustively not to miss any bug. Our design
choice to split AEM and schedule generation from the con-

ZooKeeper Bug #4 x
ZooKeeper Bug #5 *

State Coverage (%)
O

0 I —
0.001 0.01 0.1 1 10

Cumulative Time (hr)

Figure 4: DRM State Coverage graph. We show the state
coverage measurements from testing ZooKeeper 3.7. X-axis
shows the cumulative time and Y-axis shows the state cover-
age ratio based on the number of schedules executed. Also,
we mark when we found ZooKeeper Bug #4 and ZooKeeper
Bug #5.

crete test execution by CEM also enables easy parallelization.
Indeed, we when parallelize our tests, we get a linear increase
in throughput.

5 Discussion

Modulo is designed to detect CFBs efficiently by only ex-
ploring system states that are relevant to its DRMs, which
only model states and events relevant to C — and D —
state transitions. In contrast to traditional system model-
checking [27,29,35,41,42,44,52,61], Modulo is less complete,
meaning it may miss bugs that manifest due to events like lock
acquisition and thread interruption, as these are not captured
by C — and D — in DRMs. However, by abstracting away
states and events not relevant to DRMs, Modulo is able to
explore considerably deeper bugs that, in some cases, take 10
or more transitions to manifest. Furthermore, Modulo finds
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these bugs in real, concrete systems rather than in abstract
models, making reproduction and confirmation of bugs much
simpler.

Compared to distributed systems random testing, such as
that employed by Jepsen [38], Modulo is more systematic,
complete and exhaustive. Random testing can find many cru-
cial bugs by randomly injecting external events; however,
it is neither systematic, complete nor exhaustive for the fol-
lowing reasons. First, it does not model how the underly-
ing distributed system works, including key concepts such
as divergence and convergence. Hence, random testing may
miss corner cases regarding divergence and convergence. Sec-
ond, fuzzing does not control nondeterministic events. For
instance, without delaying the timing of a crash-failure in-
jection, a replica may crash before ensuring a write injected
before the crash is committed. Third, random testing cannot
reproduce bugs the way Modulo can, making the analysis and
reproduction of bugs more challenging.

Modulo significantly reduces the severity of state explo-
sion by taking a simple abstract model and mapping it onto
transitions on a real concrete system. This allows Modulo to
find deeper bugs than systems that attempt to explore more
complex state spaces. To illustrate, Modulo’s AEM’s typically
model 3-replica systems with between 1 and 5 writes. Before
each write in the sequence, a replica can typically (1) do
nothing, (2) receive or replicate the write operation, or (3) fail-
ure/recovery (e.g. crash/restart). Since replicas may have an
arbitrary number of transitions where they may do nothing, we
typically cap the maximum number of transitions in a replica
an AEM may have at around 8. Thus we can estimate a rough
upper bound for the state space of such a system as 3(8x3)
or roughly 300 million. In practice, the number of reachable
states is far less, because replicas can accept writes only when
they are online, and other AEM-specific restrictions such as
quorum requirements further limit the transitions that replicas
may execute. In practice, Modulo’s targeted approach leads to
have AEMs produce anywhere from few schedules to tens of
thousands of schedules, which is about 10 to 10° of states. In
comparison, models checked by explicit state model checkers
may contain more than 10%° or even 10?2 states [17]. Our
relatively small DRMs mean that Modulo is able to explore
more scenarios than traditional model checkers could in given
time, increasing the likelihood of finding target bugs, without
exploring states that are irrelevant to find those specific types
of bugs.

Meanwhile, we also note that a targeted approach can be
seen as a disadvantage for finding many of various types of
bugs. Indeed, as Modulo is targeted to find a specific type of
CFBs, the number of bugs we found from our evaluation is
relatively low. Nevertheless, we envision that the number of
bugs found by Modulo can be increased, as developers who
are more expert of each SUT can develop a larger collection
of DRMs that are more effective to explore corner cases.

We acknowledge that Modulo does depend on domain

knowledge of the system-under-test to specify DRMs, and
this would also be required to apply Modulo to other types of
distributed systems. In our experience, a single user without
previous experience may conservatively take about 2 weeks
to learn about the system-under-test and 2 weeks to write the
first DRM. When we first applied Modulo to Redis, using
the same model as ZooKeeper and MongoDB did not lead to
bugs, because Redis, started as an in-memory key-value store,
has a simpler persistent storage mechanism. Subsequently,
we found exploring suspend or link failures enabled Mod-
ulo to trigger more complex functionality. Modulo’s method-
ology, abstraction and concrete execution, is not necessar-
ily restricted to key-value stores but can be applied to other
distributed systems. Paxos-based systems can be effectively
tested using Modulo by modelling message/thread interleav-
ing alongside failure injections.

