
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

uKharon: A Membership Service for Microsecond
Applications

Rachid Guerraoui and Antoine Murat, École Polytechnique Fédérale de Lausanne
(EPFL); Javier Picorel, Huawei Technologies; Athanasios Xygkis, EPFL; Huabing Yan

and Pengfei Zuo, Huawei Technologies
https://www.usenix.org/conference/atc22/presentation/guerraoui

uKharon: A Membership Service for Microsecond Applications

Rachid Guerraoui1, Antoine Murat1, Javier Picorel2, Athanasios Xygkis1, Huabing Yan2, and Pengfei Zuo2

1École Polytechnique Fédérale de Lausanne (EPFL)
2Huawei Technologies

Abstract
Modern data center fabrics open the possibility of microsec-
ond distributed applications, such as data stores and message
queues. A challenging aspect of their development is to ensure
that, besides being fast in the common case, these applications
react fast to changes in their membership, e.g., due to recon-
figuration and failures. This is especially important as they
form the backbone of numerous cloud-powered services, such
as analytics and trading systems, trying to meet ever-stringent
tail latency requirements. As the microservices-oriented ar-
chitecture is the de facto standard for building cloud services,
a single user request translates to a wide fan-out of microser-
vices interactions sitting on the critical path. The outcome is
implacable: the traditionally uncommon events of reconfig-
uration and failures are exacerbated by the fan-out of com-
munication, making user requests commonly experience such
events and quickly impacting the tail latency of the service.

We present uKharon, a microsecond-scale membership
service that detects changes in the membership of applications
and lets them failover in as little as 50µs. uKharon consists of
(1) a multi-level failure detector, (2) a consensus engine that
relies on one-sided RDMA CAS, and (3) minimal-overhead
membership leases, all exploiting RDMA to operate at the
microsecond scale. We showcase the power of uKharon by
building uKharon-KV, a replicated Key-Value cache based
on HERD [24]. uKharon-KV processes PUT requests as fast
as the state-of-the-art and improves upon it by (1) removing
the need for replicating GET requests and (2) bringing the
end-to-end failover down to 53µs, a 10× improvement.

1 Introduction

State-of-the-art data centers form the backbone of today’s
online services, including social networks, search engines,
video streaming, e-commerce and banking platforms. The
ever-increasing popularity of online services and their perva-
sive role manifest in both huge-scale requirements as well
as stringent tail latency to guarantee smooth user interaction.

The tail of a cloud service refers to the latency of the slow-
est requests, and thus provides a limit to the maximum la-
tency experienced by the end user. Despite substantial efforts
in both hardware (e.g., InfiniBand/RDMA [40], RoCE [4],
FPGA [6], Gen-Z [28], CXL [50]) and hardware-accelerated
software [15, 21–23, 38, 52, 53, 55], keeping the tail short at
large scale is one of the most important challenges in the
cloud computing industry.

Dean et al. [9] shed light on the challenge of building
tail-tolerant software at data center scale. This challenge
mainly stems from the architecture of modern online services,
which are composed of a plethora of layers that communicate
frequently. Despite the scalability and cost benefits of such ar-
chitectures, each end-user request results in a wide fan-out of
interaction across tiers, each of which lies in the critical path
between the service and its reply to the user. The probability
of the traditionally rare reconfiguration and failure events is
thus multiplied by the fan-out of the communication. As a
result, user requests encounter such events more frequently,
which quickly impacts the tail latency of the services.

Existing systems are not capable of handling failures within
microseconds. Key-Value stores like Hermes [26], state ma-
chine replication [44] systems like Mu [2] and Hovercraft [29],
and transactional systems like FaRM [12], process requests
in a few microseconds in failure-free scenarios, but miss the
microsecond envelope when handling failures. Mu and Hover-
Craft take 0.5ms and 10ms respectively to failover. Aguilera
et al. [2] reported that Hermes has a failover of 150ms, while
FaRM mentioned ZooKeeper [20], a widely used distributed
coordination service that offers at-best millisecond failover,
for its membership management.

This paper builds on the observation that a crucial step
in making tail-tolerant microsecond applications is reacting
fast to failures. We thus propose uKharon1, a membership
service tailored to the microsecond scale. Apart from acting
as a distributed membership storage for (distributed) applica-
tions, uKharon monitors their nodes, detects their failures and

1“u” stands for microsecond, and Kharon is the carrier of the souls of the
dead in Greek mythology. It is pronounced ma · ka · ron.

USENIX Association 2022 USENIX Annual Technical Conference 101

changes their membership within 50µs. When uKharon itself
experiences a failure, it recovers within 64µs. uKharon partic-
ularly benefits applications with efficient state transfer which
can swap a faulty replica with a hot one in microseconds, for
example via shadow replication. It targets cloud services that
require seamless reconfiguration for fault tolerance and scala-
bility, such as indexes, datastores and transactional systems.

The key to the performance of uKharon is the careful de-
sign of three fundamental components, all of which leverage
RDMA to operate at the microsecond scale. First, uKharon
achieves microsecond failure detection by employing a multi-
level failure detector. It distinguishes the failures related to
the application (e.g., segmentation faults), from those related
to the kernel (e.g., driver faults), and failures related to the
hardware (e.g., RDMA NIC faults), employing for each a
different failure detector. Second, uKharon decides on mem-
berships using a consensus engine which solely relies on one-
sided RDMA verbs. This engine takes advantage of RDMA
Compare-and-Swap (CAS) to handle leader changes within
10µs. Third, uKharon provides membership leases that add
minimal overhead to the end application and last ∼20µs. As
a result, our membership service combines typically opposing
forces: having applications with low-overhead dynamicity in
failure-free scenarios and very fast failover upon failures.

We showcase the benefits of our membership service by
building uKharon-KV, a replicated in-memory KV-cache
based on HERD [24]. It uses uKharon to track the set of
nodes and react to node failures. We compare uKharon-KV
against HERD+Mu [2] (i.e., HERD replicated by Mu), a
system which—to the best of our knowledge—achieved the
lowest replication latency to date. Our evaluation shows that
uKharon-KV processes PUT requests as fast as HERD+Mu in
failure-free periods. Moreover, thanks to its leasing mecha-
nism, uKharon-KV manages to spare the replication of GET
requests, an optimization that is algorithmically impossible
in HERD+Mu. As a result, uKharon-KV GETs are 31.8%
faster than HERD+Mu’s. uKharon-KV, though, shines in the
event of failures, achieving an end-to-end failover of 53µs,
improving on HERD+Mu’s failover of 531µs by up to a factor
of 10.

In a nutshell, we present uKharon, the first ever member-
ship service suitable for the needs of tail-tolerant microsecond
applications. We make the following contributions:

• A multi-level failure detector for the microsecond scale.

• A consensus engine that relies on one-sided RDMA CAS
to change leader within microseconds.

• Microsecond leases that have minimal impact on the
performance of the end application.

• uKharon-KV, a replicated KV-cache which outperforms
the previous state of the art.

• The source code of uKharon is available at
https://github.com/LPD-EPFL/ukharon.

The rest of this paper is organized as follows: Section 2
introduces background concepts. Section 3 gives an overview
of uKharon’s design. Sections 4, 5 and 6 discuss the failure
detection, consensus and leasing components, respectively.
Section 7 reports on the performance of uKharon. Finally,
Section 8 discusses related work and Section 9 concludes.

2 Background

2.1 Membership Service
To achieve resilience, long-lived distributed systems must
be dynamic. Many systems [30, 31, 39, 45, 47] achieve dy-
namicity by relying on a coordination substrate, such as
ZooKeeper [20] or etcd [14]. Among the various services
(e.g., atomic locks, registers) these substrates offer, dynamic-
ity is fundamentally addressed via their membership service.

A membership services offers dynamicity both in graceful
executions and upon failures. In the former case, it serves join
and leave requests issued by processes that want to become
part of a distributed application or exit it. In the latter, it de-
tects process failures and reacts to them. All these events are
reflected through new configurations (called views or simply
memberships). Essentially, a membership service acts as a
storage of configuration information, keeping track of how
the set of processes evolves, and exposes this information.

Typically, membership services rely on consensus [16] to
establish a totally ordered sequence of views. Such services,
including Zookeeper and etcd, offer strong semantics as all
processes using the membership service transition through
the same sequence of views.

Consensus-based membership services also offer real-time
semantics. Apart from knowing the sequence of member-
ships, it is also important to know which is the (single) active
membership. To understand why this real-time property is
useful, consider the following example that incorrectly builds
a cache storage solely relying on the sequence of member-
ships: The cache serves READ and WRITE requests. Initially,
membership M1 = {S1} designates server S1 as responsible
for the cache (i.e., S1 stores it and serves requests). Eventu-
ally, a second membership M2 = {S2} replaces S1 with S2.
S2, being part of M2, proceeds with serving clients’ requests
and updates the content of the cache. At the same time, S1 is
unaware of M2 and continues serving clients’ requests as well.
As a result, a client that is also unaware of M2 and reads from
S1 will get stale data. This example demonstrates a violation
of consistency. It shows that total order of memberships does
not provide any real-time guarantees by itself.

Membership services provide real-timeness by making out-
dated memberships nonoperational. A commonly used mech-
anism to achieve this property is the use of a distributed
invalidation protocol. Another solution is to rely on leases.
With leases, processes are forced to periodically check the
active membership, execute operations in this membership,

102 2022 USENIX Annual Technical Conference USENIX Association

https://github.com/LPD-EPFL/ukharon

and abort operations that span over multiple memberships.
uKharon provides real-timeness via leases.

2.2 RDMA
Remote Direct Memory Access (RDMA) [49] is a networking
technology that allows processes to access the memory of a re-
mote machine without involving the CPU of the latter. By im-
plementing several layers of the networking stack in hardware
and relying on kernel bypass, RDMA achieves microsecond
inter-machine communication. It allows applications within
the data center to communicate in as little as 0.9µs [25]. This
technology is supported by different fabrics such as Infini-
band [49] and commodity Ethernet via RoCE [4].

Applications communicate over RDMA by relying on prim-
itives called verbs. There exist one-sided verbs that include
READ, WRITE and Compare and Swap (CAS) verbs and
two-sided verbs, such as SEND and RECV verbs. One-sided
verbs let a process read, write and apply atomic transforma-
tions to a remote machine’s memory without involving its
CPU. Two-sided verbs are similar to message passing and
involve both communicating sides. They let processes send
and receive memory buffers. Communication in RDMA can
notably occur over established Reliable Connections (RCs) or
over Unreliable Datagrams (UDs). While the former provide
FIFO semantics, the latter trade reliability for better perfor-
mance and support for message multicast [49].

2.3 Communication Model
uKharon is designed for data centers. It is safe under asyn-
chrony and live under partial synchrony [13]. That is, to
make progress, uKharon assumes a Global Stabilization Time
(GST), unknown to the processes, such that from GST on-
wards there is a bound ∆ on communication and processing
delays. This is is a realistic assumption, as data center fabrics
are not asynchronous in practice [3, 35, 54]. Additionally, our
system relies on bounded clock drift for safety, i.e., durations
are approximately the same across all processes. uKharon
also assumes crash-stop failures: processes may fail by crash-
ing, after which they stop executing. Finally, we assume
that network partitions, which affect uKharon’s liveness, are
eventually resolved by the data center administrators.

