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Abstract
Stateful distributed stream processing engines (SPEs) usually
call for dynamic rescaling due to varying workloads. How-
ever, existing state migration approaches suffer from latency
spikes, or high resource usage, or major disruptions as they ig-
nore the order of state migration during rescaling. This paper
reveals the importance of state migration order to the latency
performance in SPEs. Based on that, we propose Meces, an
on-the-fly state migration mechanism which prioritizes the
state migration of hot keys (those being processed or about
to be processed by downstream operator tasks) to achieve
smooth rescaling. Meces leverages a fetch-on-demand design
which migrates operator states at record-granularity for state
consistency. We further devise a hierarchical state data struc-
ture and gradual strategy for migration efficiency. Meces is
implemented on Apache Flink and evaluated with diversified
benchmarks and scenarios. Compared to state-of-the-art ap-
proaches, Meces improves stream processing performance in
terms of latency and throughput during rescaling by orders
of magnitude, with negligible overhead and no disruption to
non-rescaling periods.

1 Introduction

In recent years, stateful Stream Processing Engines
(SPEs) [16, 19, 33, 44, 53] have been widely adopted because
of the increasing demands for complicated analytics over
real-time data, e.g. fraud detection, log monitoring, sentiment
analysis, and IoT applications [11, 13, 51, 60].

SPEs are expected to be long-running and always have
low latency performance [21,22]. It commonly requires SPEs
to perform dynamic rescaling in the face of unpredictable
circumstances (e.g. data rate fluctuations, machine failures,
processing stragglers). However, as the processing operators
in SPE are usually stateful and partitioned across workers,
rescaling them calls for state migration, which means moving
state data between workers, even across networks [26].

The problem of state migration in SPEs is fundamental and
challenging. Prior major advances made in the last decades
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Figure 1: Impact of migration order on processing latency.
The Y-axis indicates event-time latency, i.e., interval between
a record’s event-time and its emission-time from the output
operator [30]. Point (X ,Y ) means the average processing la-
tency of the records generated at Xms is Y ms.

can be classified into four categories: (1) Full-Restart ap-
proach [16,33,53] pauses and resumes the whole task when re-
distributing states. (2) Partial-Pause approach [14, 52] restarts
a subgraph instead of the whole job topology to reduce exe-
cution blocking. (3) Replicated-Dataflow approach [47, 61]
executes a new dataflow in parallel with the old one until
finishing the state migration. (4) Proactive approach [26, 43]
adds extra behaviour to non-rescaling stream processing peri-
ods to relieve the pressure during state migration.

Unfortunately, prior approaches suffer from processing la-
tency spikes, or high resource usage [26], or major disruption
(see Section 5.6). Their common limitation lies in order-
unaware state migration, i.e., not taking into account the or-
der in which operator state migrates. Figure 1 illustrates how
the migration order affects SPE latency performance during
rescaling. We take a representative stateful stream processing
job, key-count, as an example, where records with random
keys come from upstream and are processed by the SPE in
a FIFO manner. In this case, streaming operators store the
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count value of each key as their corresponding states. During
rescaling, an affected operator needs to receive the migrated
state (the global count values of keys) before it can process
the corresponding incoming records.

If the states are migrated in an order-unaware manner as in
Figure 1(a), the first coming record may not be processed in
time, because it needs to wait for the arrival of its correspond-
ing state. This also blocks subsequent records in the queue
due to FIFO processing, eventually accumulating the process-
ing latency for all records over a period of time. In the worst
case as shown in Figure 1(b), the state of the first record is the
last one to be migrated, making all record processing blocked
before the state migration is finished. Ideally, as shown in Fig-
ure 1(c), states are migrated in exactly the same order as the
records arrive, therefore minimal time is spent in the waiting
queue and the latency can be greatly reduced.

Based on this observation, we find that the state of hot
keys (those being processed or about to be processed by
downstream operator tasks) needs to be prioritized so that
the stream processing proceeds without blocking. In this pa-
per, we propose Meces, an on-the-fly rescaling mechanism
which enables prioritized state migration for SPEs. In fact,
it is challenging to dynamically adjust the state migration
order according to the incoming records during SPE rescal-
ing. To achieve this, Meces leverages a fetch-on-demand state
accessing model, based on the fact that modern SPEs [16, 53]
co-partition data records with stream operators to the same
key space. During rescaling, the states can be actively fetched
by the SPE operator instances when receiving a data record
whose state is not local. In this way, the operators prioritize
the transmission of those currently needed states to generate
processing results with low latency.

Another challenge is to handle the state consistency during
the prioritized state migration process. In Meces, the state
consistency in the above process is maintained by a control
messaging based coordination protocol, inspired by [7,40,43].
In addition, as the fetch-on-demand model used in priori-
tized state migration calls for light-weight state accessing, we
devise a hierarchical data organization and adopt a gradual
migration strategy for finer-grained state transfer like [26].
Meces is designed as a pluggable rescaling module without
affecting non-rescaling periods. As far as we know, Meces
is the first stateful SPE rescaling approach that enables pri-
oritized state migration, which can reduce the latency spikes
without high resource usage or incurring major disruption.

To sum up, this paper makes the following contributions:
• We propose an on-the-fly rescaling mechanism, called

Meces, for stateful distributed stream processing engines.
It prioritizes the migration of hot states to achieve low-
latency and resource-efficient rescaling.

• In addition, we adopt a control messaging based coor-
dination protocol to maintain state consistency during
prioritized state migration. We further devise a hierarchi-
cal state data organization and a gradual state migration
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Figure 2: A key-count job example in stream processing

strategy, which lowers data transmission granularity.
• Meces is implemented on the widely-used SPE Apache

Flink, requiring minimal user code modification and no
disruption to non-rescaling periods.

• We validate our design with various workloads. Com-
pared with state-of-the-art approaches, Meces reduces
nearly 95% of processing latency peak during rescaling.

2 Background

In this section, we first introduce basic concepts and termi-
nology of stateful stream processing in Section 2.1, and then
review and analyze the design and shortcomings of existing
rescaling approaches in Section 2.2.

2.1 Stateful Stream Processing
Stream Processing Topology: In scale-out distributed SPEs,
the computation tasks are expressed as directed graphs (Fig-
ure 2(a)), where vertices represent stream processing opera-
tors. Each operator receives data from its upstream operators,
processes data, and sends output to its downstream operators.
Operators without upstream are called source operators, and
those without downstream are called sink operators.

SPEs process input data in a data-parallel style by mapping
the streaming operators to multiple parallel instances. The
number of an operator’s instances is called its degree of paral-
lelism. In Figure 2(b), the vertices represent parallel instances
and the directed edges represent data channels.

