
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

High Throughput Replication with Integrated
Membership Management

Pedro Fouto, Nuno Preguiça, and João Leitão, NOVA LINCS & NOVA University Lisbon

https://www.usenix.org/conference/atc22/presentation/fouto

High Throughput Replication with Integrated Membership Management ∗

Pedro Fouto, Nuno Preguiça, João Leitão
NOVA LINCS & NOVA University Lisbon

Abstract
This paper introduces ChainPaxos, a new distributed consen-
sus algorithm for high throughput replication. ChainPaxos
organizes nodes in a chain, allowing for a pipeline commu-
nication pattern that maximizes throughput, by minimizing
the number of messages transmitted. While other proposals
have explored such patterns, ChainPaxos is the first that can
execute linearizable reads in any replica with no communi-
cation overhead, relying only on information used to process
updates. These techniques build on a fully specified integrated
membership management solution, allowing ChainPaxos’s
fault-tolerance to be independent of an external coordination
service, often used in other solutions, which can lead to possi-
ble safety violations in the presence of network partitions.

Our evaluation shows that, when compared with alterna-
tive Paxos variants, ChainPaxos exhibits significantly higher
throughput and scalability with negligible latency impact.
Compared to other solutions with similar communication pat-
terns, besides avoiding the costs of an external coordination
service, ChainPaxos’s high throughput tends to increase with
the ratio of read-only operations.

1 Introduction
Fault-tolerance is a key property for distributed systems, being
fundamental to guarantee that they continue to operate despite
failures of individual components. To achieve this, the state
of the system needs to be replicated over multiple nodes.

A particularly interesting way of providing fault-tolerance
is the state machine replication (SMR) [20, 30] approach,
which allows to replicate any service providing strong consis-
tency. SMR is achieved by executing the same sequence of
deterministic operations on all replicas, making them transi-
tion through the same sequence of states.
∗This work was partially supported by Fundação para a Ciência e Tecnolo-

gia (FCT) under the projects NG-STORAGE (PTDC/CCI-INF/32038/2017)
and NOVA LINCS (grant UIDB/04516/2020).

Experiments presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organizations
(see https://www.grid5000.fr/).

The Paxos [15, 32] consensus protocol and its variants
[6, 21, 24, 26–28] have been used as a fundamental building
block for implementing SMR, by enabling replicas to agree
on the order in which operations are executed. Many practical
systems, such as coordination systems, scale-out, in-memory
lock services and in-memory databases rely on the perfor-
mance of their underlying SMR implementation, making it
extremely relevant to improve the performance of consensus
(or agreement) protocols.

This paper describes the design and implementation of
ChainPaxos, a new consensus algorithm for high throughput
replication of (deterministic) services. Our goal is to minimize
the communication cost of the protocol to achieve the highest
possible throughput, both for read and write operations. We
achieve this by using a set of complementary techniques. For
write performance, we rely on an efficient pipelined communi-
cation pattern between replicas, which has been explored and
shown effective by previous approaches, notably ChainRepli-
cation [33]. This pattern allows to minimize and distribute
the number of messages propagated (and therefore processed)
by each node to achieve consensus, which highly contributes
to maximizing the throughput of write operations. For read
operations, we propose a novel scheme for linearizable reads
served by a single replica, without incurring in additional
communication cost (albeit at the cost of a small increase in
latency), which further minimizes the communication over-
head of ChainPaxos and increase its throughput.

Contrary to many recent proposals, ChainPaxos does not
outsource membership management to an external coordi-
nation service (e.g., Zookeeper [12]). Instead, our system
features its own integrated membership management solu-
tion that allows for the continuous execution of operations
during reconfigurations, while uncoupling our system’s fault-
tolerance from that of an external service. As such, increasing
the number of replicas in ChainPaxos effectively increases
the maximum number of faults that are tolerated. On the other
hand, when leveraging an external coordination service, the
fault-tolerance of the replicated systems depends on the fault-
tolerance of that coordination service. Additionally, as shown

USENIX Association 2022 USENIX Annual Technical Conference 575

recently [2], relying on an external coordination service is far
from trivial as it makes a system more vulnerable to network
partitions, requiring additional logic to ensure correctness.