3 Design Overview

3.1 Architecture
Figure 1 gives an overview of uKharon. Our system, as a
membership service, runs on application nodes as well as a
set of dedicated nodes called coordinators.

Central to uKharon is uKharon Core, a single-threaded li-
brary that hosts monitoring functionalities of the membership
service. This includes detecting failures of member nodes

Application node Coordinator

RDMA-exposed
memberships (views)

E
na

bl
e

 d
ea

db
ea

t

M1 ...M2

Join
Leave

Lease
active
view

(from broadcasts)

uKharon Core
uKharon Core

while is leader:
 upon join/leave/failure
 propose membership
 broadcast membership

Process cleanup
broadcast failure

Application logic

Figure 1: Overview of uKharon

(including coordinators), listening for failures and new mem-
berships, as well as renewing leases. The application receives
these events via thread-safe accessors: a stream of failures,
a stream of memberships and a method Active(M)→ bool
which checks whether a given membership M is active.

The generation and storage of memberships is delegated
to coordinators. Coordinators achieve fault tolerance through
consensus. One of them is the leader, which processes
join/leave requests from both application nodes and coor-
dinators, proposes new memberships and broadcasts decided
memberships which are picked up by the uKharon Core in-
stance running on every node. The rest of coordinators help
the leader decide and replicate the sequence of memberships.
Finally, coordinators assign each member a unique identifier.

Running uKharon Core on both application nodes and co-
ordinators helps bootstrap the membership service. uKharon
Core learns about the new memberships from coordinators,
but coordinators require the membership service to learn
about each other. Similarly, coordinators rely on uKharon
Core to detect failures of application nodes or themselves.

Part of uKharon’s failure detection logic resides in the ker-
nel, outside of uKharon Core. It consists of a kernel module
hooked to Linux’s process cleanup routine. This module can
be enabled by the application logic and broadcasts a failure
notification (called deadbeat) when the application crashes.

New memberships are merely broadcast by coordinators,
putting the burden of detecting the active membership to
the application nodes. uKharon Core is responsible for
bringing real-timeness to applications. It reads the RDMA-
exposed memberships at a majority of coordinators to deter-
mine whether a membership has been superseded by a new
one or whether it is still active. The active membership is
leased for a limited amount of time, in our case ∼20µs.

3.2 Communication
uKharon relies extensively on the performance of today’s
RDMA-enabled fabrics to achieve its microsecond latency
target. It leverages one-sided RDMA verbs, two-sided ones
(i.e., HERD-style RPC [24]), as well as RDMA Multicast. Co-
ordinators run consensus using RDMA Reliable Connections

USENIX Association 2022 USENIX Annual Technical Conference 103

(RCs). In particular, coordinators establish all-to-all con-
nections among themselves and communicate using RDMA
READ, WRITE and CAS. Additionally, coordinators use
RDMA Multicast, which is backed by RDMA Unreliable
Datagrams (UDs), to notify all nodes about new member-
ships. uKharon also uses RDMA Multicast to emit failure
notifications. uKharon Core relies on RDMA READs over
RCs to retrieve the active membership from coordinators and
to detect the failure of remote nodes. Finally, processes send
join and leave requests to the coordinator leader using RPC.

3.3 Challenges
Our system is designed for applications that operate and
failover at the microsecond scale. To do so, uKharon meets
two important design goals. First, it itself operates at the mi-
crosecond scale, meaning that it is able of changing the active
membership within as few as 50µs. Second, we ensure that
uKharon Core has minimal performance overhead on the end
application it is bundled with. To meet these goals, uKharon
is structured around three major components:

Failure detection. Efficient failure detection is the first step
towards fast failover. Conventional wisdom suggests that
there is a trade-off between the speed and accuracy of a fail-
ure detector. We work around this limitation by building a
hierarchy of RDMA-tailored failure detectors suited for the
microsecond scale. Our hierarchy detects failures within a
few tens of microseconds, as we explain in Section 4.

Consensus engine. The second step of failover is agreeing
on the new membership. Existing leader-based consensus
engines, although optimized for the microsecond scale, strug-
gle to change their leader at this time scale. In Section 5,
we explain how our microsecond consensus engine changes
leader in microseconds. This gives our design the unique
property that a coordinator failure—especially failure of the
coordinator leader—has negligible effect on the failover time.

Leases. As far as the membership service is concerned, the
last step towards failover is updating the active membership.
However, the new membership cannot become active before
leases on previous memberships have expired. Thus, the
longer the leases, the higher the failover time. On the other
hand, short leases can result in application overhead, as they
have to be checked in the application’s critical path and re-
newed in time before expiring. In section 6, we explain how
uKharon manages to have∼20µs leases with virtually no cost
for the end application and how leases can scale to hundreds
of machines for an extra ∼20µs.

4 Microsecond Failure Detection

uKharon relies on microsecond failure detection to notify
nodes about member failures and to trigger the generation of

new memberships. In this section, we describe uKharon’s
failure detection scheme.

4.1 Multi-level Failure Detection
A practical failure detector aims at being as complete and as
accurate as possible. A complete and accurate failure detector
is able to detect all failures and not have false positives, re-
spectively. Completeness without accuracy causes problems
in practice, as false positives trigger new memberships which
require distributed applications to take further action (e.g.,
rebalancing data among nodes).

Commonly, failure detectors rely on timeouts for their oper-
ation. However, timeouts are hard to set correctly: if they are
too low, the failure detector may experience instability (e.g.,
oscillating behaviors). That explains why most systems set
the timeouts to a safe high-enough value. In the microsecond
scale this problem is magnified, as small execution delays
(e.g., kernel jitter) can take several microseconds.

Our failure detector follows a pragmatic approach: it avoids
timeouts when possible. To achieve this, we are inspired by
Falcon [35], and identify four levels of failures: (1) userspace
failures (e.g., segmentation faults, out of memory errors, un-
caught exceptions) that cause the application to abort, (2)
kernel failures (e.g., cores hanging in the kernel, kernel oops
caused by driver crashes) that impede the application’s exe-
cution, (3) catastrophic failures (e.g., power failures, RDMA
NIC failures) that prevent communication with the applica-
tion’s host, and (4) byzantine failures (e.g., stack overflows,
mercurial cores [19]) that affect the application state. Each of
the first three levels is handled by uKharon via a specialized
failure detector. We do not address Byzantine failures.

4.2 uKharon’s Failure Detectors
We now explain how uKharon’s specialized failure detectors
work, depending on the type of failure.

Userspace failures. They are handled by the Linux kernel.
The application registers to the kernel to enable a deadbeat,
which is a failure notification broadcast by the kernel upon
the death of the process. This registration happens by means
of the prctl system call that the application calls early in
its execution. The system call includes the node’s identifier
and modifies the process descriptor (Linux’s task_struct)
with a flag that the kernel checks during the cleaning routine
of the process. In Linux, when a process crashes, control is
transferred to the kernel which starts executing the process
cleaning routine. If the flag is set, the kernel broadcasts a
failure notification that includes the specified identifier. To
achieve this functionality, we extend the prctl system call
and modify the process cleaning routine that is part of the
kernel’s exit system call. The task of broadcasting the crash
notification is delegated to a kernel module. This module uses
the kernelspace RDMA driver to broadcast crash notifications

104 2022 USENIX Annual Technical Conference USENIX Association

which are polled by all instances of uKharon Core. As this
failure detector does not use timeouts, it has no false positives.

Kernel failures. To detect application failures caused by the
kernel, we rely on the way RDMA is handled in userspace. An
application registers memory to an RDMA device by issuing
ioctl system calls on a file descriptor. By design, the Linux
kernel destroys that file descriptor and thus disables remote
access to this memory at the end of the process’ cleaning
routine. If this cleaning routine runs, the failure is caught
by the previous failure detector. Otherwise, the memory
will remain remotely accessible while the execution of the
application is suspended (and the kernel is dying).

For the operation of this failure detector, processes are
arranged in a logical ring where every process monitors its
successor. Our system uses a local heartbeat counter in a sim-
ilar fashion to Mu’s detector [2]. uKharon Core increments
this counter to indicate that the process is alive. This counter
is read by the predecessor process. If a process RDMA-reads
the same value twice, it reports its successor as having failed.

A process would be wrongly detected if it were unable to in-
crement its counter between two consecutive reads. Thus, we
take special care to ensure that processes always increment
their counters faster than the time delay between two con-
secutive reads. Importantly, we deploy (the single-threaded)
uKharon Core in its own dedicated physical core. We resort
to a custom kernel compiled with the NO_HZ_FULL option,
which disables regular timer interrupts [37] on the dedicated
core and and thus reduces the kernel jitter towards uKharon
Core. Additionally, we boot this kernel with the isolcpus
parameter, which prevents other userspace processes from
sharing the dedicated core with uKharon Core. In exper-
iments, the interval we observed between two counter in-
crements under heavy load was 5µs most of the time and
never more than 15µs. To account for unexpected jitter (e.g.,
thermal throttling), we make processes wait 30µs after the
completion of an RDMA READ before issuing the next one.
As RDMA READs are issued sequentially, network delays
do not negatively impact the accuracy of this failure detector.

Catastrophic failures. uKharon relies on a timeout-based
scheme to detect failures that prevent machines from commu-
nicating. We set the timeout to 1ms, which is 2−3 orders of
magnitude higher than the common case latency of modern
data center fabrics. As reported by Li et al. [36], 1ms is safe
even in case of network congestion.

The detector works by having processes periodically broad-
cast a heartbeat and poll for heartbeats from others. Processes
keeps track of the set of processes they recently received a
heartbeat from. They compare this set with the current mem-
bership and report which processes they consider failed to the
coordinator leader. Then, the leader constructs a connectiv-
ity graph based on the reported link states and changes the
membership to approximately match the maximum clique
in which it is included. Thus, our membership service en-

forces all-to-all connectivity among the members and does
not expose any information regarding network partitions. A
systematic treatment of network partitions is out of our scope.

The first two detectors broadcast failure notifications over
RDMA-multicast, which offers better scalability than broad-
casting using Reliable Connections. Nevertheless, RDMA-
multicast is backed by Unreliable Datagrams, thus failure
notifications can be lost under high network load. Dropping
these notifications is safe, as uKharon-Core rebroadcasts a
failure notification until a new membership excludes the failed
node.

5 Microsecond Consensus

In this section, we present a state-of-the-art consensus engine
that is tailored for the needs of uKharon and powers its co-
ordinators. Our engine is efficient regardless of failures: in
the absence of failures, it decides in one RDMA delay (by
issuing an operation to a majority of processes in parallel),
while it decides in one additional RMDA delay in the event of
a failure. It uses a slightly modified version of Paxos based on
the observation that the original algorithm contains RPCs that
can be emulated with RDMA CAS operations. In the rest of
the section, we intuitively describe our consensus algorithm
and discuss implementation details. Appendix A provides its
pseudocode and a proof of its correctness.

5.1 Consensus and Paxos

Consensus is a fundamental problem in distributed computing.
Informally, each process proposes a value and eventually all
processes irrevocably agree on one of the proposed values.
Processes agree on a sequence of values and totally order
them by running multiple instances of consensus.

Several algorithms solve consensus in the partially syn-
chronous model. Many are variants of Paxos [32]. In Paxos,
processes are divided in two groups: proposers and acceptors.
Proposers propose a value for decision and acceptors accept
some proposed values. Once a value has been accepted by a
majority of acceptors, it is decided by its proposer.

