

https://github.com/LPD-EPFL/ukharon

https://github.com/travisdowns/uarch-bench
https://github.com/travisdowns/uarch-bench
https://etcd.io

https://github.com/ColinIanKing/stress-ng
https://github.com/ColinIanKing/stress-ng
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-timestamping
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-timestamping
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-timestamping
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-timestamping

https://docs.nvidia.com/networking/spaces/viewspace.action?key=RDMAAwareProgrammingv17
https://docs.nvidia.com/networking/spaces/viewspace.action?key=RDMAAwareProgrammingv17
https://docs.nvidia.com/networking/spaces/viewspace.action?key=RDMAAwareProgrammingv17

Algorithm 4: One-sided Abortable Consensus
1 Acceptors execute:
2 state = { min_proposal: 0, accepted_proposal: 0,

,! accepted_value: ?}

4 Proposers execute:
5 proposal = id
6 proposed_value = ?

8 def propose(value):
9 proposed_value = value

10 prepare()
11 accept()

13 def prepare():
14 proposal = proposal + jPj
15 async cas_prepare(p) for p in Acceptors
16 wait for a majority to return hack, ap, avi
17 if any not ack: abort
18 adopt av with highest ap as proposed_value

20 def accept():
21 async cas_accept(p) for p in Acceptors
22 wait for a majority to return mp
23 if any mp > proposal: abort
24 trigger once hDecide | proposed_valuei

26 def cas_prepare(p):
27 expected = fetch_state(p)
28 if not proposal > expected.min_proposal:
29 return hFalse, expected.accepted_proposal, expected.

,! accepted_valuei
30 move_to = expected
31 move_to.min_proposal = proposal
32 read = statep.cas(expected, move_to)
33 if read == expected:
34 return hTrue, expected.accepted_proposal, expected.

,! accepted_valuei
35 abort

37 def cas_accept(p):
38 expected = fetch_state(p)
39 if not proposal � expected.min_proposal:
40 return expected.min_proposal
41 move_to = expected
42 move_to.min_proposal = proposal
43 move_to.accepted_proposal = proposal
44 move_to.accepted_value = proposed_value
45 read = statep.cas(expected, move_to)
46 if read == expected:
47 return expected.min_proposal
48 abort

indistinguishable, hence a contradiction. Thus, Algorithm 4
preserves safety regardless of how often it aborts.

Theorem A.7. Algorithm 4 implements abortable consensus.

Proof. The result follows directly by composing lemmas A.4,
A.5 and A.6.

A.5 Streamlined One-sided Algorithm
In this section, we make Algorithm 4 efficient in order to
increase its practicality.

First, it is not required to fetch the remote state at the start
of each RPC. As it is safe to have stale expected states, it is
safe to use states deduced from previous CASes. Predicted
states can thus be initialized to h0;0;?i and updated each
time a CAS completes (either succeeding or not). Moreover,

wrongly predicting states can only result in superfluous aborts
which have been proven to be safe by Lemma A.6. Thus, it is
safe to optimistically assume that onflight CASes will succeed.
Second, in the Prepare phase, the proposal variable can be
increased upfront to value higher than any predicted remote
min_proposal to reduce predictable abortions.

Algorithm 5: Streamlined One-sided Abortable Consensus
1 Acceptors execute:
2 state = { min_proposal: 0, accepted_proposal: 0,

,! accepted_value: ?}

4 Proposers execute:
5 predicted[] = { 0, 0, ?}
6 proposal = id
7 proposed_value = ?

9 def propose(value):
10 proposed_value = value
11 prepare()
12 accept()

14 def prepare():
15 while any predicted[.].min_proposal � proposal:
16 proposal = proposal + jP|
17 for p in Acceptors:
18 move_to[p] = {min_proposal: proposal, ..predicted[p]}
19 reads[p] = async statep.cas(predicted[p], move_to[p])
20 wait until majority of states are read
21 for p in Acceptors:
22 if reads[p] 2 {predicted[p], ?}:
23 predicted[p] = move_to[p]
24 else:
25 predicted[p] = reads[p]
26 if any CAS failed: abort
27 adopt proposed_value from predicted accepted_values with

,! highest accepted_proposal if any

29 def accept():
30 reads = ?jAcceptorsj

31 move_to = (proposal, proposal, proposed_value)
32 for p in Acceptors:
33 reads[p] = async statep.cas(predicted[p], move_to)
34 wait until majority of states are read
35 if any CAS failed:
36 for p in Acceptors:
37 if reads[p] 2 {predicted[p], ?}:
38 predicted[p] = move_to
39 else:
40 predicted[p] = reads[p]
41 abort
42 trigger once hDecide | proposed_valuei

With the aforementioned optimisations, Algorithm 4 is
transformed into Algorithm 5. Notably, the liveness of the
resulting algorithm is preserved: Let’s assume that a single
proposer runs infinitely many times. Eventually, it will run
obstruction-free. In the worst case, each time it will abort at
line 26 or 41 because of a single wrong guess and update its
prediction. The optimistic update of expected states at lines
23 and 38 and the FIFO semantics of communication links
provide that, once a remote state is correctly guessed, any
later CAS will succeed. Thus, after at most n runs, all CASes
will succeed and the proposer will decide.