Our design builds on the insight that it is possible to com-
bine multiple Multi-Paxos messages and exploit a pipeline
communication pattern. While this insight is not novel [19],
ChainPaxos is, to the best of our knowledge, the first protocol
that not only takes advantage of this insight, but also specifies
an integrated membership management solution, allowing for
lightweight linearizable reads to be served by any replica.

We conduct an extensive experimental evaluation of Chain-
Paxos where we evaluate its performance against several state-
of-the-art variants of Paxos, in particular Multi-Paxos, Egal-
itarian Paxos, (U)-Ring Paxos, and Chain Replication. The
results show that our algorithm provides higher throughput
and scalability when compared with other Paxos variants, with
even higher gains as both the number of the replicas of the sys-
tem and the size of operations increase. When compared with
other solutions that employ pipeline communication, Chain-
Paxos shows similar performance for writes, but improved
scalability as the ratio of reads increases.

In summary, this paper makes the following main contri-
butions: i) a new consensus algorithm that provides high
throughput, with integrated membership management that
makes it independent from external coordination services
(Section 3); ii) a novel approach to provide linearizable read
operations that distribute the load among all replicas with-
out incurring additional communication costs (Section 4);
and iii) an extensive experimental evaluation, showing that
ChainPaxos provides better performance than state-of-the-art
alternatives (Section 5).

2 Related Work
Paxos [15,32] and its variants [6,21,24,26–28] have been used
in the design of replicated systems, employing diverse tech-
niques to optimize performance aspects, such as minimizing
latency, reducing communication cost, distributing the load,
and supporting linearizable reads. We now discuss the most
popular variants of Paxos, along with Chain Replication [33],
an alternative SMR algorithm.

2.1 Minimizing latency
Multiple Paxos variants try to optimize latency. In Fast-
Paxos [18], clients send Accept messages directly to accep-
tors, skipping the leader. Generalized Paxos [17] extends
FastPaxos by allowing non-interfering requests to execute in
different orders. In both cases, collisions in client requests
result in additional round trips, hindering performance. Flex-
ible Paxos [11] uses different quorum sizes for executing
operations (akin to read-write quorum systems [34]), reduc-
ing the size of accept quorums and decreasing the latency
of accepting operations in the fast path. While ChainPaxos
only matches the fast path latency of these protocols when
configured to tolerate a single fault, it requires each replica to

handle only one message per operation. In contrast, the O(n)
message complexity of Paxos leader and learners in these
solutions results in lower throughput.

2.2 Communication cost
Some variants employ chain (or ring) topologies to decrease
communication cost. Ring Paxos [28] sends Accept messages
to all replicas using IP-multicast, with responses being prop-
agated through a ring. IP-multicast limits the operation of
the protocol across data centers and negatively impacts the
performance under high load when messages are lost. Chain
Replication [33] is an SMR algorithm, developed for syn-
chronous systems, where replicas are organized in a chain and
write operations are forwarded from the head to the tail, with
acknowledge messages travelling the opposite way. This ap-
proach has the advantage that all replicas send and receive the
same number of messages for executing an update. Similarly,
U-Ring Paxos [13] propagates messages in a ring topology,
with acknowledge messages being forwarded from the tail
to the head. These solutions require an external coordination
service (e.g., Zookeeper [12]) to reconfigure the system when
faults occur, leading to higher operational cost, slower fault-
handling, potentially lower fault-tolerance (dependent on that
of the external service), and vulnerability to network parti-
tions [2]. ChainPaxos, while having a similar communication
pattern, further reduces the number of messages processed by
each replica, while handling reconfigurations and faults in an
integrated and efficient way.