Intuitively, Paxos is split in two phases: the Prepare phase
and the Accept phase. During these phases, messages from
the proposer are identified by a unique proposal number. The
Prepare phase serves two purposes. First, the proposer gets a
promise from a majority of acceptors that another proposer
with a lower proposal number will fail to decide. Second, the
proposer updates its proposed value using the accepted values
stored in the acceptors. This way, if a value has been decided,
the proposer will adopt it. The prepare phase can also abort if
any acceptor in the majority previously made a promise to a
higher proposal number. If the proposer manages to complete
the Prepare phase without aborting, it proceeds to the Accept
phase. In this phase, the proposer tries to store its value in a

USENIX Association 2022 USENIX Annual Technical Conference 105

1 # Paxos’s RPCs pattern
2 def rpc(x):
3 if compare(x, state):
4 state = f(state, x)
5 return proj(state)

1 def cas-rpc(x):
2 expected = fetch_state()
3 if not compare(x, expected):
4 return proj(expected)
5 move_to = f(expected, x)
6 old = state.cas(expected,

↪→ move_to)
7 if old == expected:
8 return proj(move_to)
9 abort

Algorithm 1: Paxos’s RPCs turned into CAS-based RPCs.

majority of acceptors. If it succeeds (i.e., a majority accepted
the value), it decides on that value.

5.2 One-sided Paxos
Paxos uses RPC in a very specific form. The accep-
tors’ state consists of only three variables: min_proposal,
accepted_proposal and accepted_value. In both
phases, acceptors atomically update these values based on the
proposer’s input and return some of them.

Algorithm 1 proposes an obstruction-free transformation
to turn Paxos’s RPCs into purely one-sided conditional writes
using RDMA CAS. Paxos’s RPCs follow the pattern seen in
rpc. The acceptor executing the RPC compares the received
value x to its state (stored in state). If the comparison is
successful, the acceptor updates its state (shown with function
f) using the provided value x. Finally, the acceptor uncondi-
tionally returns part of its state (shown with function proj).

The pattern presented in cas-rpc allows RDMA to emu-
late rpc while solely relying on one-sided verbs. Opposite to
rpc, which is executed on the acceptor’s side, cas-rpc is ex-
ecuted on the proposer’s side. To execute the one-sided RPC,
the proposer first needs to know the state that is stored in
the memory of the acceptor. This value can either be guessed
(e.g., using a previous value of state) or fetched (e.g., using
RDMA READ, as shown in line 2). Then, the proposer exe-
cutes the comparison locally (line 3) and decides whether to
continue or terminate. If the comparison succeeds, the pro-
poser proceeds with updating the state of the acceptor. It is
this update that utilizes CAS 2. In line 7, if the CAS succeeds,
the acceptor’s state has been updated successfully with the
value of move_to. Otherwise, state remains unchanged.

When the RDMA CAS succeeds, i.e., in the absence of con-
tention, both rpc and cas-rpc are equivalent (see Appendix
A.2). However, if the RDMA CAS fails, cas-rpc will abort
while rpc would not. In this case, rpc and cas-rpc are
not equivalent, but this does not violate the correctness of
Paxos. The reason is that Paxos tolerates an arbitrary number
of proposer failures and that aborting the RPC and starting
over is indistinguishable from such a failure.

2As a reminder, variable.cas(expected, new) atomically checks
if variable equals expected and sets variable to new if this is the case.
The operation always returns the initial value of variable.

(1, 0, C
1
)

C
1
: M

1

(1, 0, ⊥)

C
1
: M

1

(1, 0, ⊥)

C
1
: ⊥

RDMA-exposed memory at C
1

Membership proposals

...

Consensus slots

(1, 1, C
1
) (1, 0, ⊥) (0, 0, ⊥) … Prepare

Slot CAS
(0, 0, ⊥)

C
1
: ⊥

Memb.
WRITE

Accept
Slot CAS

min_proposal
accepted_proposal

 C1 ⊥ ⊥ …

 C
3

⊥ ⊥ ⊥ …

accepted_value

M
1

Figure 2: uKharon’s Consensus Engine with its RDMA-
exposed memory for multiple instances of consensus (left)
and a state machine for a single instance of consensus (right).

5.3 uKharon’s Consensus Engine
We now explain how to make the variant of Paxos described
in Section 5.2 practical and compare it with Mu [2], a state-
of-the-art consensus engine.

5.3.1 Practical Considerations

Leader election. To avoid the contention rising from multiple
concurrent proposers, our consensus engine adopts the same
leader election scheme as Mu. The process with the lowest
identifier among the coordinators considered alive is elected
as the leader. In the event of a partial network partition, this
scheme can elect multiple leaders. For example, if coordinator
C2 is the only one unable to reach C1, it will think of itself
as the leader, while other coordinators will consider C1 as
their leader. Having multiple leaders cannot lead to multiple
values being decided, i.e. safety is always preserved. Leader
contention can, however, prevent the engine from being live.
Thus, a leaders that fails to decide uses a randomized backoff
before proposing until the partition is resolved.

Pre-preparation. Coordinators decide on a sequence of val-
ues by running consensus on a sequence of slots, as shown
in Figure 2. It requires two RDMA delays for each slot: one
for the Prepare and another for the Accept phase (shown with
horizontal arrows in the figure). A stable leader can prepare
slots in advance and only run the Accept phase to decide. In
this case, the leader decides in a single RDMA delay. The
leader uses the time spent waiting for the Accept phase to
complete on a slot to run the Prepare phase for the next one.
Thus, it always maintains one pre-prepared slot (depicted in
the second consensus slot of Figure 2), with no latency over-
head. Switching to the new leader requires re-preparing the
next slot. As an optimization, the new leader predicts that
the last slot had been prepared by the previous leader and
uses this prediction as the expected value of the RDMA CAS.
With this approach, the new leader manages to re-prepare the
next slot in a single RDMA delay instead of two.

CAS size limitation. Algorithm 1 assumes that the consensus
state fits within a single CAS. Current RDMA NICs only

106 2022 USENIX Annual Technical Conference USENIX Association

support CAS up to 8 bytes. We set both min_proposal and
accepted_proposal to be 2 bytes each3. The remaining 6
bytes are dedicated to the accepted_value.

Our consensus engine uses indirection to overcome the
limited size of the accepted_value and store uKharon’s
memberships. Instead of deciding on the membership itself,
coordinators decide on its location in memory. First, the pro-
poser RDMA-writes the membership to a part of acceptors’
memory dedicated to membership proposals (see Figure 2)
to which it has exclusive write access. Then, the proposer
runs the Accept phase where it proposes its own identifier
(C1 in the figure). If the Accept phase succeeds at a majority
of acceptors, then the proposer decides. Thanks to the FIFO
semantics of RDMA RCs, if the last RDMA operation (i.e.,
the Accept phase CAS) succeeds, the previous RDMA oper-
ation (i.e., storing the membership with an RDMA WRITE)
also succeeded. The two RDMA operations combined do not
execute atomically, yet a coordinator cannot have accepted an
identifier without knowing its associated membership.

5.3.2 Comparison with the State-of-the-art

Many systems, such as Mu [2], DARE [41] and APUS [51]
study consensus over RDMA. They primarily focus on im-
proving the throughput and latency of common case execu-
tions, thus achieving consensus in a few microseconds. How-
ever, these systems have failovers ranging from 0.5ms (in Mu)
to 10s or 100s of ms (in DARE and APUS, respectively).

Mu has the best performance in failure-free executions
among competition as it solves consensus in ∼1.4µs. It relies
extensively on RDMA permissions. During its Prepare phase,
a proposer asks acceptors for the exclusive write permission
to their memory and waits for a majority of replies. This step
guarantees that only one proposer can write to an acceptor at
a time. In the Accept phase, the proposer decides by merely
writing to a majority of acceptors. As acceptors give write
permissions to a single proposer at a time, no two concurrent
proposers can successfully write to a majority of acceptors
and decide on different values. Since WRITE is the most
efficient RDMA verb and the Prepare phase runs only once
per leader change, Mu is optimal in failure-free executions.

The Accept phase of our algorithm relies on a WRITE
followed by a CAS. Importantly, these one-sided operations
have lower tail latency compared with the two-sided verbs
present in DARE and APUS. The CAS increases the decision
time from 1.4µs to 2.9µs compared with Mu. When it comes
to a leader change, Mu’s permission change mechanism re-
quires approximately 250µs, since it constitutes a control path
operation that involves a system call and a reconfiguration of
the NIC. In our consensus engine, the additional CAS lets co-
ordinators change leader in under 10µs. Thus, our algorithm
is designed for short tail latency and makes the failure of the

3Appendix A.6 discusses how to prevent overflows after 216 failed at-
tempts to decide on a slot by switching from CAS-based to two-sided RPCs.

coordinators’ leader no more important (latency-wise) than
the failure of any other node.

6 Microsecond Real-timeness

In addition to reacting to failures and deciding on views,
uKharon lets applications track the active membership via
the Active method. While this information is essential for
consistency, it must not burden the end application. In this sec-
tion, we describe the challenge of making Active’s overhead
negligible while preserving microsecond view changes.

6.1 The Active Method

uKharon exposes real-timeness to end applications via the
Active(Membership)→bool method. If Active(M) re-
turns true, we say that M is active at some point between
the call and return of the method. Active satisfies three im-
portant properties. First, there are no two overlapping active
memberships. Second, after a membership M is active, no
memberships older than M become active. Third, the active
membership converges to the latest decided membership.

Intuitively, processes use the Active method to determine
the membership they should be executing operations in. When
coordinators decide on a new membership M′, a process p
may stay in an older membership M due to a delay in receiving
M′. Calling Active(M) will eventually return false at p,
thus letting it realize that it misses the latest membership M′.
To ensure consistency, an application typically calls Active
once before starting an operation and a second time before
committing it, only committing if both calls return true.

6.2 Leases

uKharon uses leases for efficiency. We proceed incrementally,
first describing an implementation of Active without leases,
before moving to a more efficient lease-powered scheme.

The basic implementation of Active requires communi-
cation in every invocation. Let M be the k-th membership
decided by the coordinators and assume a process p invokes
Active(M). In essence, Active declares that M is active
if it can conclude that no newer membership M′ has been
decided. To this end, the process RDMA-reads the k+1-th
consensus slots at coordinators and waits for a majority of
replies. If all replies are empty, then the k+1-th membership
has not been decided, meaning that M is (still) active at some
point between the invocation and return of the method. If, on
the other hand, at least one of the replies is non-empty it is
inconclusive whether M has been superseded by M′. In case
M′ has been decided before p issues the READs, then at least
one of the replies must be non-empty, but the opposite is not
always true. For safety, Active returns false if at least one
of the READs on the next consensus slot is non-empty.

USENIX Association 2022 USENIX Annual Technical Conference 107

1 leased_membership = ⊥; tstart = 0; tend = 0

3 def Active(M) → bool: # M is always a decided membership
4 t = hw_timestamp()
5 if leased_membership != M: # First-time lease on M
6 if majority_active(M):
7 leased_membership = M; tstart = t + δ; tend = tstart
8 else: # Check/extend lease on M
9 if t in [tstart, tend): return True

10 if majority_active(M):
11 tend = t + δ

12 return t > tstart
13 return False

Algorithm 2: Leased active membership.