Stateful Operator: In practice, many analysis tasks require
operators to compute their output based on both current and
previously received data. Examples of such tasks include data
aggregation, window computation, ML models, etc. To realize
this, stateful operators maintain internal and mutable states.
Operator states remember information about past input and
can be used for processing of future input [18]. For example,
a counting operator of a WordCount job stores the current
occurrences of each word as its states.

A stateful operator receives input data as a stream of keyed
records. Each record can be denoted as a pair (k,v) repre-
senting the key and the payload value. Correspondingly, the
stateful operator also holds its state S as a set of key-value
pairs and divides the set into several disjoint partitions. During
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processing, the partition SI is assigned to an operator instance
I. When I receives a record with key k, it processes the record
by reading or updating the value v corresponding to k in SI .
In modern SPEs [16, 53], states of the stateful operators are
co-partitioned with the parallel instances. For example, in Fig-
ure 2(b) the state of the keys mapped to C1 operator instance
is only stored in part-1.

Checkpoints: SPEs usually achieve fault-tolerance via
checkpoints. A checkpoint marks the persistent state for each
operator at a specific time point. SPEs can resume from failure
by restoring the operator states with a recent checkpoint and
replaying the records since the generation of the checkpoint.

A common way to realize consistent state snapshots of
distributed streaming operators is Chandy-Lamport algo-
rithm [10] or its variants. The checkpoint algorithm in
Flink [7] works by injecting special streaming records called
barriers into the pipeline. Each operator instance will persist
its state when receiving a barrier. This workflow makes a
globally consistent operator state snapshot on the basis of
reliable FIFO data channels.

2.2 Prior Rescaling Mechanisms
The critical difficulty in on-the-fly rescaling distributed stream
operators is efficiently migrating states among instances while
keeping the exactly-once semantics. Prior approaches can
mainly be categorized into the following strategies [6, 26].

Full-Restart: This approach halts the SPE execution, takes
a state snapshot of all operators, redistributes the state among
operator instances, and restarts the job execution until the
state redistribution is complete. Since it is simple and natu-
rally guarantees consistency using existing checkpoint mech-
anisms, it is adopted by many SPEs including Spark Stream-
ing [53], Structured Streaming [5], Apache Flink [16], etc.
However, this mechanism halts the whole pipeline and causes
serious latency spikes during rescaling.

Partial-Pause: This approach only stalls the streaming op-
erators that need state migration during rescaling. It mitigates
the latency spikes by narrowing the interruption from the
job-granularity to the operator-granularity. This mechanism
is first introduced by Flux [52], and adopted by SEEP [14],
FUGU [25], Chi [40], etc. However, if the affected operator is
a critical component in the topology, this approach still pauses
the entire pipeline during rescaling.

Replicated-Dataflow: This approach replicates the af-
fected operators and executes the old and new configurations
simultaneously until the migration completes. It minimizes
processing latency and realizes on-the-fly state migration, but
requires redundant computing resources for replication [26].
It also calls for additional de-duplication mechanisms as the
concurrent execution generates duplicated data. This mecha-
nism is adopted by ChronoStream [61], Gloss [47], etc.

Proactive: Proactive approach adds extra behaviour to
non-rescaling periods to relieve the pressure when migrat-

ing states. Megaphone [26] works by splitting operators and
embedding the migration flows into data flows. However, it in-
troduces partitioning overhead inside the original processing
operators during non-rescaling periods. Besides, in system
design it calls for extra coordination and progress tracking
mechanisms [26,43] which are not directly supported by many
modern SPEs [16,53]. Rhino [43] periodically replicates oper-
ator states among all workers. It facilitates both fault-tolerance
and state migration of extremely large states, but incurs extra
network overhead to regular stream processing.

As far as we know, none of the existing approaches con-
sider the state migration problem from the aspect of the state
migration order. They rescale with latency spikes or high
resource usage [26], or major disruption (see Section 5.6).

3 System Design

In this section, we first introduce the main idea of Meces in
Section 3.1. Then, in Section 3.2 we describe the design in
detail. Finally, we elaborate the optimization for finer-grained
state transfer in Section 3.3 and Section 3.4.

3.1 Prioritized State Migration

If not introducing huge redundant resources [47, 61] or dis-
rupting regular processing [26, 43], prior works [5, 14, 16, 25,
40, 52, 53] fail to achieve low latency when rescaling. They
are mainly limited by "order-unaware" state migration. As
Figure 1 in Section 1 shows, the migration for hot keys should
be prioritized, so as to generate timely results and reduce
queuing latency when rescaling.

In order to achieve prioritized state migration, we review
the nature of states in streaming operators. We denote a record
with key k as rk, and a state value with key k as vk. An im-
portant fact about recent scale-out stateful SPEs is that the
operator states are partitioned across the operator instances
in exactly the same way as data records according to their
keys. That is to say, when an operator instance I processes a
record rk, the only state that it needs to access is vk. It is also
guaranteed that no common states need to be accessed when
processing records with different data keys.

Given this property, we propose the prioritized state mi-
gration mechanism, which enables the system rescaling and
data processing of SPEs to efficiently run at the same time.
Specifically, when the SPE triggers an online state repartition,
the previously responsible instances send states in batches
to the newly responsible instances. In our design, as for the
newly responsible instances, instead of only passively wait-
ing for the arrival of migrated state batches, they can also
actively fetch states from previously responsible instances,
to get the individual states corresponding to the data records
for timely processing. For example, as no more records with
key in {k1,k2,k3} will be sent to Ia due to rescaling, the SPE
decides to migrate a set of state values Sm = {vk1 ,vk2 ,vk3}
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from operator instance Ia to Ib. Then Sm is sent by Ia. Before
Ib receives the entire state set, if Ib encounters a record rk2 , it
immediately performs a single-value fetch for vk2 . This light-
weight operation helps Ib to generate processing results in
time, instead of getting blocked until receiving the entire Sm
from Ia.

In this way, we can keep the stream processing operators
working during SPE rescaling. The batched "send" aims at
quick state migration, while the active "fetch" ensures in-time
processing for the records that requires a remote state. The
processing latency performance will be affected only when
an active "fetch" is triggered. In that case, only the processing
of that single record is delayed a bit because of one extra state
fetch operation, but the queuing cost of subsequent records
can be greatly reduced. In other words, the performance in-
terference caused by the state migration comes down to the
record-granularity, so that we can keep the stream processing
performance as high as possible during the rescaling period.

To achieve this, two obstacles need to be carefully dealt
with: First, how to ensure state consistency when transferring
states among operator instances in a dynamic order (Sec-
tion 3.2). Second, how to minimize the performance impact
brought by fetch operations (Section 3.3 and 3.4).