USENIX Association 2022 USENIX Annual Technical Conference 117

A.6 Overcoming Limited CAS Size
As explained in Section 5.3.1, the RDMA hardware limits
the size of CASes. Thus, proposal fields will overflow after
216 attempts. In such an unlikely scenario, our consensus en-
gine falls back to traditional RPC: Once the RDMA-exposed
min_proposal of an acceptor reaches 216�jPj, proposers
switch to RPC to communicate with this specific acceptor. Ac-
ceptors check state and, if it is above the threshold, initiate
the standard RPC version of Paxos with the min_proposal,
accepted_proposal and accepted_value variables ini-
tialized to match state.

B Active Method Correctness

In this section, we provide a formal definition and a proof of
correctness of the Active method described in Section 6.

B.1 Formal Definition
Active(Membership)!bool has the following properties:

Monotonicity If Active(M’) returns true at any process,
future calls Active(M) with M < M0 will return false.

Convergence If M is the last membership to be decided (if
any), invoking Active(M) will eventually return true
at all correct processes.

Definition 1. If Active(M) returns true, then M is consid-
ered active at the linearization point of the call.

Definition 2. If M is active at times t and t 0, then it is consid-
ered active in the interval [t; t 0].

From these simple properties and definitions, it follows
that no two active memberships can overlap.

Theorem B.1. Only one membership can be active at a time.

Proof. Assume by contradiction that M and M0 (M < M0)
are simultaneously active. By definition, Active(M) must
have returned true after Active(M’) returned true. This
breaks Monotonicity, hence a contradiction.

B.2 Non-leased Active Membership
We prove the correctness of uKharon’s implementation of
Active. We assume no gaps in the sequence of decided
memberships. This is enforced by coordinators by not propos-
ing the (k + 1)-th membership until the k-th is decided.

Lemma B.2. Algorithm 6 ensures Monotonicity.

Proof. Active can only be called on decided memberships.
Let M and M0 be two decided memberships with M < M0. If
Active(M’) returned true, by the no-gap assumption, all

Algorithm 6: Active built on top of the consensus engine
1 def Active(M) ! bool:
2 reads = ?jAcceptorsj

3 for p in Acceptors:
4 reads[p] = async paxos[M.id + 1].slotp.read()
5 wait until majority of slots are read
6 if all slots are not accepted:
7 return true
8 propose_membership(M.id + 1, first accepted value)
9 return false

memberships between M and M0 have been decided. Because
M’s successor has been decided, a majority of acceptors’ slots
M.id + 1 have been written. Thus, Active(M) will read at
least one non-empty slot and return false.

Lemma B.3. Algorithm 6 ensures Convergence.

Proof. Assume by contradiction that M is the last decided
membership and Active(M) never returns true at some cor-
rect process. Thus, this process executes line 8, which means
that it proposes a new membership. Given that the process is
correct, some membership with id M.id + 1 will eventually
be decided. Therefore, M is not the last membership, hence a
contradiction.

Theorem B.4. Algorithm 6 implements Active.

Proof. Follows directly from Lemmas B.2 and B.3.

B.3 Leased Active Membership
Algorithm 2 reduces communication by leasing the output of
Algorithm 6. We prove that it preserves Active’s properties.

Lemma B.5. Algorithm 2 preserves Monotonicity.

Proof. Let e be an execution of Active(M) that returned
true. e either returned at line 9 or at line 12 with t >
tstart . We denote the former case leased(M) and the latter
checked(M). Assume by contradiction that Active(M’) re-
turned true in an execution e1 and then Active(M) returned
true in an execution e2 with M < M0. Either:

• leased(M): In e2, majority_active(M) returned
true at most d before Active(M) returned true.
In e1, lines 5�7 ensure that M0 was decided at
least d before Active(M’) returned true. Thus,
majority_active(M) returned true after M0 was de-
cided. However, because M0 has been decided, a major-
ity of acceptors’ slots M’.id = M.id + 1 must have been
written. Thus, majority_active(M) should have
read at least one non-empty slot and returned false.
Hence, a contradiction.

• checked(M): majority_active(M) returned true
after majority_active(M’) returned true. This
breaks majority_active’s Monotonicity, hence a
contradiction.

118 2022 USENIX Annual Technical Conference USENIX Association

Lemma B.6. Algorithm 2 preserves Convergence.

Proof. Assume that M is the last membership to be decided.
Thus, majority_active(M) will eventually always return
true. At most d after Active(M) returns for the first time,
tstart will be in the past and leased_membership set to M.
Thus, eventually, the else branch at line 8 will always be
visited and either return true via line 9 or 12.