A lease refers to a membership and has a start and an expi-
ration date. A lease guarantees its holder that its associated
membership will remain active until it expires. In our system,
leases are created by uKharon Core and last δ≈ 20µs.

Algorithm 2 provides an efficient alternative implementa-
tion of Active that relies on leases to reduce communication.
It starts by taking a hardware timestamp t (line 4) and then
checks if a lease on M already exists (line 5). If no lease
exists (lines 6-7), the method checks for a newly decided
membership by contacting a majority of coordinators. If no
membership newer than M could have been decided (i.e., all
replies are empty), it creates a lease on M (line 7) that starts
at t + δ and has no duration. This prevents overlapping ac-
tive memberships since any lease that processes could hold
on a previous membership M′ < M will have expired before
M becomes active. In case a lease on M already exists, the
method tries to use it in order to avoid reaching the coordi-
nators (line 9). If it cannot use it, it tries to extend the lease
(line 11) by checking the coordinators. It returns True only if
leases on previous memberships have expired (line 12), which
takes—in the worst case—δ to happen. As a result, leases
affect the speed at which memberships can change, justifying
the desire for a small lease duration. Section 7 demonstrates
that leases of δ≈ 20µs are feasible in practice.

This efficient implementation of Active renews its lease
on demand. As long as its lease is valid, the method merely
takes a hardware timestamp—which takes a few tens of
nanoseconds—and returns immediately without reaching the
coordinators. The latency overhead of Active to the applica-
tion that invokes it is thus very low. Communication with the
coordinators is only necessary when leases expire and have
to be renewed, which results in a spike in Active’s latency.
In practice, uKharon Core renews leases in the background
to ensure that—when the membership remains unchanged—
Active is not delayed by the calls to majority_active.

uKharon does not rely on operational leases for either live-
ness or safety. Timely renewal of leases is only a way to
reduce the latency of Active as Algorithm 2 would work
even with zero-duration leases. uKharon relies on bounded
clock drifts for safety, as opposed to clock synchronization.
This ensures that durations are approximately the same across

all processes, thus preventing overlapping memberships. Ap-
pendix C includes a microbenchmark evaluating the clock
drift of actual hardware and gives an overestimated drift that
is no more than 0.001% of the lease duration. Thus, clock
drift is accounted for by making leases last a few nanoseconds
less than their nominal value. As drift is reset on each lease re-
newal, it does not accumulate over time. Therefore, no matter
how long a system is up for, its operation remains unaffected
by the clock drift. A proof of correctness of uKharon’s leases
is given in Appendix B.

6.3 Extensions

Adaptive leases. So far, we have assumed a fixed lease dura-
tion δ. Network delays greater than δ render leases useless
as, every time the lease is extended (line 11), tend is always
in the past. In this case, Active always contacts the coordi-
nators. In order to work under partial synchrony and avoid
this scenario, we extend the leasing mechanism as follows:
Coordinators store the lease duration for a given membership
along with the membership itself. An application node that
wants to increase the lease duration contacts the coordinator
leader. This results in a new compatible membership that
is identical to the previous one apart from the lease dura-
tion. Compatible memberships receive special handling by
uKharon Core in order to ensure that—when going from one
compatible membership to another—Active does not wait
for leases on the previous membership to expire. Also, if
the latest membership M is not compatible with the previous
one, invocations to Active(M) return false until all possibly
ongoing leases on previous memberships have expired.

Lease caches. Active reaches a majority of coordinators to
renew its lease, which scales badly as the number of appli-
cation nodes increases. uKharon solves this issue with an
intermediate lease renewal layer, the lease caches. These
caches use the Active method to lease memberships for ∆

(by reading from a majority of coordinators). In turn, applica-
tion nodes use leases that last for δ and a modified version of
Active. This version differs from the one presented in Al-
gorithm 2 in the majority_check calls, which are replaced
with RPCs to a single lease cache. As a result, application
nodes reduce the communication cost required to renew their
lease by a factor of—at least—3 (the typical number of coor-
dinators). However, lease caches increase the failover time
of applications by at least ∆. The reason is that when the
coordinators change the membership, the Active method of
caches waits ∆ before making the new membership active.
At the same time, the Active method of application nodes
that is directed to some lease cache, waits δ before making
the new membership active. Thus, the overall time from the
moment a new membership is decided until application nodes
start using it jumps from (at least) δ to (at least) ∆+δ.

108 2022 USENIX Annual Technical Conference USENIX Association

7 Evaluation

We evaluate the various performance traits of uKharon and
verify its suitability as a membership service for microsecond
applications. We aim to answer the following:

• How much does uKharon increase the latency of end
applications and what is its impact on their throughput?

• How fast does uKharon respond to failures?

• How can uKharon be leveraged to build replication pro-
tocols and what performance can they achieve?

CPU 2x Intel Xeon Gold 6244 CPU @ 3.60GHz
(8 cores/16 threads per socket)

NIC Mellanox ConnectX-6 MT28908
Switch Mellanox MSB7700 EDR 100 Gbps

OS/Kernel Ubuntu 20.04.2 / 5.4.0-74-custom
RDMA Driver Mellanox OFED 5.3-1.0.0.1

Table 1: Hardware details of machines.

We evaluate uKharon in a 8-node cluster, the details of
which are given in Table 1. The custom kernel sets the
NO_HZ_FULL option and uses the isocpus boot parameter,
as explained in Section 4.2. Our dual-socket machines are
NUMA and their RDMA NIC lies on the first socket. For
this reason, we ensure that all threads during our experiments
execute on cores of the first socket. We also make all threads
exclusively use the memory bank closest to this socket.

Our implementation measures time durations using the
clock_gettime function with the CLOCK_MONOTONIC pa-
rameter. The function uses the TSC clocksource of the Linux
kernel, which offers efficient and accurate timestamping [43].
Appendix C discusses details regarding the drift and syn-
chrony of TSC in symmetric multiprocessing (SMP) systems.

Finally, in all experiments we deploy 3 coordinators.

Applications. We integrate uKharon with HERD [24]. HERD
is a non-replicated microsecond-scale RDMA-based KV-
cache. Clients send requests to a HERD server by RDMA-
writing to a dedicated buffer that the server has allocated for
them. Requests contain an 8-byte key and are either PUTs or
GETs. PUTs additionally contain the value to be stored for the
specified key. The server discovers new client requests by
polling its local memory, executes the requests locally and
then replies to the clients using RDMA UDs. We also lever-
age uKharon to build uKharon-KV, an extended version of
HERD which supports replication. We compare our solution
with HERD replicated by Mu (HERD+Mu) [2] which—as far
as we know—offers the lowest replication latency to date.

Implementation effort. We implemented uKharon on top of
our own RDMA framework. uKharon Core and the consensus
engine span 4448 and 1324 lines of C++, respectively. The

19 21 23 25 27 29
90

100

Net. Load = 30%

19 21 23 25 27 29

80

100

Net. Load = 60%

19 21 23 25 27 29

80

100

Net. Load = 80%

19 21 23 25 27 29
0

10
Net. Load = 100%

0.0 0.2 0.4 0.6 0.8 1.0Lease duration (µs)

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

el
y

le
as

e
re

ne
w

al
 (%

)

Mem. Load = 50% 65% 85% 100%

Figure 3: Percentage of timely lease renewal depending on
the lease duration, network load and memory load.

kernel module of the deadbeat failure detector is 404 lines of
C. uKharon-KV extends HERD by 1498 lines of C++. The
only unimplemented features are clique-based memberships
(Section 4.2) and adaptive leases (Section 6.3).

7.1 Overhead Induced by uKharon

Latency Overhead. Applications bundled with uKharon
Core rely heavily on its Active method. As long as (the
background running) uKharon Core renews the lease on the
active membership in time, the Active method adds negligi-
ble latency overhead to the application. We experimentally de-
termine that the 99th percentile latency for invoking Active
is 38ns when the lease is renewed in time, which is the time
it takes to fetch the hardware timestamp and compare it with
the expiration date of the lease. Fluctuations in the network’s
latency or execution delays when uKharon Core renews the
lease (e.g., due to cache misses) induces additional latency to
the application, as explained in Section 6.2.

Figure 3 shows how the duration of leases affects their
timely renewal. We run 1-minute experiments under a steady
membership with 32 lease renewers contacting coordinators
directly and lease durations ranging from 18 to 30µs. Each
machine has a maximum memory bandwidth of 480Gbps and
a maximum network bandwidth of 100Gbps. We apply vari-
able network and memory load by running stress-ng [27]
and perftest [42] on the first socket of our machines.

When the network load is maximum (bottom right figure),
less than 12% of the calls to Active return immediately, irre-
spective of the memory load. For network loads of 30−80%
(other figures), the memory load progressively affects lease
renewal. Maximum memory load causes expired leases when
lease duration is shorter than 27µs. For most other configu-
rations, a duration greater than 23µs suffices. For example,
with 80% network and 50% memory load, lease renewal fails
0.0011% of the time, which corresponds to Active induc-
ing latency every 300 out of 1.5 billion invocations. In other

USENIX Association 2022 USENIX Annual Technical Conference 109

1 2 3 4 5 6
Number of cores

2.5

5.0

7.5

10.0

12.5

Th
ro

ug
hp

ut
 p

er
 co

re
 (M

O
PS

)

-1
0.0

9%

-1
0.8

5%

-1
0.2

2%

-1
0.2

2%

-1
0.3

8%

-1
0.3

8%-1
0.8

9%

-8
.47

%

-7
.17

%

-8
.47

%

-7
.22

%

-6
.51

%

-8
.03

%

-6
.39

%

-6
.68

%

-6
.48

%

-5
.59

%

-7
.12

%-3
.65

%

-1
.80

%

-1
.36

%

-0
.28

%

-0
.99

%

-1
.13

%

uKharon overhead |batch| = 1
|batch| = 2

|batch| = 4
|batch| = 6

uKharon overhead |batch| = 1
|batch| = 2

|batch| = 4
|batch| = 6

Figure 4: Impact of uKharon on HERD’s throughput for
different batch sizes and numbers of cores. Full bar shows the
throughput w/o uKharon; labels show uKharon’s overhead.

words, the 99.999th percentile of Active’s latency is 2µs.
We get similar (omitted) results when an application renews

its leases through lease caches. In fact, RPC-based renewal
requires at most 2µs longer leases (compared with reading
from coordinators) to achieve the same percentages of timely
lease renewal. We attribute this difference to RPC, which
involves the CPU of both the application and the lease cache.

From this experiment we select the lease duration that we
use for the rest of our evaluation. We pick the lease duration
when renewing from coordinators (δ) to be 23µs, and the lease
duration when renewing from lease caches (∆) to be 25µs.

Throughput Reduction. We use uKharon to make HERD
dynamic. The original HERD assumes a static set of servers,
each of which serves a shard of the key space. Clients are
aware of this sharding and use the key of a request to deter-
mine the appropriate server. The lack of dynamicity affects
HERD’s flexibility in two ways. First, if a server fails, its
shard becomes unavailable forever. Second, the system is
unable to re-balance the load among the servers. Importantly,
the use of a static set of servers ensures consistency of clients’
requests: GETs return the value of the most recent PUT.