3.2 Fetch-on-demand State Accessing Protocol

To support prioritized state migration with dynamic order
during rescaling, Meces leverages a fetch-on-demand state
accessing protocol. The state consistency of the fetch-on-
demand model is based on a control messaging coordination
protocol, inspired by [7, 40, 43]. In the following, we first
briefly describe how the protocol works, then use an example
to further explain its process.

Migration Process: We call the time period from the
beginning to the end of a state redistribution as a Migration
stage. The global controller of an SPE starts a Migration
stage by injecting a special data record called control message
into the source operators. The message then travels through
the whole pipeline in the same way as a regular data record.
Once an instance I receives a control message from its input
data channels, it performs the following steps:
(1) I sends the control message downstream.
(2) If the downstream operator needs to migrate states, I

updates its routing strategy.
(3) If I itself needs to migrate states, according to whether it

has received messages from all input channels, it succes-
sively goes through two phases: Aligning and Aligned.

(4) I sends a confirming signal to the global controller. A
Migration stage ends when the global controller receives
confirming signals from all parallel instances.

Figure 3 and Figure 4 show the Migration stage during a
scale-out operation of a streaming key-count job. The degree
of parallelism of the count operator increases from 2 to 3,
represented by A,B,C (see Figure 3(a)). The upstream source
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Figure 3: Example of a rescaling stream processing job

operator has two parallel instances S1,S2. For simplicity, we
assume the keys are between 1 and 12. Therefore, based on
the uniform distribution, the distribution of the key space
before and after the rescaling is as shown in Figure 3(b).

When S1 or S2 receives the control messages, it updates the
routing strategy and outputs the subsequent data records in
accordance with the new topology. As its downstream opera-
tor’s degree of parallelism will increase by 1, its new strategy
divides the key space into three parts equally. As shown in
Figure 4(a), the records mapped to "9" were previously sent
to B, but will be shipped to the new instance C from now on.
Meanwhile, the records with key "6", which were consumed
by A, should then be in the charge of B.

As for the count operator, in general, the states are sent
from the previously responsible instances, but the newly re-
sponsible instances also actively fetch states in response to the
incoming data records. We denote an instance’s current key
space before migration as Ck, and its future key space after
migration as Fk. Specifically, the count operator successively
goes through two phases. Taking B as an example:

1. Aligning (Figure 4(b)): When B first receives a control
message, such as from S2, it can foresee the arrival of
keys that did not belong to it before. After that, when B
encounters a record whose key is not in its Ck, such as key
"6", instead of considering it as an error, B first checks
its Fk. If the key is found, B "borrows" the corresponding
state of this key from other count operator instances to
complete the processing. Note that in this phase, the
message from S1 has not reached B, which means A may
still have to deal with records with the "6" key. Because
of that, B should also be prepared that its state of "6" can
still be borrowed back by others.

2. Aligned (Figure 4(c)): The Migration for B is aligned
once it receives control messages from all of its input
channels. In this situation, it is guaranteed that all fu-
ture records with the "5, 6" key are shipped only to B,
and B will no longer receive records with keys from
9 to 12. Therefore, B can start its state migration. It
checks Ck and Fk, sends the states between 9 and 12
to other instances, and fetches all the states in 5 and 6
asynchronously. When finishing sending and fetching, B
sends the completion signal of its Migration stage.
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Figure 4: Migration stage in a rescaling operation

In the above process, the stream processing operators keep
functioning without explicitly blocking the input channels.
The impact of state migration on the task is only perceived
when an instance requires a remote state. The processing
latency of this single record is then only increased by the
fetching cost of a single state. For subsequent records, if the
corresponding state has already been fetched, the processing
of these records suffers from neither migration cost nor huge
queuing cost. In this way, the influence of rescaling can be sig-
nificantly reduced, therefore the system can avoid sudden and
severe performance degradation in latency and throughput.
For implementation details of the active state fetch process,
please refer to Section 4.2.

State Consistency: In stream processing, the global state
consistency usually refers to the exactly-once semantics. In
Meces, at a Migration stage where the state k is migrated from
I1 to I2, each incoming record affects the final results exactly
once. Let t1 be the timestamp when I1 or I2 receives the first
control message of Migration, and t2 be the timestamp when
both of I1 and I2 have received control messages from all the
input channels. Therefore, the Aligning phase begins at t1. In
this phase, the data records of k can be sent to both I1 and
I2, but actually only one instance holds the state of k locally
at a time. That is to say, only one instance can modify this
state at a time. As the data record must be processed exactly
once, and the state can only be flushed and "borrowed" after
the processing of the current record is finished, the semantic
is kept in [t1, t2]. After t2, subsequent data records are sent to
I2 only. I2 only needs to borrow at most once to transfer the
state to the local and process each data record exactly once
until its Aligned phase is complete.

3.3 Hierarchical State Data Organization

This subsection proposes an adaptive state data organization,
which keeps regular stream running at a coarse granularity
to avoid extra overhead, and performs prioritized state mi-
gration at a fine granularity to reduce the impact on latency
performance of streaming operators.

Since the states in SPEs are key-value data and it is
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Figure 5: Split key-groups into sub-groups

common to have billions of keys in a real-world streaming
dataflow services, managing each key individually can be
unrealistic. Many existing SPEs divide the states into key-
groups [17], which are disjoint subsets of the entire key space.

However, the shortcoming of this flat index structure is
that the state migration is also conducted on the key-group
granularity. As the number of the operator states accumulates,
the size of one single key-group could grow large. This can
make the active "fetch" become time-consuming, bringing
long delays to the record processing at the Migration stage.
A naive solution is to increase the number of key-groups, but
this is not practical in many SPEs. A vast number of key-
groups will bring a lot of additional metadata management
overhead and fragmented read/write of checkpoints, thereby
reducing the performance of non-rescaling stream processing.

To address this issue, we introduce the nested layer of
state data organization in Meces. Instead of using a single-
layer map, we further divide each key-group into multiple
sub-groups as illustrated in Figure 5. When encountering a
record that requires a remote state, an instance tries to fetch
the corresponding sub-group of the record key instead of the
entire key-group. This reduces the time overhead used to
obtain data that is not needed immediately.

Note that, key-groups are distributed among different oper-
ator instances and the metadata should be stored, indicating
which instances are responsible for each key-group. When
the number of key-groups increases, it incurs much more
metadata management cost and record distribution cost. Dif-
ferently, sub-groups of the same key-group must belong to
the same operator instance when the system is not rescal-
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Figure 6: An example of gradual state migration

ing. Therefore, increasing the number of sub-groups does not
bring significant extra overhead to a steady dataflow. Users
can choose an appropriate number of sub-groups to achieve
smooth state migration. The appropriate settings are usually
based on the maximum size of states and the expected maxi-
mum latency during rescaling.