Theorem B.7. Algorithm 2 implements Active.

Proof. Follows directly from Lemmas B.5 and B.6.

C Clocks

uKharon relies on hardware timestamps to check if a member-
ship is Active. When using modern Intel processors, Linux
has three available clocksources: tsc, hpet and acpi_pm.
The tsc clocksource is the most efficient and requires 20-
25ns to take a timestamp [11].

Architectural considerations. The tsc clocksource uses In-
tel’s TSC hardware to measure time accurately. TSC stores
the number of cycles executed by the CPU after the latest reset.
Traditionally, TSC is considered an unreliable way to take
timestamps. The reason is that Intel processors have variable
clock speed, thus the number of cycles does not correspond
to wallclock time. However, modern Intel processors have
three features [8]: Constant TSC, Nonstop TSC and Invariant
TSC which solve this problem. The combination of these
features results in a TSC that is incremented at a constant rate
regardless of the power state of the processor. As a result, it
is safe to use this counter for efficient timestamping.

TSC synchrony. In Intel processors, every core has its own
TSC. All processors in the same socket start the TSC hard-
ware using the same RESET signal, thus the absolute values
of the TSC across cores of the same socket match. This
means that one can compare safely the values of TSC across
different cores, assuming that all TSCs run at the same fre-
quency. Because this assumption does not always hold, Linux
determines the base frequency of every core during boot and
uses this frequency to convert clock cycles to wallclock time.
To accomplish it, Linux uses the more accurate (and more
expensive) hpet.

uKharon takes further care to deal with TSC synchrony.
More precisely, it checks for the synchronization of TSC
between cores using a ping-pong test. In this test, core A
takes a timestamp t1 and signals core B to do the same. Core
A signals core B by writing to a lock-free Single-Producer
Single-Consumer (SPSC) queue that is polled by B. When
B receives the signal it also takes a timestamp t2 and sends
it back to A (using another SPSC queue). Upon reception of
the timestamp from B, core A takes the last timestamp t3. In

our test we confirm that always t1 < t2 < t3. Additionally, in
our hardware, the minimum difference between t1 and t2 is
e = min(t2� t1) is 64ns. uKharon takes e into consideration
by incorporating into the leases as follows: Suppose a lease is
valid for a duration of d starting at time t. uKharon considers
that the lease starts at time t + e and has a duration of t +d�
2e.

Inter-machine clock drift. In order to ensure that active
memberships do not overlap, uKharon assumes that clock
drift is bounded, i.e., that time passes approximately at the
same speed on different machines. This assumption is nec-
essary to enable client-side leases. It guarantees that after a
lease duration period, leases across all clients will have to
be renewed. Our system is built to tolerate clock drift, as
long as this drift is bounded. We experimentally determine
an upper bound for the clock drift with a simple test. In this
test, machine A takes a timestamp t1 and pings machine B
to wait for 1 minute before replying back to it. Upon recep-
tion of B’s response, A takes another timestamp t2. It then
computes t2� t1 and compares it to the expected 1 minute
measured by B (after removing the communication delay).
We repeat this test several times and determine that the clock
drift between machines differs by at most 0.001%. uKharon
incorporates inter-machine clock drift by waiting 1:01� d

upon membership discovery, ensuring that when leases be-
come active on a new membership, everyone’s leases on the
previous membership will have expired.

D Artifact

Abstract

The evaluated artifact is provided as a git repository and con-
tains the source code of uKharon, build instructions and de-
ployment scripts to run the experiments presented in this
paper.

Scope

The artifact contains code and steps to reproduce results ob-
tained in Figure 3, Figure 4, Figure 5 and Table 2.

Contents

The artifact contains the source code of uKharon, including
the custom kernel modules. It also contains the patches to
create the custom Linux kernel, as well as the patches required
for HERD [24] and Mu [2]. The artifact describes how to
build everything presented in the paper, including the custom
Linux kernel and the solutions we compare against. It also
describes how to deploy the built binaries.

USENIX Association 2022 USENIX Annual Technical Conference 119

Hosting
The artifact source code for uKharon is available at https:
//github.com/LPD-EPFL/ukharon. All the necessary in-
structions are provided in the README.md file.

Requirements
Building uKharon requires an x86-64 system set-up with
Ubuntu 20.04 LTS. Executing uKharon requires 8 machines
equipped with Ubuntu 20.04 LTS, RDMA over InfiniBand,
ability to install a custom kernel and custom kernel modules,
as well as ability to configure and use InfiniBand multicast
groups.

120 2022 USENIX Annual Technical Conference USENIX Association

https://github.com/LPD-EPFL/ukharon
https://github.com/LPD-EPFL/ukharon

	
	
	
	
	

	
	
	
	

	
	
	

	
	
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	
	
	
	
	
	

	