In our implementation, each server dedicates up to 6 cores
to the KV-cache and each core is responsible for a part of the
key space. Every core processes clients’ requests and invokes
the Active method before replying to avoid inconsistencies.
If Active returns true, the core executes the request (if the
key belongs to its shard) and replies to the client. Otherwise,
the core rejects the request. Given that every core invokes
Active in the critical path of serving requests, the latency of
requests increases (by ∼38ns) and the throughput decreases.

Figure 4 shows the per-core throughput of a static deploy-
ment of HERD, along with the drop in performance caused by
the integration of the Active method. The workload is 80%
GETs and 20% PUTs with 32 byte-long values. We vary the
number of cores from 1 up to 6 as well as the batch size (i.e.,
the number of clients’ requests processed at once). Typically,

static HERD issues a reply every 350ns. Without batching,
having Active in the critical path raises the reply time to
388ns, an increase of 11%. Batching has a positive impact
on Active’s overhead as a single call to the method is used
to serve all the requests in a batch. Thus, for batches of 6
replies, Active effectively takes 38/6 = 6.3ns per reply, an
increase of just 1.8%. Finally, the overhead of Active does
not increase with the number of cores, even though they in-
voke the method concurrently. This indicates good multicore
scalability, which implies that a single uKharon Core instance
per server is sufficient to serve all applications running on it.

Bandwidth overhead. uKharon Core reduces the bandwidth
available to applications. Lease renewal requires 240 bytes
when contacting 3 coordinators and 132 bytes when contact-
ing a lease cache, which translates to (assuming renewal every
10µs) 192Mbps and 105Mbps, respectively. This bandwidth
requirement accounts for 0.1−0.2% of a 100Gbps link, thus
the bandwidth of application nodes is marginally impacted.
Failure detection has similar bandwidth requirement.

7.2 Failover Time
We study uKharon’s failover time considering userspace and
kernel failures. We do not further evaluate catastrophic fail-
ures, as 95% of the failover is for their 1ms-long detection,
making microsecond-scale agreement and leases insignificant.

Table 2 summarizes the median failover (over 100 measure-
ments) for various failure scenarios. We consider the failure
of a single application node optionally combined with the fail-
ure of the coordinator leader or/and a lease cache. We emulate
simultaneous failures by relying on RDMA Multicast. An
auxiliary program executes alongside the program which we
emulate the failure of. When the auxiliary program receives
the multicast message, it uses SIGKILL to kill the targeted
program. We assume the worst scenario, i.e., the failure of
the application node results in global unavailability that is
resolved only by a new (active) membership that excludes it.

In every entry of Table 2, we present the failover time
when detecting the failure using the deadbeat mechanism
(left) and the RDMA-based heartbeat mechanism (right). We
now discuss the failover time when using the deadbeat, first
considering the case when the lease caches are absent. For
a single application failure, uKharon is able to failover in
50µs using the deadbeat. If the coordinator leader crashes at
the same time as the application, the failover time increases
by around 15µs. We attribute this increase to (1) the leader
switch mechanism of the consensus engine (∼10µs) and (2)
the imperfect synchronization of SIGKILL among the failed
nodes (∼5µs). When lease caches are part of uKharon, the
failover times for the same failure scenarios increase (as ex-
pected) by 20− 25µs, which is about the lease duration of
the cache. Failure of a cache has no impact on the failover
time (bottom entries of the first and third columns). This is
because (1) the application node receives the broadcast failure

110 2022 USENIX Annual Technical Conference USENIX Association

L exists? A A + C A + L A + L + C
No 50\96 64\114 - -
Yes 74\108 96\138 75\113 101\139

Table 2: Failover time (in µs) for failures in App, Coordinator
leader and Lease caches; using the deadbeat\heartbeat.

notification and switches lease cache before the membership
changes and (2) the new membership is compatible with the
previous one. The simultaneous failure of all three types of
nodes has a downtime of 101µs, instead of 96µs. Again, the
failure of the cache does not affect the failover time, but with
three nodes the imperfect synchronization of failures adds
up. Finally, the same failures when using the RDMA-based
heartbeat mechanism range from 96 to 139µs. This mecha-
nism adds ∼ 45µs of failover compared to the deadbeat. The
reason is that reading the same value twice upon failure takes
1.5 delays on expectation and READs are issued every 30µs.

7.3 uKharon-KV
Both uKharon-KV and HERD+Mu follow a primary-backup
replication scheme. All requests are served by the primary,
which replicates them to backups. Backups are only used for
fault tolerance. All replicas (primary and backups) execute
requests in the same order, but only the primary replies to
clients. In the event of a failure of the primary, one of the back-
ups becomes the new primary and continues serving clients’
requests. All replicas execute all requests in the same total
order, thus replicas are an exact copy of the failed primary.
This means that when a replica becomes the new primary, it
can respond to clients without breaking consistency.

One problem these systems have to deal with is multi-
ple nodes trying to replicate clients’ requests simultaneously.
This happens when the primary fails and multiple nodes, be-
lieving they are the new primary, try to handle clients’ re-
quests. Mu avoids this problem by relying on RDMA per-
missions (see §5.3.2). On the other hand, uKharon-KV relies
exclusively on the membership service to address it. Each
membership determines a single primary. When the primary
fails, a new membership is emitted that determines the new
primary. Since only one membership is active at a time, no
two replicas can believe to be the primary simultaneously.

The replication protocol of uKharon-KV works as follows:
The primary P replicates all clients’ requests to a single
backup B by RMDA-writing them to a dedicated buffer on
the latter. In parallel, P speculatively executes the requests.
Upon completion of the RDMA WRITE, the primary checks
that the membership in which P is the primary is still active.
If that is the case, P replies to the client. Otherwise, P drops
the request. Upon membership change, B waits for the new
membership—in which it is the primary—to become active.
Then, B scans the local buffer that was dedicated to P and
applies all unprocessed requests in it. Only then B starts pro-

2

3

4

5

La
te

nc
y

(µ
s)

3.1
6

3.1
7

4.6
5

3.1
7

GET

2

3

4

5

2.5
7

2.6
2

4.2
0

3.9
2

PUT

0

200

400

600 53
1

80 53

Failover

HERD
Dynamic HERD

HERD+Mu
uKharon-KV

w/ cache
w/o cache

Figure 5: Latency comparison (left) of vanilla HERD, Dy-
namic HERD, HERD+Mu, uKharon-KV. Failover time com-
parison (right) of HERD+Mu and uKharon-KV. HERD+Mu
uses 3-way replication; uKharon-KV uses its deadbeat. Bar
height shows 95th %-ile latency; numerical label shows the
95th %-ile; error bars show the median and 99th %-ile.

cessing clients’ requests. The client’s failover time is the time
interval between the client’s last successful request to P and
its first successful request to B (as the new primary).

If P’s speculative execution turns out to be incorrect,
its state may diverge from the one of the new primary B.
uKharon-KV, however, does not follow the common practice
of rolling back unsuccessful speculations, because our proto-
type adopts a simple design: when a node is removed from
the membership, it is not allowed to re-enter the system. Thus,
the state of the old primary P is no longer used when B takes
over, hence skipping the rollback.

Replication latency. We compare the latency of HERD,
HERD+Mu and uKharon-KV. For HERD, we deploy a single
node. For HERD+Mu, we deploy three nodes, a primary and
two backups, all of which execute an instance of HERD and
Mu. For uKharon-KV, we deploy a primary and a backup,
both running uKharon-KV, as well as three coordinators. For
these experiments, a HERD client connects to the primary and
issues PUT and GET requests. We measure the time it takes
for a client to complete a request and compute the median,
the 95th and the 99th percentiles over 10 million requests.

Figure 5 shows the end-to-end latency of vanilla HERD
and of both replication approaches. In vanilla HERD, PUTs
are more efficient than GETs by 23%, due to the way HERD
handles the two types of requests. Briefly, PUTs rely mostly
on RDMA WRITEs, which is the most efficient RDMA
verb [25], while GETs rely mostly on RDMA SENDs. For ref-
erence, we also show the latency of Dynamic HERD, which
uses uKharon’s Active method in the critical path of execut-
ing clients’ requests, as explained in section 7.1. We verify,
once again, the efficiency of the Active method. At the 95th
percentile, Dynamic HERD’s requests are delayed by 10ns
(for GETs) and 50ns (for PUTs), compared with vanilla HERD.

The two replicated solutions exhibit different costs.

USENIX Association 2022 USENIX Annual Technical Conference 111

HERD+Mu replicates all requests, regardless of whether they
are PUTs or GETs, while uKharon-KV replicates only PUTs.
HERD+Mu does not distinguish between PUTs and GETs, be-
cause in Mu the primary uses the result of replication (whether
it is successful or not) to determine if it is still the primary or
not. If Mu were to skip the replication of GETs, inconsistency
would occur (see §2.1). On the other hand, uKharon-KV
executes GETs locally, without replicating them, since the
primary relies on the Active method to determine if its data
is stale or not. Also, observe that uKharon-KV replicates
PUTs approximately 300ns faster than Mu. This improvement
is merely attributed to the speculative approach adopted by
uKharon-KV. In HERD+Mu, the primary executes the request
after it has been replicated to a majority. On the other hand,
the primary in uKharon-KV executes the request in parallel
to the replication to the backup. Thus, our solution hides the
cost of executing the request, which is approximately 300ns,
as shown by the difference of the two rightmost bars in the
middle plot of Fig. 5. Regardless, uKharon-KV provides the
same fault tolerance as Mu, even with one less replica: if a
single replica crashes in either HERD+Mu or uKharon-KV,
the system remains operational but cannot tolerate another
failure. Fundamentally, both HERD+Mu and uKharon-KV
assume a majority of correct nodes, the former among the
replicas and the latter among the coordinators.

Failover. We compare the failover latency of uKharon-KV
with HERD+Mu in the event of userspace failures. We run
uKharon-KV in two configurations. In the first one, clients di-
rectly RDMA-read from coordinators to renew their lease. In
the second one, clients go to lease caches. The third graph of
Figure 5 shows that HERD+Mu has a 95th-percentile failover
time of 531µs. This number is almost half of what Mu’s au-
thors report since we fine-tuned their failure detector for our
own setup. At the same time, uKharon-KV without cache
(resp. with) achieves a 10× improvement (resp. 6.5×) at
53µs (resp. 80µs) of end-to-end failover time.

8 Related Work

Membership services in general. They are widely used
in the data center. Distributed data processing apps (e.g.,
Kafka [30], MapReduce [10]), storage systems (e.g., Cas-
sandra [31], HDFS [46]) and orchestration tools (e.g.,
Mesos [18]) rely on Zookeeper [20] for leader election, mem-
bership management, locks, watches, etc. uKharon focuses
on membership management, yet it can be extended to sup-
port Zookeeper’s features. Indeed, uKharon-KV (excluding
the lack of durability) offers similar guarantees to the strongly
consistent KV-store of Zookeeper, which comprises its basic
building block. ZooKeeper’s strongly consistent KV-store
that forms its basis. For instance, locks can be implemented
on top of uKharon-KV by extending its interface with Com-
pareAndSwap. Watches, being an unreplicated pub/sub sys-

tem, only require modifying uKharon-KV’s primary. The
important difference is that Zookeeper is not suitable for the
microsecond scale and does not exploit RDMA.