3.4 Gradual State Migration
During a rescaling operation, a large part of the overall states
may need transferring, even if the degree of parallelism does
not change much. For example, to divide the states evenly
across all operator instances in Figure 3, changing the degree
of the parallelism from 2 to 3 causes half of the keys to be
redistributed. For example, if we have an operator with 128
key-groups and change the degree of parallelism from 25 to
30, a nearly full state migration (115 out of 128 key-groups)
has to be triggered. Migrating all of these states in a single
batch can dramatically slow down the overall performance,
because most of the records processed by the task in the next
period may be affected by the fetch operations. As the data
streams continue to flood in, lots of minor processing delays
may accumulate into large latency spikes.

To resolve this issue, inspired by [26], we also achieve finer-
grained migration via a gradual migration strategy in Meces,
which splits the update into several micro-batches of state
migration as shown in Figure 6. The Migration stage in one
rescaling operation is then composed of multiple Gradual-
Migration steps. At each step, the global controller decides
which states should be relocated based on the user-defined
size of micro-batches (batch_size). For example, in Figure 6,
batch_size is set to 1, which means that an instance can only
dispose at most one key-group of states at a time. This splits
the single Migration stage into four Gradual-Fetch steps.

At Gradual-Fetch steps, the information of migrated keys is
included in the control messages and each upstream instance
creates a temporary routing table indicating which down-
stream instance it should send records to. In this way, we
affect only a tiny portion of the whole states at each Gradual-
Fetch step, while most of the records can be processed nor-
mally. By changing batch_size, users can trade-off the lower
latency spikes against higher migration throughput.

Note that during rescaling, the total number of migrated
keys can be reduced by dividing the states differently. For
example, in Figure 6, if the middle four keys are assigned to
instance 3 and the last four keys are assigned to instance 2,
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State API

Join
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User Code

Memory Store Migration Design
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DFS Store
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User Code

State Transition
Message Queue

 Key-value Store

Figure 7: Meces Architecture

only 4 of 12 keys need relocating. Meces uses the uniform
re-partition by default, but also supports custom partitioning,
so that users can apply it to SPEs with sophisticated parti-
tioning approaches [2, 29] such as consistent hashing. A brief
evaluation of custom partitioning can be found in Section 5.3.

4 State Migration Implementation

This section describes the implementation of Meces. We
demonstrate the overall system architecture of Meces in Sec-
tion 4.1 and then introduce the details of state transition work-
flow among operator instances in Section 4.2. Finally, we dis-
cuss the fault tolerance mechanisms of Meces in Section 4.3.

4.1 System Architecture and Usage
The overall system architecture of Meces is shown in Figure 7,
which consists of three layers:

1. Stream API: It provides basic operator functions for
users to implement stream processing tasks.

2. State API: Meces provides Apache Flink-compatible
APIs for operator functions to access their states. This
enables the users to easily migrate the existing stream
tasks from Flink to Meces.

3. SPE Runtime: This is where the system-level code is
located. Meces basically reuses Flink’s state backend
module to store the key-value pairs in memory/DFS.
Additionally, Meces implements the design in Section 3.

The underlying state management and migration in SPE
Runtime are completely transparent to user codes. Therefore,
it takes minimal effort to switch between Flink’s and Meces’s
state implementations.

4.2 State Transition
The state transition among operator instances is of great im-
portance to the performance of SPEs during rescaling. How-
ever, if the transfer of states happens directly between parallel
instances, a mesh communication network has to be estab-
lished among the worker machines. This would significantly
increase the runtime overhead and make the maintenance of
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Figure 8: State transition process based on the pub-sub model

SPEs more complex. That is why SPEs like Flink [16] are de-
signed to avoid direct inter-instance communication within an
operator, i.e. adopting a shared-nothing architecture [17, 24]
for low-cost, high-extensibility and high-availability.

To make it non-disruptive to SPEs, in implementation of
Meces, we design a pub-sub model based approach to trans-
fer states between parallel instances during record process-
ing. The model leverages two message queues(RequestMQ
and ResponseMQ), and an external key-value store (EKS)
to provide a state transition service at Migration stage. At
Migration stage, each instance performs light-weighted oper-
ations to read from these two message queues continuously.

Figure 8 demonstrates the state transfer process from op-
erator instance A to B. When B needs to fetch the state with
key "6", it simply pushes a message "B-6" to the RequestMQ,
meaning "B is requesting 6". Later, A gets the message, finds
"6" in its Ck, and then pushes the state value into the EKS and
considers its local "6" state as borrowed. After that, A pushes
a message into the ResponseMQ, indicating the completion
of the request. Eventually, the message will be consumed by
B, making B fetch the corresponding data from EKS. Thus
far, the workflow of the state transition is complete.

In the above process, when the request message comes to A,
if A happens to be processing a record with a key of 6, A will
not start pushing until it finishes processing the current record.
Meanwhile, if "6" has already been pushed into EKS and then
A receives a record requiring this state, A should trigger a
similar process to fetch the state, as "6" is now considered not
held by A. These two situations do not bring much degradation
to the rescaling performance, because they only happen in the
Aligning phase, which only lasts for a short time if the system
is not running under severe load imbalance.

For decoupling the components, many scalable message
queue techniques [27, 46, 49] can be utilized to implement
the pub-sub model. These are common components in real-
world stream processing tasks, because they suit the stream
processing paradigm as data sources and sinks. For EKS, a
high-speed key-value store with fault-tolerance guarantees
can be integrated to ensure real-time computation.

4.3 Fault Tolerance
Meces inherits fault-tolerance guarantees from the hosting
SPEs, and relies on high-available message-queue/EKS ser-
vice. Specifically, fault-tolerance is supported in both rescal-
ing and non-rescaling scenarios.

During rescaling: If some of the message-queue/EKS
nodes fail, the rescaling in Meces can keep going without
data corruption. This is because message-queue/EKS service
adopted by Meces is equipped with built-in fault-tolerance
mechanisms [12,48], such as replication. If the entire message-
queue/EKS or any Flink node fails to respond (simple/cas-
cading failures), Meces considers this rescaling to have failed
and invalidates the temporary data in message-queue/EKS.
Then Flink’s own failover mechanism is activated to recover
the job from a checkpoint. Therefore, a failed rescaling does
not break exactly-once semantics.

During non-rescaling: As Meces is designed to be non-
disruptive when rescaling is not executed, it introduces no
extra fault-tolerance issues. Any exception is handled by the
hosting SPEs’ failover mechanism.

Finally, Meces temporarily disables checkpoint generation
only at Migration stages, and suspends new rescaling during
an ongoing rescaling to avoid interference. Therefore, data
consistency is kept throughout the job lifecycle.