2.3 Distributing the load
Other variants of Paxos try to distribute the load across repli-
cas. Mencius [22] pre-assigns the leader of each instance to a
different node. While providing better throughput, the overall
availability suffers since the failure of any replica will cause
the system to stop until another replica takes over. In Egalitar-
ian Paxos (EPaxos) [26], any replica can commit operations
and non-conflicting operations execute in different orders.
When there is no conflict, operations commit in a single com-
munication round. Multi-Ring Paxos [24] (based on Ring
Paxos) uses a similar approach, while taking advantage of the
ring topology to minimize communication. When concurrent
operations conflict (which is often the case in SMR), these
protocols require extra rounds of communication. Atlas [8]
improves on this by allowing some conflicting operations to
execute in a single round. Despite trying to distribute the load
across all replicas, these protocols still require nodes to send
and receive O(n) messages. In contrast, ChainPaxos mini-
mizes the overall load imposed by the protocol, having O(1)
message complexity, while also distributing the load across
replicas.

2.4 Linearizable reads
In replicated systems, where reads are more frequent than
writes, it is important to reduce the cost of read operations to
improve overall performance.

576 2022 USENIX Annual Technical Conference USENIX Association

Synchronous systems. Chain Replication [33] proposes
to execute linearizable reads by contacting a single node: the
tail of the chain. When the tail fails, as detected by an external
coordination service, clients fallback to the previous node
in the chain to continue reading the system state. This solu-
tion, however, was designed for a synchronous model model
where failures can be reliably detected. In an asynchronous
system, linearizability can be violated, as the tail can become
isolated and be excluded from the chain without knowing,
while still serving (outdated) reads. To avoid this, for each
read, either the tail or the client would need to contact the ex-
ternal coordination service to verify the current configuration
of the chain, which is too expensive. In [33], the authors men-
tion that the coordination mechanism needs to stop clients
during reconfigurations, which is unfeasible under network
partitions.

Asynchronous systems. Due to a similar reason, solutions
based on Paxos cannot execute read operations by contacting
only the leader, usually requiring to run a consensus instance
for ordering read operations or, in special cases, to contact a
quorum of replicas. However, some alternative read schemes
to improve replication performance have been proposed. In
Smarter [4], reads execute on a single replica, but require a
special whats_my_view message to be sent to all replicas to
gather a majority of replies confirming that no reconfiguration
took place concurrently with the read operation. In [10], reads
are executed on a single replica, however at the cost of requir-
ing writes to execute in two phases. CRAQ [31] improves
reads in Chain Replication by allowing to read from any
replica in an asynchronous model, however it only provides
per-object linearizability, and for SMR it would require all
reads to contact the tail whenever there is a write executing.

In contrast with all these solutions, ChainPaxos includes
a novel technique to execute linearizable reads on a single
replica, in an asynchronous environment, without ever re-
quiring any additional communication costs. Furthermore, it
allows any replica to process reads, thus distributing the read
load across all replicas.

3 ChainPaxos
We assume an asynchronous distributed system with n nodes,
connected by a network that can lose, duplicate, and deliver
messages out of order. Nodes communicate by exchanging
messages over a network with a fair loss model that allows the
creation of FIFO channels between any pair of nodes. Nodes
can fail by crashing, where they stop sending messages.

We follow the SMR model [30], in which each replica
holds a copy of the system state and there exists a set of de-
terministic operations that may output a reply. Replicas start
in the same initial state and apply the same sequence of oper-
ations, thus guaranteeing that all replicas transition through
the same sequence of states and output the same results. We
defer the processing of read operations to Section 4.

ChainPaxos is used to order the execution of operations.

The system state includes the application state and the mem-
bership of the system, with AddNode(n) and RemoveNode(n)
operations, respectively, adding and removing node n to the
replica-set. These operations execute in the state machine, as
other application operations, potentially impacting the quo-
rum size of following operations. For correctness, a node can
only decide a given instance strictly after knowing the deci-
sion of all previous instances (and the current membership).

3.1 Overview
This section introduces ChainPaxos, revisiting Multi-Paxos
and Chain Replication to better contextualize our design.