Failure detection in the data center. A common approach
to detect failures is to use end-to-end timeouts, which are hard
to set. Falcon [35] proposes to use inside information in order
to build faster and more accurate failure detectors by relying
on hierarchies of specialized detectors. It maximizes accuracy
by killing suspected processes. Albatross [34] is slightly more
forgiving and isolates suspected processes so that they cannot
affect the state of the system. Pigeon [33] provides fine-
grained reports that end applications use to act accordingly.
We embrace Falcon’s philosophy and use RDMA-tailored
failure detectors to operate at the microsecond scale.

Time-bound leases. Time-bound leases are widely used to
implement consistent distributed applications at the price of
some synchrony assumptions. They are often provided by a
distributed coordination framework such as ZooKeeper [20]
or etcd [14]. Leases are used for leader election [48], as
well as for guarding memberships (e.g., in FaRM [12] and
Hermes [26]). uKharon guards memberships with purely
client-side leases. As a result, uKharon brings leases down to
a few tens of microseconds and only assumes bounded clock
drift instead of loosely synchronized clocks as in Hermes.

9 Conclusion

Continuous breakthroughs in data center fabrics have paved
the way for microsecond applications. A key challenge for
building tail-tolerant software at scale is for applications to
react fast to events such as reconfigurations and failures. Yet,
existing microsecond applications lack an equally fast mem-
bership service to provide microsecond dynamicity. This
lack is counter-intuitive, as the vast ecosystem built around
ZooKeeper showcases the usefulness of membership services.
uKharon fills this gap by being the first membership service
tailored to microsecond scale applications. To achieve this
demanding target, uKharon relies on (1) a multi-level fail-
ure detector, (2) a consensus engine that takes advantage of
RDMA CAS, as well as (3) leases, all of which have been
carefully designed to operate in the microsecond envelope.
We used uKharon to implement uKharon-KV, a replicated
KV-cache which outperforms the state of the art in latency
while improving its failover time by up to 10×.

Acknowledgments

We thank our NSDI ’22 and ATC ’22 anonymous reviewers
as well as our shepherd, Abhinav Duggal, for their valuable
comments. We would also like to thank our anonymous arti-
fact evaluators for reviewing our implementation. This work
was partly funded by Huawei Technologies.

112 2022 USENIX Annual Technical Conference USENIX Association

References

[1] Marcos K. Aguilera, Naama Ben-David, Irina Calciu,
Rachid Guerraoui, Erez Petrank, and Sam Toueg. Pass-
ing messages while sharing memory. In ACM Sympo-
sium on Principles of Distributed Computing (PODC),
pages 51–60, July 2018.

[2] Marcos K Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra J Marathe, Athanasios Xygkis, and Igor
Zablotchi. Microsecond consensus for microsecond
applications. USENIX Symposium on Operating System
Design and Implementation (OSDI), pages 599–616,
2020.

[3] Marcos K. Aguilera and Michael Walfish. No time for
asynchrony. In Proceedings of the 12th Conference on
Hot Topics in Operating Systems, HotOS’09, page 3,
USA, 2009. USENIX Association.

[4] Motti Beck and Michael Kagan. Performance evalu-
ation of the RDMA over ethernet (RoCE) standard in
enterprise data centers infrastructure. In Proceedings
of the 3rd Workshop on Data Center-Converged and
Virtual Ethernet Switching, pages 9–15, 2011.

[5] Christian Cachin, Rachid Guerraoui, and Luís Ro-
drigues. Introduction to reliable and secure distributed
programming. Springer Science & Business Media,
2011.

[6] Adrian M Caulfield, Eric S Chung, Andrew Putnam,
Hari Angepat, Jeremy Fowers, Michael Haselman,
Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, et al. A cloud-scale acceleration architecture.
In 2016 49th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 1–13. IEEE,
2016.

[7] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam
Toueg. The weakest failure detector for solving consen-
sus. Journal of the ACM (JACM), 43(4):685–722, July
1996.

[8] Intel Corporation. Volume 3B: System Programming
Guide, Part 2. In Intel 64 and IA-32 Architectures
Software Developer’s Manual. Intel Corporation, 2016.

[9] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, feb 2013.

[10] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: sim-
plified data processing on large clusters. Communica-
tions of the ACM, 51(1):107–113, 2008.

[11] Travis Downs. A benchmark for low-level CPU
micro-architectural features. https://github.com/
travisdowns/uarch-bench. Accessed 2022-05-25.

[12] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote mem-
ory. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 401–414,
April 2014.

[13] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. Journal
of the ACM (JACM), 35(2):288–323, 1988.

[14] Etcd. https://etcd.io. Accessed 2022-05-25.

[15] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking: Smart-
nics in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), pages 51–66, 2018.

[16] Michael J Fischer, Nancy A Lynch, and Michael S Pa-
terson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[17] Michael J Fischer, Nancy A Lynch, and Michael S Pa-
terson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM (JACM), April 1985.

[18] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In NSDI,
volume 11, pages 22–22, 2011.

[19] Peter H Hochschild, Paul Turner, Jeffrey C Mogul,
Rama Govindaraju, Parthasarathy Ranganathan,
David E Culler, and Amin Vahdat. Cores that don’t
count. In Proceedings of the Workshop on Hot Topics
in Operating Systems, pages 9–16, 2021.

[20] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX Annual Technical
Conference (ATC), June 2010.

[21] Zsolt István, David Sidler, and Gustavo Alonso. Cari-
bou: Intelligent distributed storage. Proceedings of the
VLDB Endowment, 10(11):1202–1213, 2017.

[22] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and
Ion Stoica. Netchain: Scale-free sub-RTT coordination.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 35–49, April 2018.

[23] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be general and fast. In USENIX

USENIX Association 2022 USENIX Annual Technical Conference 113

https://github.com/travisdowns/uarch-bench
https://github.com/travisdowns/uarch-bench
https://etcd.io

Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 1–16, February 2019.

[24] Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Using RDMA efficiently for key-value services.
In ACM Conference on SIGCOMM, pages 295–306,
August 2014.

[25] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design guidelines for high performance RDMA systems.
In USENIX Annual Technical Conference (ATC), pages
437–450, June 2016.

[26] Antonios Katsarakis, Vasilis Avrielatos, M R Siavash
Katebzadeh, Arpit Joshi, Aleksandar Dragojević, Boris
Grot, and Vijay Nagarajan. Hermes: A fast, fault-
tolerant and linearizable replication protocol. In In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), pages 201–217, March 2020.

[27] Colin King. stress-ng: A tool to load and
stress a computer system. https://github.com/
ColinIanKing/stress-ng. Accessed 2022-05-25.

[28] Patrick Knebel, Dan Berkram, Al Davis, Darel Emmot,
Paolo Faraboschi, and Gary Gostin. Gen-z chipsetfor ex-
ascale fabrics. In 2019 IEEE Hot Chips 31 Symposium
(HCS), pages 1–22. IEEE Computer Society, 2019.

[29] Marios Kogias and Edouard Bugnion. Hover-
cRaft: Achieving scalability and fault-tolerance for
microsecond-scale datacenter services. In European
Conference on Computer Systems (EuroSys), April
2020.

[30] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A
distributed messaging system for log processing. In
Proceedings of the NetDB, volume 11, pages 1–7, 2011.

[31] Avinash Lakshman and Prashant Malik. Cassandra—a
decentralized structured storage system. In Interna-
tional Workshop on Large Scale Distributed Systems
and Middleware (LADIS), October 2009.

[32] Leslie Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, may 1998.

[33] Joshua B. Leners, Trinabh Gupta, Marcos K. Aguil-
era, and Michael Walfish. Improving availability in
distributed systems with failure informers. In USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), April 2013.

[34] Joshua B. Leners, Trinabh Gupta, Marcos K. Aguilera,
and Michael Walfish. Taming uncertainty in distributed
systems with help from the network. In European Con-
ference on Computer Systems (EuroSys), April 2015.

[35] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K.
Aguilera, and Michael Walfish. Detecting failures
in distributed systems with the FALCON spy network.
In ACM Symposium on Operating Systems Principles
(SOSP), October 2011.

[36] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. Hpcc: High precision congestion control. In
Proceedings of the ACM Special Interest Group on Data
Communication, SIGCOMM ’19, page 44–58, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[37] Linux Kernel Developers. NO_HZ: Reducing
Scheduling-Clock Ticks. https://www.kernel.
org/doc/Documentation/timers/NO_HZ.txt.
Accessed 2022-05-25.

[38] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing one-sided RDMA reads to build a fast, CPU-efficient
key-value store. In 2013 USENIX Annual Technical
Conference (USENIX ATC 13), pages 103–114, 2013.

[39] René Peinl, Florian Holzschuher, and Florian Pfitzer.
Docker cluster management for the cloud-survey re-
sults and own solution. Journal of Grid Computing,
14(2):265–282, 2016.

[40] Gregory F Pfister. An introduction to the InfiniBand ar-
chitecture. High performance mass storage and parallel
I/O, 42(617-632):10, 2001.

[41] Marius Poke and Torsten Hoefler. DARE: High-
performance state machine replication on RDMA net-
works. In Symposium on High-Performance Parallel
and Distributed Computing (HPDC), pages 107–118.
ACM, June 2015.

[42] Linux RDMA. perftest: Infiniband verbs perfor-
mance tests. https://github.com/linux-rdma/
perftest. Accessed 2022-05-25.

[43] Red Hat, Inc. RHEL for Real Time Times-
tamping. https://access.redhat.com/
documentation/en-us/red_hat_enterprise_

linux_for_real_time/7/html/reference_

guide/chap-timestamping. Accessed 2022-05-25.

[44] Fred B Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys (CSUR), 22(4):299–319, 1990.

[45] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–10. Ieee, 2010.

114 2022 USENIX Annual Technical Conference USENIX Association

https://github.com/ColinIanKing/stress-ng
https://github.com/ColinIanKing/stress-ng
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-timestamping
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-timestamping
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-timestamping
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-timestamping

[46] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–10. Ieee, 2010.

[47] Swaminathan Sivasubramanian. Amazon dynamodb: a
seamlessly scalable non-relational database service. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 729–730,
2012.

[48] Anish Sukumaran and Vincent Gerard Nicotra. Lease
based leader election system, May 29 2018. US Patent
9984140.

[49] Mellanox Technologies. RDMA aware networks
programming user manual. rev 1.7. https://docs.
nvidia.com/networking/spaces/viewspace.
action?key=RDMAAwareProgrammingv17. Ac-
cessed 2022-05-25.

[50] Stephen Van Doren. HOTI 2019: Compute Express
Link. In 2019 IEEE Symposium on High-Performance
Interconnects (HOTI), pages 18–18. IEEE, 2019.

[51] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi,
and Heming Cui. APUS: Fast and scalable paxos on
RDMA. In Symposium on Cloud Computing (SoCC),
pages 94–107, September 2017.

[52] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing rdma-enabled distributed transac-
tions: Hybrid is better! In 13th USENIX Symposium on
Operating Systems Design and Implementation OSDI
18), pages 233–251, 2018.

[53] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using RDMA and HTM. In ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 87–104, October
2015.

[54] Tian Yang, Robert Gifford, Andreas Haeberlen, and
Linh Thi Xuan Phan. The synchronous data center. In
Proceedings of the Workshop on Hot Topics in Operating
Systems, pages 142–148, 2019.