5 Evaluation

This section presents an empirical evaluation of our prototype
Meces. We focus on the following three questions:

1. What is the performance of Meces during rescaling with
state migration? (Section 5.2 to 5.4)

2. How much overhead does Meces incur? (Section 5.5)
3. How does Meces compare to other state-of-the-art on-

the-fly state migration approaches? (Section 5.6)

5.1 Experimental Setup
Hardware and Software: All experiments presented in this
paper are conducted on a cluster of six computing nodes, each
with two Intel Xeon E5-2620 v2 @2.10 GHz CPUs and 64
GB memory, running CentOS 7.9.2009.

The Meces prototype is implemented based on Apache
Flink 1.12.0. The same version of Apache Flink is used as
a baseline in our evaluation, referred to as "Native Flink" in
the following. Meces and Native Flink run with Oracle JVM
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11.0.10 to enable the low-latency garbage collector ZGC [63].
We pair Apache Kafka 2.7.0 with Apache ZooKeeper 3.6.0
as reliable message brokers with 25 partitions. Redis 3.2.0
is deployed to provide the external key-value store service
globally. For persistent checkpoint storage, we deploy Apache
Hadoop 2.9.2 to provide HDFS.

For SPE configurations, we configure Native Flink and
Meces to use at most 25 GB heap memory. Each computing
node can host at most 5 parallel instances of an operator. The
total number of key-groups is set to 128, as it is the default
value in Flink and different settings of this value do not differ
the performance much in our cases.
Workloads and Metrics: We choose the NEXMark bench-
mark suite [55] and the key-count job as workloads. Nexmark
models an online auction system and provides real-world
streaming queries. The key-count job takes a stream of ran-
domly generated keys as input and accumulates the number
of times each key has occurred.

To provide input data for stream processing jobs, we im-
plement open-loop stream generators which continuously and
concurrently push random records into Kafka topics. Unless
otherwise specified, all these open-loop generators produce
data at a steady rate of 800K records/s. This input rate is near
the saturation point of processing and large enough to show
the performance difference between the various approaches.

We focus on two metrics in measurement during rescaling:
Latency: To evaluate the end-to-end latency of SPEs, we

configure the stream generators to periodically insert marker
events into Kafka. We denote latency as the time difference
between these markers entering and leaving the SPE. For win-
dowed operators, the markers simply bypass them to exclude
the time spent in window buffers. The latency still grows
when the system’s processing rate cannot keep up with the
production speed of upstream data, as the latency markers
are queuing up. That is to say, the marker can still reflect the
latency performance of the system with windowed operators.

Throughput: We define throughput of SPEs as the number
of records output by the source operators per second. As the
source operators are responsible for fetching records from
Kafka, this reflects the capability of the system to read and
process data from external data sources.

5.2 Latency Performance during Rescaling
We first evaluate the latency performance of the SPEs during
rescaling. The SPEs are initially configured with global par-
allelism of 25. Each job runs steadily for 600 seconds and
rescales by increasing the parallelism of critical operators
(e.g., join or window operators in NEXMark queries, count-
ing operator in the key-count job) to 30. This causes 115 out
of 128 key-groups to be relocated during rescaling.

We compare Meces with Native Flink (stopping the whole
job when rescaling) and Order-Unaware (online block-based
state migration without order prioritization). Figure 9~12

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 9: End-to-end latency of NEXMark Q1

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 10: End-to-end latency of NEXMark Q7

illustrate the end-to-end latency change of the representative
queries in this process. For the performance evaluation results
of all NEXMark queries, please refer to Appendix B.

NEXMark Q1 performs currency conversion on a bid
stream. This simple task maintains no states and the behav-
ior is demonstrated as a basic case for our evaluation. As
shown in Figure 9, both Meces and Order-Unaware reveal
no latency peak but only system noise, because they incur no
state migration cost during rescaling and operations can be
done asynchronously. In contrast, Native Flink still needs to
stop and restart the job even if there is no state to migrate.

NEXMark Q7 and Q8 tests window operators. They per-
form tumbling window join of two streams, to find out the
items with the highest price and the new users who just regis-
tered in the last period of time. They can maintain large states
when the window size grows. We set the window sizes to be
10 seconds and 100 seconds. The performance comparison is
illustrated in Figure 10 and Figure 11, where the latency peak
of Meces during rescaling is an order of magnitude smaller
than others. When the rescaling begins, Order-Unaware needs
to block the currently processed records while migrating a
considerable amount of states. As a result, Order-Unaware
goes through a performance degradation near to Native Flink
(Full-Restart), and reaches a latency peak of dozens of sec-
onds. For comparison, Meces can give state migration priority
to the hot keys being processed and smoothen latency.

Key-count takes a stream of randomly generated keys as
input and reports the cumulative counts of each key continu-

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 11: End-to-end latency of NEXMark Q8
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(a) Native Flink (b) Order-Unaware (c) Meces

Figure 12: End-to-end latency of key-count

ously. The state size of the counting operator can also grow
large when the key range is big enough. Besides, this query
requires reading and updating the states when processing ev-
ery single record. We run the job with 108 unique keys. As
reported in Figure 12, both Native Flink and Order-Unaware
show a latency peak which is three orders of magnitude higher
than usual. The latency decreases gradually after the restart-
ing or migration completes. As for Meces, it keeps the latency
under 600 ms during the prioritized state migration stages.

In conclusion, during rescaling, Native Flink and SPEs with
Order-Unaware can suddenly become out-of-service when
migrating states, while Meces significantly lowers the maxi-
mum latency. The impact of prioritized migration of Meces is
further evaluated in Section 5.3. Note that in some cases with
a rather large size of states, Meces also have increased latency.
This is mainly caused by the Garbage Collection behaviour
of JVM, which is further analyzed in Section 5.5.

5.3 Impact of State Migration on Latency Per-
formance during Rescaling

In this subsection, we evaluate how state migration affects
the processing latency of SPEs, especially how the prioritized
migration improves the performance.

During a rescaling period involving state migration, the
overall processing latency of SPEs can be generally divided
into three parts: (1) Job-Cost: time to execute the processing
logic. This is inevitable in both rescaling and non-rescaling
periods; (2) Migration-Cost: when encountering a record
whose state is not local, the task waits for the target states to
arrive and then proceeds processing; (3) Queuing-Cost: If a
record r is blocked due to migration cost, subsequent records
may also be blocked in the queue as they cannot be processed
until the processing of r is finished. Therefore the processing
latency of these subsequent records is increased.

Figure 13 illustrates the various parts of the average pro-
cessing latency of a certain operator instance per second dur-
ing the rescaling of the key-count job. Note that in order to
show the comparison between different parts, here we use
linear axes instead of logarithmic axes and draw with different
y-axis ranges in the upper two sub-figures.