Our main limitation is that the schedules generated by the
abstract model must be run on the real SUT, which executes
much slower than an abstract model would. In addition, many
operations require pauses and timeouts before they can com-
plete. For example, a system may not consider a replica failed
until a certain time has passed, and leader election must com-
plete after replicas recover before writes can be ingested by
the system. Since they are not always possible to avoid, in
practice we find that these timeouts are the ultimate limit on
how fast Modulo can find bugs. We think virtualizing clocks
and fast-forwarding time may help [42].

6 Related Work

Distributed Systems Testing. Some previous proposals for
distributed systems testing employ state-space exploration.
However, their state-spaces are more focused on interleaving
concurrent internal events, such as thread scheduling or net-
work message delivery [20,28]. Also, previous work presents
a tool for injecting network-partitioning failures for cloud sys-
tems [7], yet it does not inject crash failures, and it requires an
OpenFlow-capable hardware component to simulate network-
partitioning. Jepsen is an open-source testing tool that injects
various types of failures into distributed database systems [38].
However, unlike Modulo, Jepsen randomly generates inputs,
which implies that the state space for input sequences cannot
be efficiently reduced without missing corner cases and, in
some cases, reproducing bugs may be very difficult due to
the nondeterministic ordering of events that Jepsen does not
control. Furthermore, Jepsen does not record any information
about the state exploration, therefore it cannot provide any
guarantee about the state-space coverage. There has been a
work that focuses on interleaving low-level file system opera-
tions across distributed replicas along with crash failures [6],
but it is limited to crash injection only and does not test the
divergence and convergence behaviors of distributed systems.

Model-based testing systematically derives test cases from
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an abstract model of the SUT [14, 37,45, 48, 49, 54]. Dalal
et al. [18] devised a method that can generate various input
parameter values for tests from the abstract model called the
Test Data Model. A technique that can derive test cases for
system testing from an UML statechart was developed by
Offutt et al. [47]. Also, Gargantini et al. [24] propose to use
model checking to derive test cases from an abstract model.
In addition, Andrews et al. [13] came up with a technique that
models a web application as a finite state machine to generate
tests. Also, Yang et al. [63] applied model-based testing to
find security flaws in about 500 implementations of OAuth
2.0. More recently, Davis et al. [19] used model-based test-
ing to ensure specification-implementation conformance of
distributed systems. However, previous proposals for model-
based testing do not look for CFBs. Also, none of the existing
model-based studies test the divergence and convergence of
replicated distributed storage systems as the SUT.

Distributed Systems Model Checking. Model checking has
been extensively studied and used to prove the correctness of
complex systems and to find bugs in them. Clarke and Emer-
son [16] were the first to propose model checking, which
exhaustively explores the state space of abstract models spec-
ified in temporal logic. Dill developed a model checker called
Murphi [21], which is used to prove the correctness of various
systems, including distributed shared memory systems. SPIN
is another popular abstract model-checking tool [30]. More
recently, Lamport [40] developed TLA+, a specification lan-
guage, and TLC, a model checker for TLA+, which has been
used by Amazon, showing the practicality of model checking
in the industry. Nevertheless, abstract model-checking cannot
find bugs in implementations directly.

Concrete model-checking is used to employ an implemen-
tation as a model to explore directly. Musuvathi et al. [44]
proposed a concrete model-checker using implementations
as the model to verify. Godefroid [26] also proposed the
same idea around the same time. Killian et al. [35] devised
a technique that enables checking for not only safety prop-
erties but also liveness properties. Lin et al. [42] developed
a black-box concrete model-checker that does not need to
know about the source code by interposing events at the in-
terface layer between the target system and the underlying
operating system. Model checking not only proves the cor-
rectness of the system but also predicts if the implementation
execution is driving the system to faulty states, steering the
system execution away to prevent this [61]. Simsa et al. [52]
explored the generalization of concrete model-checking to
provide the flexibility for determining the level of controls
for nondeterminism. Recently, concrete model-checkers have
been improved to detect deep bugs by exploring scenarios
involving multiple failures [41,43]. Unlike Modulo, previous
concrete model-checkers explore various tightly controlled
sequences of concurrent internal events.

7 Conclusion

Modulo mitigates the traditional state-explosion problems
of systematic model-checking approaches to find CFBs by
abstracting away all states and state transitions that are not re-
lated to the concepts of convergence and divergence. Modulo
applies schedules derived from state explorations of small ab-
stract models of such systems to real distributed systems. Our
work identified several factors that lead to such bugs, which in-
clude (1) employing several resync or failure-handling mech-
anisms whose interactions are difficult to foresee, (2) hard
limits or inadequate designs for handling large amounts of
divergence, and (3) assumptions about length of time that
replicas may have failed and failures that span events like
leader transitions. While it is beneficial to generate counter-
examples that trigger the bugs on real systems, we find that
this also slows down the speed at which Modulo can find bugs,
as it must examine the state of the system at to determine if
it can inject the next input or not, and it must wait for the
distributed system itself to complete its replication operations
before adding divergence.
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A Bug Description
A.1 ZooKeeper Bugs