[55] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim
Kraska. The end of a myth: Distributed transactions can
scale. Proc. VLDB Endow., 10(6):685–696, February
2017.

A One-sided Paxos

A.1 Assumptions
In the next subsections, we consider the M&M model [1]. It
allows processes to both pass messages and share memory.

We assume that communication channels are lossless and have
FIFO semantics, which is ensured by InfiniBand’s Reliable
Connections. The system has n processes Π = {p1, . . . , pn}
that can attain the roles of proposer or acceptor. There are p
proposers and n acceptors. Up to p−1 proposers and

⌊ n−1
2

⌋
acceptors may fail by crashing. As long as a process is alive,
its memory is remotely accessible. When a process crashes,
subsequent operations to its memory hang forever. We assume
partial synchrony for consensus’s liveness [17].

A.2 One-sided RPC
In this section, we prove that the one-sided RPCs of Algo-
rithm 1 are equivalent to two-sided RPCs when not obstructed.
Moreover, we prove that when equivalence is violated (due
to obstruction), one-sided RPCs have no side effects. We
assume that both compare and f are deterministic.

Lemma A.1. If cas-rpc does not abort, rpc and cas-rpc
are equivalent.

Proof. An execution of rpc solely depends on the value of
state and the input value x. We denote such execution of
rpc as 〈state,x〉rpc. If an execution of cas-rpc does not
abort, it solely depends on the value of expected fetched at
line 2 and the input value x. We denote such execution of
cas-rpc as 〈expected,x〉cas−rpc.

We show that any execution 〈s,x〉rpc is equivalent to the ex-
ecution 〈s,x〉cas−rpc in the sense that both rpc and cas-rpc
will have the same state value and return the same projec-
tion at the end of their execution.

If an execution 〈s1,x〉rpc makes the comparison at line 3
fail, then state is not modified and proj(s1) is returned.
In the execution 〈s1,x〉cas−rpc, the comparison at line 3 will
also fail and proj(s1) is also returned without modifying
the remote state. In this case, both executions are equivalent.

If an execution 〈s2,x〉rpc makes the comparison at line
3 succeed, then state is modified to f(s2, x) and
proj(f(s2, x)) is returned. In the execution 〈s2,x〉cas−rpc,
the comparison at line 3 will also succeed. As the execu-
tion is assumed not to abort, the CAS will succeed. Thus
the remote state will atomically be updated from s2 to f(s2,
x) and proj(f(s2, x)) is also returned. In this case, both
executions are also equivalent.

Lemma A.2. If cas-rpc aborts, it has no side effects.

Proof. If cas-rpc aborts, the comparison at line 7 has failed.
This implies that the CAS failed and thus that state is unaf-
fected by the execution.

From lemmas A.1 and A.2, cas-rpc exhibits all-or-
nothing atomicity. We now prove that such a transformation
is obstruction-free.

Lemma A.3. If cas-rpc runs alone, it does not abort.

USENIX Association 2022 USENIX Annual Technical Conference 115

https://docs.nvidia.com/networking/spaces/viewspace.action?key=RDMAAwareProgrammingv17
https://docs.nvidia.com/networking/spaces/viewspace.action?key=RDMAAwareProgrammingv17
https://docs.nvidia.com/networking/spaces/viewspace.action?key=RDMAAwareProgrammingv17

Proof. Let’s assume by contradiction that cas-rpc runs
alone and aborts. For cas-rpc to abort, the comparison
at line 7 must have failed. This implies that the CAS at line 6
failed due to state not matching expected. state must
thus have been updated between lines 2 and 6. This implies a
concurrent execution, hence a contradiction.

A.3 Consensus and Abortable Consensus
In the consensus problem, processes propose individual val-
ues and eventually irrevocably decide on one of them. For-
mally, consensus has the following properties:

Termination Every correct process eventually decides once.

Uniform agreement If v and v′ are decided on, then v = v′.

Validity If v is decided on, v is the input of some process.

We implement consensus by composing two abstractions:

• Abortable consensus [5], an abstraction weaker than
consensus that is solvable in the asynchronous model,

• Eventually perfect leader election [7], the weakest failure
detector required to solve consensus.

Abortable consensus is identical to consensus except for:

Termination Every correct process eventually decides once
or aborts.

Decision If a single process proposes infinitely many times,
it eventually decides.

A.4 One-sided Abortable Consensus
Algorithm 3 appears in [5] and implements abortable con-

sensus Algorithm 4 transforms algorithm 3 by replacing its
RPCs with CAS-based RPCs. This transformation causes it
to abort strictly more than the original algorithm. To see why,
consider the following execution: Let proposers P1 and P2
concurrently initiate the Prepare phase with respective pro-
posals 1 and 2. Both fetch the remote state and get 〈0,0,⊥〉.
Then, P1 succeeds in writing its proposal to acceptor A1. Later
on, the CAS of P2 fails at A1 as the value is now 〈1,0,⊥〉 in-
stead of the expected 〈0,0,⊥〉. Thus, P2 aborts even if it had
a larger proposal number than P1. The more relaxed compar-
ison in the original algorithm would not have caused P2 to
abort.

Lemma A.4. Algorithm 4 preserves Decision.

Proof. If a single process proposes infinitely many times,
it will eventually run the one-sided RPCs obstruction-free.
By Lemma A.3, this guarantees that the one-sided RPCs
will eventually terminate without aborting. In such case,
Lemma A.1 guarantees the execution to be equivalent to one
of the original algorithm. Thus, the transformation preserves
the decision property of Algorithm 3.

Algorithm 3: Paxos’s Abortable Core
1 Proposers execute:
2 decided = False
3 proposal = id
4 proposed_value = ⊥

6 def propose(value):
7 proposed_value = value
8 prepare()
9 accept()

11 def prepare():
12 proposal = proposal + |Π|
13 broadcast 〈Prepare | proposal〉
14 wait for a majority of 〈Prepared | ack, ap, av〉
15 adopt av with highest ap as proposed_value
16 if any not ack: abort

18 def accept():
19 broadcast 〈Accept | proposal, proposed_value〉
20 wait for a majority of 〈Accepted | mp〉
21 if any mp > proposal: abort
22 trigger once 〈Decide | proposed_value〉

24 Acceptors execute:
25 min_proposal = 0
26 accepted_proposal = 0
27 accepted_value = ⊥

29 upon 〈Prepare | proposal〉:
30 if proposal > min_proposal: min_proposal = n
31 reply 〈Prepared | min_proposal == n, accepted_proposal,

↪→ accepted_value〉

33 upon 〈Accept | proposal, value〉:
34 if proposal ≥ min_proposal:
35 accepted_proposal = min_proposal = n
36 accepted_value = value
37 reply 〈Accepted | min_proposal〉

Lemma A.5. Algorithm 4 preserves Termination.

Proof. Assuming a majority of correct acceptors, CASes
will eventually complete at a majority. Due to the absence
of loops or blocking operations inside prepare, accept,
cas_prepare and cas_accept in algorithm 4 (apart from
waiting for the completion of CASes at a majority), a proposer
that invokes propose will either abort or decide.

Algorithms 3 and 4 differ only in some executions where
the transformed algorithm aborts whereas the original does
not. Nevertheless, aborting does not violate safety, as we
show next.

Lemma A.6. Algorithm 4 preserves the safety properties.

Proof. Assume, by contradiction, that adding superfluous
abortions in Algorithm 3 violates safety. Consider an ex-
ecution E1, where processes {P1, ..., Pn} deviate from the
algorithm and abort at times {t1, ..., tn} after which the global
state is {S1, ..., Sn} and safety is violated. Also, consider
another execution E2, where processes {P1, ..., Pn} crash at
times {t1, ..., tn} after which the global state is {S1, ..., Sn}. In
execution E1, safety is violated. On the other hand, execution
E2 preserves safety, since Algorithm 3 tolerates arbitrarily
many proposer crashing. The two executions, however, are

116 2022 USENIX Annual Technical Conference USENIX Association

Algorithm 4: One-sided Abortable Consensus
1 Acceptors execute:
2 state = { min_proposal: 0, accepted_proposal: 0,

↪→ accepted_value: ⊥}

4 Proposers execute:
5 proposal = id
6 proposed_value = ⊥

8 def propose(value):
9 proposed_value = value

10 prepare()
11 accept()

13 def prepare():
14 proposal = proposal + |Π|
15 async cas_prepare(p) for p in Acceptors
16 wait for a majority to return 〈ack, ap, av〉
17 if any not ack: abort
18 adopt av with highest ap as proposed_value

20 def accept():
21 async cas_accept(p) for p in Acceptors
22 wait for a majority to return mp
23 if any mp > proposal: abort
24 trigger once 〈Decide | proposed_value〉

26 def cas_prepare(p):
27 expected = fetch_state(p)
28 if not proposal > expected.min_proposal:
29 return 〈False, expected.accepted_proposal, expected.

↪→ accepted_value〉
30 move_to = expected
31 move_to.min_proposal = proposal
32 read = statep.cas(expected, move_to)
33 if read == expected:
34 return 〈True, expected.accepted_proposal, expected.

↪→ accepted_value〉
35 abort

37 def cas_accept(p):
38 expected = fetch_state(p)
39 if not proposal ≥ expected.min_proposal:
40 return expected.min_proposal
41 move_to = expected
42 move_to.min_proposal = proposal
43 move_to.accepted_proposal = proposal
44 move_to.accepted_value = proposed_value
45 read = statep.cas(expected, move_to)
46 if read == expected:
47 return expected.min_proposal
48 abort

indistinguishable, hence a contradiction. Thus, Algorithm 4
preserves safety regardless of how often it aborts.

Theorem A.7. Algorithm 4 implements abortable consensus.

Proof. The result follows directly by composing lemmas A.4,
A.5 and A.6.

A.5 Streamlined One-sided Algorithm
In this section, we make Algorithm 4 efficient in order to
increase its practicality.

First, it is not required to fetch the remote state at the start
of each RPC. As it is safe to have stale expected states, it is
safe to use states deduced from previous CASes. Predicted
states can thus be initialized to 〈0,0,⊥〉 and updated each
time a CAS completes (either succeeding or not). Moreover,

wrongly predicting states can only result in superfluous aborts
which have been proven to be safe by Lemma A.6. Thus, it is
safe to optimistically assume that onflight CASes will succeed.
Second, in the Prepare phase, the proposal variable can be
increased upfront to value higher than any predicted remote
min_proposal to reduce predictable abortions.