As in Figure 13(a), Order-Unaware incurs high latency up
to thousands of milliseconds, and the increased latency is com-
posed of huge Migration-Cost and Queuing-Cost. Because
Order-Unaware does not migrate the currently needed states

(a) Order-Unaware (b) Meces

(c) Distribution of Migration-Cost for all operator instances

Figure 13: Latency composition of during rescaling

Figure 14: Rescaling performance of Meces using different
repartition strategies

with priority, some of records have to wait for a long time be-
fore the arrival of their corresponding states. The waiting time
can be up to several seconds as indicated by the Migration-
Cost bar in the figure. As for the subsequent records, their
states have been previously transferred and they need not wait
for data migration. However, they suffer from huge Queuing-
Cost due to the previous records being blocked. When no
further migration is required, the Queuing-Cost decreases to
0 almost linearly.

Figure 13(b) reports the latency breakdown of Meces. Com-
pared with Order-Unaware, the latency peak is greatly re-
duced to less than 400 ms. This is because when migrating
states, Meces uses its fetch-on-demand model to give priority
to the records which are currently being processed. When
a record calls for a remote state, the operator instance im-
mediately fetches the single state for the key of this record.
Since the amount of data in a single state is very small, a
fetch request can be quickly responded to. Consequently, as
shown in Figure 13(c), the several long-duration execution
blocks caused by Migration-Cost are converted into thou-
sands of short-duration fetch operations. Although the sum
of Migration-Cost does not differ much for two strategies,
each record does not wait long time for its state to be mi-
grated in the prioritized migration of Meces. More impor-
tantly, as the Migration-Cost of every single record is reduced,
the Queuing-Cost for subsequent records is also significantly
reduced. Eventually, the overall latency curve is flattened.

From another angle, Figure 14 compares the rescaling per-
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formance of Meces using different state repartition strategies:
the default uniform repartition and consistent hashing, which
have different migration cost during rescaling. For a total of
128 key-groups, consistent hashing decreases the number of
migrated key-groups from 115 to 15. Eventually up to 70%
rescaling duration and 90% max latency are reduced. This
indicates that we can equip Meces with existing re-balance
technology to improve the rescaling performance. For a fair
comparison, in all other experiments in this paper, we use the
same repartition strategy in all SPEs including Meces.

Note that the above experiments are all conducted without
any node failure or connection loss. As for the unusual scenar-
ios including failing nodes with different roles, we observe
that: (1) If any Flink node or Kafka/Redis leader fails, the la-
tency curve is similar to Native Flink, because Meces restarts
the job since the underlying service becomes unresponsive.
(2) If Kafka/Redis loses some of the follower nodes but still
provides timely service when job is rescaling, there is no ob-
servable fluctuation in the average latency of fetch operations,
because of the relatively low traffic of messages sent by fetch
operations. In both cases there is no data inconsistency in the
stream processing results.

5.4 Performance under Backpressure

In practice, the rescaling of an SPE is usually triggered when
it sends a backpressure signal, indicating that it cannot process
data fast enough to keep up with the data generation rate. This
happens when there is a sudden surge in data traffic or when
the system is not configured properly with enough parallel
instances. To validate our design in this situation, we evaluate
the performance of Meces under backpressure scenarios.

A costly version of key-count query is chosen as the work-
load. We first configure the counter operator parallelism to 15
and run input generators at a speed of 300K records/s for 600
seconds. After that the input rate is increased to 600K record-
s/s for 150 seconds, and then gets back to 300K records/s.
This simulates a temporary surge in data traffic. The rescaling
operation takes place at the 620th second, which increases the
counter operator to 30 parallel instances.

Figure 15(a) shows how quickly the SPE recovers its real-
time performance from backpressure. As soon as the data
traffic surge comes, the latency increases suddenly, because
the input is beyond the capability of the system and the fol-
lowing records are queuing up. Then, after the scale-out op-
eration is completed and all the queuing records have been
fully consumed, the processing latency can go back to a nor-
mal low level. Here we record the time interval from the
arrival of the data surge until the system latency drops below
100 ms. As can be seen, Meces is the first one to get back to
the previous processing rate, while it takes Native Flink and
Order-Unaware much more time to consume the queuing data
and recover because of the block of operator execution.

We then compare the system throughput within 2 min-

(a) Recovery Time (b) Throughput

Figure 15: Rescaling performance under backpressure

Figure 16: Latency comparison with Native Flink

utes after triggering the rescaling operation, as shown in Fig-
ure 15(b). As Native Flink first triggers a global state snapshot
and then restarts the job, its throughput immediately decreases
to 0 and gradually increases after it restarts. As for Meces
and Order-Unaware, they both keep the throughput at a non-
zero level, but as Order-Unaware incurs long-duration block-
ing periods, it first goes through a decrease in throughput.
Meanwhile, as Meces brings little degradation to the perfor-
mance during the state migration, its throughput reaches the
maximum much faster and higher than the others. This vali-
dates that the fetch-on-demand state migration mechanism of
Meces outperforms the other approaches under backpressure.

5.5 Overhead Analysis

This subsection discusses the overhead introduced by Meces.
Latency Overhead: The latency performance is illustrated

in Figure 16. On one hand, Meces does not incur extra la-
tency when not migrating states, as reported in the "Meces
(Normal)" bar. Under normal circumstances, the processing
logic of Meces and Native Flink is substantially the same. The
only difference is that Native Flink uses a normal HashMap to
manage operator states, while Meces uses a nested HashMap
with little overhead. Consequently, the difference in latency
between the two SPEs is determined by system noise. This
conclusion can also be drawn from Figure 9~12.

On the other hand, the processing latency increases when
Meces is performing a rescaling operation. In this experiment,
each route table contains 128 keys and increases the latency by
35%. During these periods, when deciding which downstream
operator to send records to, the simple modulo operation is
replaced by a more costly map query operation. In Meces,
this mechanism is combined with the nested data structure,
to reduce the migration granularity to an acceptable level
without the need for an extremely high number of key groups.
That means the route tables are kept in a reasonably small
size, thus reducing the latency peak with negligible overhead.
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Figure 17: Memory consumption of Meces

Memory Overhead: Figure 17 demonstrates the mem-
ory consumption of one single machine. To clearly show the
changes in memory usage, we configure the JVM to utilize
g1gc as the garbage collector and do not trigger GC behavior
for objects in old generation. The memory usage fluctuates up
and down because JVM periodically reclaims the temporary
objects in the continuously arriving data stream. In the mean-
time, the total memory usage shows an upward trend due to
the gradual increase in the operator states.

When the state migration starts at 600 s, the curve rises
rapidly, because the operator starts fetching states from others,
allocating lots of new objects quickly. This can potentially
decrease the processing performance if the system is imple-
mented in programming languages like Java, as the garbage
collector works under heavy pressure and can block the exe-
cution of user functions. To ensure the quick response of the
system, we recommend a low-latency collector like ZGC [63],
or a pre-allocated object pool to be utilized to reduce the
overhead of Garbage Collection behavior.