In Multi-Paxos [15, 32], a distinguished proposer, known
as leader, prepares multiple Paxos instances in a single step
(Phase 1), followed by multiple sequential executions of Phase
2 of Paxos. In a fault-free run (Figure 1), the leader sends
an accept message to all replicas, with each replying to all
replicas with an accept ack message. Any replica that receives
accept ack messages from a majority of replicas can decide
and execute the request (with the replica that received the
operation replying back to the client). With n replicas, the
message complexity of the protocol is O(n2): each replica
incurs in O(n) message overhead (the leader sends/receives
2n messages). The reply to the client is produced after 2 com-
munication steps between replicas. Alternatively, a replica
could send the accept ack message only to the leader, which
would then forward the decision to all replicas. In that case,
the overhead of non-leader replicas decreases to O(1) at the
cost of an additional communication step.

Chain Replication [33] leverages a chain topology, for-
warding operations from the head to the tail (Figure 2). The
tail replies to clients after executing an operation, and sends
ack messages backwards, to allow replicas to perform garbage
collection. In a fault-free run, each replica incurs in O(1)
message overhead, with a reply being produced after O(n)
communication steps.

The main goals of ChainPaxos’s design are: (i) minimize
the number of messages each node processes in fault-free
runs and make the load uniform, maximizing throughput; and
(ii) integrate an efficient fault handling scheme into the algo-
rithm, by taking advantage of Paxos messages, avoiding the
need to rely on an external service. To achieve these goals,
we leverage the chain topology to combine and forward mul-
tiple Multi-Paxos messages in a single ChainPaxos message.
As ChainPaxos builds on Multi-Paxos, leader faults can be
handled simply by falling back to the first phase of Paxos.

In ChainPaxos, in a fault-free run (Figure 3), the leader
sends the accept message, including its accept ack, to the
following replica in the chain. Upon receiving an accept mes-
sage, a replica forwards the message modified to include its
own accept ack. When the accept message reaches the tail
of the chain, it sends a message directly to the head with the
accept ack of all replicas, guaranteeing that the head learns
about the decided value. Additionally, it is necessary to in-

USENIX Association 2022 USENIX Annual Technical Conference 577

Figure 1: Multi-Paxos message flow
on a fault-free run.

Rep 1
(leader)

Rep 2

Rep 3

Client

Op Reply

Op

Op Ack

Ack

Figure 2: Chain Replication message
flow on a fault-free run.

Rep 1
(leader)

Rep 2

Rep 3

Client

Op Reply

Accept +
Accept Ack 1-2

Accept Ack 1-3

Accept +
Accept Ack 1

Figure 3: ChainPaxos message flow on
a fault-free run.

form the replicas that have not received enough accept ack
messages to decide the value of the instance – ChainPaxos
piggybacks this information in the next accept message.

When an accept reaches the replica at the middle of the
chain, it includes accept ack from a majority quorum. Thus,
the replica knows that the received request has been decided,
and can execute the request and return the result to the client.
In the example of Figure 3, with three replicas, the leader and
replica 2 form a quorum, with replica 2 replying to the client.

The message flow for fault-free runs achieves the first
goal of minimizing the number of messages handled by each
replica and keeping the load uniform: a single message is sent
and received by every replica. As ChainPaxos is just using
a different communication pattern to convey the messages
of Multi-Paxos, it can fall back to the regular two phases of
Paxos to handle faults. This is the base for achieving the
second goal of integrating fault handling in the protocol.

ChainPaxos builds on these ideas to provide high through-
put replication by addressing the following challenges: i)
optimize fault-handling and integrate membership manage-
ment by leveraging information about the chain topology,
thus avoiding the common vulnerabilities/complexity encoun-
tered in systems that rely on external coordination services
in the presence of network partitions [2]; ii) support efficient
garbage collection of the information about decided values,
which is a common challenge in many variants of Paxos,
rarely addressed in the specification of algorithms; and iii)
integrate a novel mechanism that leverages the chain topology
to enable efficient linearizable read operations handled by a
single replica without additional communication.