We discovered 5 new bugs in ZooKeeper by finding 2 new
bugs in version 3.4.11, 1 new bug in version 3.5.8 and 2 new
bugs in version 3.7.0. We reported them to the ZooKeeper
developers and reported bugs were designated as ZooKeeper
Bug #1, ZooKeeper Bug #2, ZooKeeper Bug #3, ZooKeeper
Bug #4 and ZooKeeper Bug #5 [8—12]. We got confirmation
for ZooKeeper Bug #1 and ZooKeeper Bug #3. ZooKeeper
Bug #1 is described in §2.3. All our experiments used 3 repli-
cas. Initially, all 3 replicas are online and synchronized with
a initial key-value set. Also, the Q/C/Z-DRM implementation
for ZooKeeper crashes all replicas after each D — and im-
plements C — by restarting replicas in the quorum, which
automatically triggers resync between each replica and the
elected leader.

As described earlier, ZooKeeper implements 2 different
resync mechanisms: DIFF resync and SNAP resync. Conflict-
resolution logic often fails to correctly truncate transaction
logs when SNAP resync is used, which results in persistent
inconsistency. This problem is further exacerbated by an ap-
parent reluctance on the part of the developers to truncate
transaction logs, perhaps out of a conservative preference
not to lose data unless absolutely necessary, which results in
cases where logs should have been truncated but were not.
Other complexities, such as using multiple log files instead of
a single log file and incorrect assumptions about those files,
contributed to other bugs. We saw similar bugs are recurring
and stem from the similar portion of the resync implementa-
tion. It shows that the complexity of the resync mechanisms
in ZooKeeper has been the major source of CFBs.

A.2 MongoDB Bugs

We run Modulo on MongoDB version 3.0.0 and discovered
2 bugs. One was fixed in later versions of MongoDB by
upgrading their replication protocol, Replica Set Protocol
version), from Protocol Version 0 to Protocol Version 1. The
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other one was new and we reported it on the MongoDB Bug
Database [36]. We used 3 replicas in the DRM and the same
initial state as we did with ZooKeeper.

The first MongoDB bug we discussed occurred because
the developers failed to anticipate the situation where a pri-
mary commits some operations that have not been replicated
to other replicas, operations only the primary is thus aware
of. Modulo found the bug and the bug had never previously
reported. However, the bug does not manifest on the latest
version of MongoDB. On further inspection, we found that
Replica Set Protocol Version 0, which had this bug, was re-
placed by Replica Set Protocol Version 1, which was imple-
mented in MongoDB version 3.2 and became the default
protocol after version 3.6. Thus, this particular bug was not
fixed directly by developers, but instead eliminated when the
afflicted protocol was replaced by a completely new protocol.
With Modulo’s bug report, we estimate that the bug could
have been fixed by changing 10’s of lines of code, but in-
stead was fixed when the entire protocol was re-implemented,
which required changing 12 files containing roughly 7.4K
lines of code.

The second bug demonstrates the perils of simultaneously
using several resync mechanisms. Having several resync
mechanisms allows MongoDB to select among them to im-
prove efficiency, but the mechanisms have slightly different
side effects, which, under the right circumstances, can com-
bine to put the system into an unrecoverable state.

A.3 Redis Bugs

Modulo found 4 CFBs [22, 25, 53] in Redis versions 2.8.0
and 4.0.0. Upon further examination, we found all had been
previously reported.

In Redis, crash failures always lead to the SNAP resync,
which simply replicates the entire state of the sync source to
the sync target. As mentioned earlier, this trivially guaran-
tees convergence since the sync target is now a mirror of the
sync source. To trigger more complex resync mechanisms,
Modulo required DRMs that could exercise other replication
and failure recovery mechanisms that Redis provides. Unlike
Zookeeper and MongoDB, this required the development of 3
different DRMs, and each DRM was responsible for finding
at least 1 CFB. We found it useful to have separate DRMs as
each DRM could separately exercise some of Redis’ features,
while combining them would have resulted in a larger state
space and more schedules to explore.

In terms of time and effort, Redis took the most: a novice
Redis user took a couple of weeks to initially write each
DRM, where most of the time was spent understanding Redis’
mechanisms and APIL. The Redis DRMs are also roughly 2-3
times larger and more complex than ZooKeeper and Mon-
goDB DRMs because replicas may specify any sync source
to resync from, giving more possibilities. Qualitatively, we
feel the effort to construct DRMs is similar to that of writing a

specification in a formal specification language such as TLA+,
which has been cited as an acceptable cost by developers at
Amazon [46]. The user needs to understand the important
properties of the system they want to test, and be able to ab-
stract them away from implementation details. In addition,
the user must also be able to reduce a system to a smaller
number of replicas and smaller number of keys to reduce the
state space. However, unlike model checkers such as TLA+,
which run on an abstract state machine representation of the
SUT, Modulo marries the advantages of a reduced state space
produced by the manual abstraction, with the ability to repro-
duce the bugs found using a counter-example of real inputs
that can be run on the concrete system.
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