5.6 Comparison with Other State Migration
Approaches

In this subsection, we compare Meces with two representative
state-of-the-art work Rhino [43] and Megaphone [26]. We
choose the key-count job due to its simplicity so that we
can minimize interference from associated computation and
highlight the differences between rescaling approaches.

5.6.1 Comparison with Rhino

Rhino [43] proposes a state management approach which han-
dles large states very well by periodically replicating operator
states among all worker machines. Because the source code
of Rhino from the original authors is not publicly available,
we implement the mechanism of Rhino based on Flink for a
fair comparison. During a stateful rescaling, Rhino generally
follows the Partial-Pause approach, but only reads/writes the
incremental parts of states since the last global replication.
The replication interval is set to 60 seconds.

As in Figure 18, Rhino on Flink shows a similar latency
peak to Order-Unaware, whose peak is near 10,000 ms. As a
comparison, the per-record latency of Meces never reaches
1000 ms during the whole process. Rhino’s replication fails
to improve the system performance for two reasons:

(a) Rhino on Flink (b) Order-Unaware (c) Meces

Figure 18: Latency comparison with Rhino during rescaling

Figure 19: Network overhead of Rhino

1. In such a scale-out scenario where new workers join the
job, a global state migration is still necessary for these
new workers because they lack the previous states.

2. Such read-modify-write jobs update the operator states
very frequently. As lots of states are modified between
two state replications, the incremental parts still occupy
large proportions of the global state.

Eventually Rhino degrades to the Partial-Pause approach
with latency spikes. In contrast, Meces uses a fetch-on-
demand state accessing model for efficient state sharing
among operator instances and less processing latency.

In addition, we compare Rhino and Meces in terms of the
disruption to non-rescaling stream processing, by measuring
the extra network bandwidth introduced by both systems com-
pared to Native Flink. In Rhino, when replication interval
decreases from 10 minutes to 1 minute, the extra network
bandwidth ratio grows from 35% to 56% (Figure 19). This
is consistent with the conclusion reported in the Rhino pa-
per [43], where Rhino uses 30% network bandwidth during a
replication. As Rhino periodically replicates operator states
among all workers, it helps fault-tolerance in the face of very
large states, but incurs extra communication across the net-
work even if the system performs no state migration at all. In
contrast, Meces incurs no network overhead to non-rescaling
stream processing, because it performs no additional opera-
tions during non-rescaling periods.

5.6.2 Comparison with Megaphone

Megaphone [26] is a state migration approach that splits the
state load into batches and embeds the migration flows into
data flows for lower latency. It relies on two specific SPE
features [26]: (1) state extraction from upstream operators
(2) dataflow frontiers. However, both are still not natively
supported in many widely-used SPEs, including Flink [16],
Heron [33], Spark Streaming [53], Samza [50], etc. There-
fore, to run Megaphone in a widely-used SPE, we meet the
above requirements of Megaphone in Flink with naive imple-
mentations for state extraction and splitting the data stream
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(a) Megaphone on Flink (b) Meces

Figure 20: Latency comparison with Megaphone

into micro batches underhook. Based on that, we implement
Megaphone’s state migration mechanism on Flink.

We then run the key-count job in both Meces and Mega-
phone with 108 unique keys. Megaphone is configured to
use 214 bins, according to the original suggestions [26]. The
latency comparison is demonstrated in Figure 20.

When not rescaling, Megaphone on Flink shows an order of
magnitude higher latency than Meces. There are two reasons
for this phenomenon: (1) Megaphone’s strong pre-requisite
of SPE features calls for extra synchronization and commu-
nication techniques to fulfill the requirements, thus bringing
dramatic overhead to the system performance [43]. (2) To
prepare for state migration, Megaphone splits the original
operators into two operators before the streaming job is sub-
mitted. However, this incurs extra partition overhead between
the two new operators, resulting in increased processing la-
tency for the regular execution of the job. As for Meces, it can
work without expensive system requirements or logic modifi-
cation to a non-rescaling SPE, and thus brings no overhead
when the system is not rescaling.

During rescaling, both systems show a limited amount of
latency increase. However, the latency of Megaphone stays at
the level of around 8000 ms, while Meces never reaches the
bar of 1000 ms. This verifies that compared with Megaphone,
Meces’s prioritized state migration can efficiently reduce the
processing latency during rescaling with low overhead.

6 Related Work

Stateful stream processing has been an active research field
in the past years, both in single-machine [1, 9, 44] and dis-
tributed settings [3, 8, 16, 50, 53, 62]. To meet diversified re-
quirements of real-time computing in different scenarios, re-
search works focus on various aspects of stream processing,
including performance [32, 36, 37, 58, 59], reliability [45, 64],
scalability [14,15,56], flexibility [23], programmability [5,40],
etc. In addition, some researchers propose SPEs with enriched
semantics [38, 42, 57, 65, 66] to support more sophisticated
analysis of streaming data.

Elasticity in batch processing systems has also been
studied [34, 35], but they mainly deal with scenarios with
rather higher processing latency. As for the field of elastic
stream processing, the past decade also witnessed many ad-
vances [14–16, 25, 26, 33, 40, 43, 47, 52, 53, 61].

The most recent works related to ours are Megaphone [26]
and Rhino [43]. Megaphone [26] provides efficient on-the-fly

state migration for SPEs. This is achieved by transferring the
operator states in a small granularity upon dataflow recon-
figuration. It also supports trading off low latency against
high throughput of state migration. Rhino [43] periodically
replicates operator states among all worker machines. It can
speed up the process of state migration by asking the operator
instances to read/write from an incremental checkpoint in-
stead of a global state snapshot. They both reduce processing
latency during state migration at the expense of SPE per-
formance during non-rescaling periods, as neither of them
considers the migration order of states. In contrast, Meces
uses a fetch-on-demand state accessing mechanism to enable
prioritized state migration during rescaling, without extra re-
source usage in non-rescaling periods.

Another critical issue about the elasticity of stream pro-
cessing is to decide when and how to rescale. Many SPE
controllers [4,19,20,28,31,39,41,54] have been proposed for
adaptive rescaling to meet the QoS targets in various scenar-
ios. These works are orthogonal to ours and can be combined
with Meces’s on-the-fly rescaling mechanism to provide self-
regulating streaming systems.