Algorithm 5: Streamlined One-sided Abortable Consensus
1 Acceptors execute:
2 state = { min_proposal: 0, accepted_proposal: 0,

↪→ accepted_value: ⊥}

4 Proposers execute:
5 predicted[] = { 0, 0, ⊥}
6 proposal = id
7 proposed_value = ⊥

9 def propose(value):
10 proposed_value = value
11 prepare()
12 accept()

14 def prepare():
15 while any predicted[.].min_proposal ≥ proposal:
16 proposal = proposal + |Π|
17 for p in Acceptors:
18 move_to[p] = {min_proposal: proposal, ..predicted[p]}
19 reads[p] = async statep.cas(predicted[p], move_to[p])
20 wait until majority of states are read
21 for p in Acceptors:
22 if reads[p] ∈ {predicted[p], ⊥}:
23 predicted[p] = move_to[p]
24 else:
25 predicted[p] = reads[p]
26 if any CAS failed: abort
27 adopt proposed_value from predicted accepted_values with

↪→ highest accepted_proposal if any

29 def accept():
30 reads = ⊥|Acceptors|

31 move_to = (proposal, proposal, proposed_value)
32 for p in Acceptors:
33 reads[p] = async statep.cas(predicted[p], move_to)
34 wait until majority of states are read
35 if any CAS failed:
36 for p in Acceptors:
37 if reads[p] ∈ {predicted[p], ⊥}:
38 predicted[p] = move_to
39 else:
40 predicted[p] = reads[p]
41 abort
42 trigger once 〈Decide | proposed_value〉

With the aforementioned optimisations, Algorithm 4 is
transformed into Algorithm 5. Notably, the liveness of the
resulting algorithm is preserved: Let’s assume that a single
proposer runs infinitely many times. Eventually, it will run
obstruction-free. In the worst case, each time it will abort at
line 26 or 41 because of a single wrong guess and update its
prediction. The optimistic update of expected states at lines
23 and 38 and the FIFO semantics of communication links
provide that, once a remote state is correctly guessed, any
later CAS will succeed. Thus, after at most n runs, all CASes
will succeed and the proposer will decide.

USENIX Association 2022 USENIX Annual Technical Conference 117

A.6 Overcoming Limited CAS Size
As explained in Section 5.3.1, the RDMA hardware limits
the size of CASes. Thus, proposal fields will overflow after
216 attempts. In such an unlikely scenario, our consensus en-
gine falls back to traditional RPC: Once the RDMA-exposed
min_proposal of an acceptor reaches 216−|Π|, proposers
switch to RPC to communicate with this specific acceptor. Ac-
ceptors check state and, if it is above the threshold, initiate
the standard RPC version of Paxos with the min_proposal,
accepted_proposal and accepted_value variables ini-
tialized to match state.

B Active Method Correctness

In this section, we provide a formal definition and a proof of
correctness of the Active method described in Section 6.

B.1 Formal Definition
Active(Membership)→bool has the following properties:

Monotonicity If Active(M’) returns true at any process,
future calls Active(M) with M < M′ will return false.

Convergence If M is the last membership to be decided (if
any), invoking Active(M) will eventually return true
at all correct processes.

Definition 1. If Active(M) returns true, then M is consid-
ered active at the linearization point of the call.

Definition 2. If M is active at times t and t ′, then it is consid-
ered active in the interval [t, t ′].

From these simple properties and definitions, it follows
that no two active memberships can overlap.

Theorem B.1. Only one membership can be active at a time.

Proof. Assume by contradiction that M and M′ (M < M′)
are simultaneously active. By definition, Active(M) must
have returned true after Active(M’) returned true. This
breaks Monotonicity, hence a contradiction.

B.2 Non-leased Active Membership
We prove the correctness of uKharon’s implementation of
Active. We assume no gaps in the sequence of decided
memberships. This is enforced by coordinators by not propos-
ing the (k+1)-th membership until the k-th is decided.

Lemma B.2. Algorithm 6 ensures Monotonicity.

Proof. Active can only be called on decided memberships.
Let M and M′ be two decided memberships with M < M′. If
Active(M’) returned true, by the no-gap assumption, all

Algorithm 6: Active built on top of the consensus engine
1 def Active(M) → bool:
2 reads = ⊥|Acceptors|

3 for p in Acceptors:
4 reads[p] = async paxos[M.id + 1].slotp.read()
5 wait until majority of slots are read
6 if all slots are not accepted:
7 return true
8 propose_membership(M.id + 1, first accepted value)
9 return false

memberships between M and M′ have been decided. Because
M’s successor has been decided, a majority of acceptors’ slots
M.id + 1 have been written. Thus, Active(M) will read at
least one non-empty slot and return false.

Lemma B.3. Algorithm 6 ensures Convergence.

Proof. Assume by contradiction that M is the last decided
membership and Active(M) never returns true at some cor-
rect process. Thus, this process executes line 8, which means
that it proposes a new membership. Given that the process is
correct, some membership with id M.id + 1 will eventually
be decided. Therefore, M is not the last membership, hence a
contradiction.

Theorem B.4. Algorithm 6 implements Active.

Proof. Follows directly from Lemmas B.2 and B.3.

B.3 Leased Active Membership
Algorithm 2 reduces communication by leasing the output of
Algorithm 6. We prove that it preserves Active’s properties.

Lemma B.5. Algorithm 2 preserves Monotonicity.

Proof. Let e be an execution of Active(M) that returned
true. e either returned at line 9 or at line 12 with t >
tstart . We denote the former case leased(M) and the latter
checked(M). Assume by contradiction that Active(M’) re-
turned true in an execution e1 and then Active(M) returned
true in an execution e2 with M < M′. Either:

• leased(M): In e2, majority_active(M) returned
true at most δ before Active(M) returned true.
In e1, lines 5−7 ensure that M′ was decided at
least δ before Active(M’) returned true. Thus,
majority_active(M) returned true after M′ was de-
cided. However, because M′ has been decided, a major-
ity of acceptors’ slots M’.id = M.id + 1 must have been
written. Thus, majority_active(M) should have
read at least one non-empty slot and returned false.
Hence, a contradiction.

• checked(M): majority_active(M) returned true
after majority_active(M’) returned true. This
breaks majority_active’s Monotonicity, hence a
contradiction.

118 2022 USENIX Annual Technical Conference USENIX Association

Lemma B.6. Algorithm 2 preserves Convergence.

Proof. Assume that M is the last membership to be decided.
Thus, majority_active(M) will eventually always return
true. At most δ after Active(M) returns for the first time,
tstart will be in the past and leased_membership set to M.
Thus, eventually, the else branch at line 8 will always be
visited and either return true via line 9 or 12.

Theorem B.7. Algorithm 2 implements Active.

Proof. Follows directly from Lemmas B.5 and B.6.

C Clocks

uKharon relies on hardware timestamps to check if a member-
ship is Active. When using modern Intel processors, Linux
has three available clocksources: tsc, hpet and acpi_pm.
The tsc clocksource is the most efficient and requires 20-
25ns to take a timestamp [11].

Architectural considerations. The tsc clocksource uses In-
tel’s TSC hardware to measure time accurately. TSC stores
the number of cycles executed by the CPU after the latest reset.
Traditionally, TSC is considered an unreliable way to take
timestamps. The reason is that Intel processors have variable
clock speed, thus the number of cycles does not correspond
to wallclock time. However, modern Intel processors have
three features [8]: Constant TSC, Nonstop TSC and Invariant
TSC which solve this problem. The combination of these
features results in a TSC that is incremented at a constant rate
regardless of the power state of the processor. As a result, it
is safe to use this counter for efficient timestamping.

TSC synchrony. In Intel processors, every core has its own
TSC. All processors in the same socket start the TSC hard-
ware using the same RESET signal, thus the absolute values
of the TSC across cores of the same socket match. This
means that one can compare safely the values of TSC across
different cores, assuming that all TSCs run at the same fre-
quency. Because this assumption does not always hold, Linux
determines the base frequency of every core during boot and
uses this frequency to convert clock cycles to wallclock time.
To accomplish it, Linux uses the more accurate (and more
expensive) hpet.

uKharon takes further care to deal with TSC synchrony.
More precisely, it checks for the synchronization of TSC
between cores using a ping-pong test. In this test, core A
takes a timestamp t1 and signals core B to do the same. Core
A signals core B by writing to a lock-free Single-Producer
Single-Consumer (SPSC) queue that is polled by B. When
B receives the signal it also takes a timestamp t2 and sends
it back to A (using another SPSC queue). Upon reception of
the timestamp from B, core A takes the last timestamp t3. In

our test we confirm that always t1 < t2 < t3. Additionally, in
our hardware, the minimum difference between t1 and t2 is
ε = min(t2− t1) is 64ns. uKharon takes ε into consideration
by incorporating into the leases as follows: Suppose a lease is
valid for a duration of δ starting at time t. uKharon considers
that the lease starts at time t + ε and has a duration of t +d−
2ε.

Inter-machine clock drift. In order to ensure that active
memberships do not overlap, uKharon assumes that clock
drift is bounded, i.e., that time passes approximately at the
same speed on different machines. This assumption is nec-
essary to enable client-side leases. It guarantees that after a
lease duration period, leases across all clients will have to
be renewed. Our system is built to tolerate clock drift, as
long as this drift is bounded. We experimentally determine
an upper bound for the clock drift with a simple test. In this
test, machine A takes a timestamp t1 and pings machine B
to wait for 1 minute before replying back to it. Upon recep-
tion of B’s response, A takes another timestamp t2. It then
computes t2− t1 and compares it to the expected 1 minute
measured by B (after removing the communication delay).
We repeat this test several times and determine that the clock
drift between machines differs by at most 0.001%. uKharon
incorporates inter-machine clock drift by waiting 1.01× δ

upon membership discovery, ensuring that when leases be-
come active on a new membership, everyone’s leases on the
previous membership will have expired.

D Artifact

Abstract

The evaluated artifact is provided as a git repository and con-
tains the source code of uKharon, build instructions and de-
ployment scripts to run the experiments presented in this
paper.

Scope

The artifact contains code and steps to reproduce results ob-
tained in Figure 3, Figure 4, Figure 5 and Table 2.

Contents

The artifact contains the source code of uKharon, including
the custom kernel modules. It also contains the patches to
create the custom Linux kernel, as well as the patches required
for HERD [24] and Mu [2]. The artifact describes how to
build everything presented in the paper, including the custom
Linux kernel and the solutions we compare against. It also
describes how to deploy the built binaries.

USENIX Association 2022 USENIX Annual Technical Conference 119

Hosting
The artifact source code for uKharon is available at https:
//github.com/LPD-EPFL/ukharon. All the necessary in-
structions are provided in the README.md file.

Requirements
Building uKharon requires an x86-64 system set-up with
Ubuntu 20.04 LTS. Executing uKharon requires 8 machines
equipped with Ubuntu 20.04 LTS, RDMA over InfiniBand,
ability to install a custom kernel and custom kernel modules,
as well as ability to configure and use InfiniBand multicast
groups.

120 2022 USENIX Annual Technical Conference USENIX Association

https://github.com/LPD-EPFL/ukharon
https://github.com/LPD-EPFL/ukharon

	Introduction
	Background
	Membership Service
	RDMA
	Communication Model

	Design Overview
	Architecture
	Communication
	Challenges

	Microsecond Failure Detection
	Multi-level Failure Detection
	uKharon's Failure Detectors

	Microsecond Consensus
	Consensus and Paxos
	One-sided Paxos
	uKharon's Consensus Engine
	Practical Considerations
	Comparison with the State-of-the-art

	Microsecond Real-timeness
	The Active Method
	Leases
	Extensions

	Evaluation
	Overhead Induced by uKharon
	Failover Time
	uKharon-KV

	Related Work
	Conclusion
	One-sided Paxos
	Assumptions
	One-sided RPC
	Consensus and Abortable Consensus
	One-sided Abortable Consensus
	Streamlined One-sided Algorithm
	Overcoming Limited CAS Size

	Active Method Correctness
	Formal Definition
	Non-leased Active Membership
	Leased Active Membership

	Clocks
	Artifact