7 Conclusion

This paper presents Meces, a latency-efficient on-the-fly
rescaling mechanism using prioritized state migration for
stateful distributed SPEs. Meces uses a fetch-on-demand
model with hierarchical state data structure and gradual strat-
egy, to achieve prioritized state migration with global con-
sistency and high efficiency. This design puts all the opera-
tions in rescaling periods and requires no work during non-
rescaling periods. We implement Meces in Apache Flink and
evaluate our design on diversified workloads. The experimen-
tal results show that compared to state-of-the-art approaches,
Meces improves the latency and throughput performance dur-
ing rescaling by orders of magnitude without disrupting non-
rescaling periods or using huge amounts of resources.

In the future, we plan to integrate Meces with stream per-
formance monitoring tools and further study more adaptive
rescaling policies for diversified scenarios on Meces.
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A Artifact Appendix

Abstract
Meces is implemented on Apache Flink. It also relies on
Kafka and Redis to function properly. We prepare the pro-
grams, assemble a workflow of Meces and package the artifact
into a Docker image.

Scope
The artifact rescales a key-count job with different state mi-
gration mechanisms. It verifies the basic functions of Meces
and validates the performance improvement brought by the
prioritized state migration strategy proposed in this paper.

Contents
The artifact includes a compiled version of Meces, along
with dependencies such as Kafka, Redis, Java and Python,
etc. A "README.md" file can be also found in the image. It
contains detailed description of the artifact and a step-by-step
instruction for the rescaling workflow.

Hosting
The artifact is hosted on Docker Hub. It can be installed
by downloading the pre-built Docker image from the public
dockerhub repository and initiating a container from it:

• docker pull njupasalab/meces:latest
• docker run -it njupasalab/meces:latest

Artifact Check-list:
• Run-time Environment: Linux OS with Docker installed.
• Experiments: Workflow of rescaling a key-count job.
• Expected Experiment Running Time: About half an hour.
• Output: Data plots of latency comparison.

Expected Running Result
There are scripts that help pre-check the testing environment:

• source scripts/install.sh
• scripts/start_background_environment.sh
• scripts/check_environment.sh
Then, an experiment script evaluates the rescaling perfor-

mance of Meces using the key-count job on your environment:
• scripts/rescale_exp.sh
It generally goes through three stages in series, namely

Meces, Order-Unaware, Native-Flink. In each stage, the sys-
tem submits the key-count job, runs for a while and then
rescales the operator with its corresponding mechanism. For
further details, please refer to "README.md" in the artifact.

After the process finishes, the experimental data is collected
in the data folder. Each experiment should generate a plot of
the latency curve, similar to what is reported in Section 5.2.
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B Appendix: Latency Performance Evaluation
on full NEXMark suite during Rescaling

We evaluate the latency performance of the SPEs during
rescaling. The SPEs are initially configured with global oper-
ator parallelism of 25. Then, each job runs at a steady input
rate of 800K records/s for 600 seconds. After that a rescaling
operation is triggered. It increases the parallelism of criti-
cal operators (e.g., join or window operators in NEXMark
queries, counting operator in the key-count job) to 30. This
causes 115 out of 128 key-groups to be relocated during the
scale-out.

Figure 21~28 illustrate the end-to-end latency change of
each query in this process. We compare Meces with Native
Flink (stopping the whole job when rescaling) and Order-
Unaware (online block-based state migration without order
prioritization).

NEXMark Q1 and Q2 do currency conversion or filtering
operations on a bid stream. These simple transformation tasks
do not maintain states and the behavior is demonstrated as a
basic case for our evaluation. As shown in Figure 21 and 22,
both Meces and Order-Unaware reveal no latency peak but
only system noise, because they incur no state migration cost
during rescaling and operations can be done asynchronously.
In contrast, Native Flink still needs to stop and restart the job
even if there is no state to migrate.

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 21: End-to-end latency of NEXMark Q1

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 22: End-to-end latency of NEXMark Q2

NEXMark Q3 and Q4 test join functionality. Q3 joins the
stream of open auctions and the stream of people to local item
suggestions for users. Q4 joins the stream of closed auctions
and the stream of items to output the average deal price of
items for a category. Both queries have to store information
of records in the data stream as states of join operators. The
per-record latency is demonstrated in Figure 23 and Figure 24.
In our settings, Q3 maintains a rather small size of states.
Meanwhile, operator states in Q4 grow large when millions
of items have been sold. As a result, for Native Flink and

Order-Unaware, a sharp and short-lasting rise of latency can
be seen in Figure 23, because the task executions are globally
or partially blocked until the state migration is completely
done. As a comparison, there is no obvious latency change in
Meces as it reduces the disturbance caused by state migration
to a lower granularity. A similar conclusion can also be drawn
from the results in Figure 24 for Q4. The degradation of real-
time performance becomes more significant for Native Flink
and Order-Unaware with a larger size of states, while Meces
only incurs a small range of latency fluctuations. The latency
peak of Meces is an order of magnitude smaller than the other
two mechanisms, due to its fetch-on-demand accessing and
gradual migration strategy.

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 23: End-to-end latency of NEXMark Q3

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 24: End-to-end latency of NEXMark Q4

NEXMark Q5 tests window operator with small states. It
repeatedly selects the hottest item in the past period of time,
which is the item with the most number of bids. The stateful
operator maintains item counts in each time window. In our
experiments, the job reports every second the hottest item over
the last 60 seconds. As this query does not accumulate large
states, it exposes similar behavior with Q1 and Q2, as shown
in Figure 25. While the latency of Native Flink increases
significantly due to a full restart, the record processing of
Meces and Order-Unaware is hardly affected because the
state migration cost is minor.

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 25: End-to-end latency of NEXMark Q5

NEXMark Q6, Q7 and Q8 test window operator with
bigger states. Q6 includes a sliding window over a single
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stream to calculate the average of items recently sold by a
seller. Q7 and Q8 perform tumbling window join of two
streams, to find out the items with the highest price and the
new users who just registered in the last period of time. These
queries maintain large states when the window size grows. We
set the window sizes to be 10 seconds, 10 seconds, and 100
seconds for the three queries respectively. The performance
comparison is illustrated in Figure 26~28, where the latency
peak of Meces during rescaling is an order of magnitude
smaller than the others. When the rescaling begins, Order-
Unaware needs to block the currently processed records while
migrating a considerable amount of states. As a result, Order-
Unaware goes through a performance degradation near to
Native Flink (Full-Restart), and reaches a latency peak of
dozens of seconds. For comparison, Meces can give priority
to the hot keys being processed and smoothen the latency
peaks.

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 26: End-to-end latency of NEXMark Q6

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 27: End-to-end latency of NEXMark Q7

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 28: End-to-end latency of NEXMark Q8

In conclusion, Meces achieves better performance than ex-
isting approaches during rescaling. Native Flink and SPEs
with Order-Unaware can suddenly become out-of-service
when migrating states, while Meces relieves the impact of
rescaling to a lower granularity and reduces the maximum
latency.
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