Next, we detail the operation of ChainPaxos, describing
the state maintained by each replica and the operation of the
protocol in fault-free runs and during reconfigurations. We
present correctness arguments for our solution in Annex A.

3.2 Protocol State
Algorithm 1 presents the state of each replica. The first
variable group is related with the organization of the sys-
tem and includes: the members and their order in the chain
(chain); the identity of the local node (self); the next node
in the chain that is not marked for removal (cnextok); the cur-
rently supported leader (csleader); and the replicas for which a
RemoveNode has been received but not yet decided (marked).

Algorithm 1 State of ChainPaxos nodes.
chain : array of nodes
self : node ▷ local node identifier
cnextok : node ▷ next (unmarked) node in the chain
csleader : node ▷ supported chain leader
marked : set of node ▷ nodes marked for removal (init : /0)

npleader : int ▷ special prepare number of the leader
inst : map int × PaxosInst ▷ PaxosInst : (na,val,nacpts,decided)

submitted : set of requests ▷ requests submitted by the client
pending : set of requests ▷ requests waiting to execute (leader only)

maxack : int ▷ highest instance acknowledged
maxacpt : int ▷ highest leader initiated instance (leader only)
amLeader : bool ▷ true if current leader

The second group maintains the information to run Paxos
instances. This includes the prepare number (npleader) that
the leader can use for bypassing the first phase of Paxos. Each
replica also maintains a map (inst) with the information
of Paxos instances including, for each instance, the highest
prepare number (na) used by a leader to accept a value (val),
the number of nodes that accepted val with na (nacepts), and
a boolean indicating if the instance was decided (decided).

The third group is used for managing client requests. It con-
sists of two sets: submitted stores requests received from
clients and not yet decided, and pending contains the re-
quests received by the leader (redirected from itself or other
replicas) but not yet submitted for ordering.

The final group of variables is used for clarity of presenta-
tion and stores information that could be derived from other
variables, including the highest instance started by the leader
(maxacpt), and the highest instance known to have a decided
value accepted by all nodes (maxack). Each node also keeps
track of whether it is the current leader in amLeader.

3.3 Fault-free execution
Algorithm 2 presents the ChainPaxos algorithm, with auxil-
iary functions detailed in Algorithm 3. The highlighted lines
represent the logic used in faulty scenarios that require recon-
figuration, which are detailed in the next section.

Requests from clients can be received by any replica, and
are redirected to the leader (Alg. 2, line 1), which stores them
in a set of pending requests (Alg. 2, line 5). The leader, upon
receiving a new request, starts a new instance by increasing

578 2022 USENIX Annual Technical Conference USENIX Association

Algorithm 2 ChainPaxos algorithm: message flow.
1: upon receive <NEW_REQUEST,req> from client do:
2: submitted← submitted∪{req}
3: SEND(csleader,<REDIRECT_REQUEST,req>)
4:
5: upon receive <REDIRECT_REQUEST,req> from r do:
6: if self= csleader then ▷ Even if there is no quorum yet
7: pending← pending∪{req}
8:
9: function STARTINSTANCE

10: maxacpt← maxacpt+1
11: SEND(self,<ACCEPT,maxacpt,self,npleader,pending,0,maxack>)
12: pending← /0

13: upon receive <ACCEPT,ni,ldr,na,val,nacpts,mack> from r do:
14: if npleader ≤ na then ▷ Has not seen higher prepare
15: UPDATELEADERINFO(ldr,na) ▷ If a prepare was missed
16: if ̸ ∃inst[ni]∨inst[ni].na < na then
17: inst[ni]← (na,val,nacpts+1,false)
18: else ▷ Repeated accept
19: inst[ni].nacpts← MAX(nacpts+1,inst[ni].nacpts)
20: if inst[ni].val= RemoveNode(node) then
21: MARKFORREMOVAL(ni,node)
22: if ISQUORUM(nacpts)∧¬inst[ni].decided then
23: DECIDE(ni)
24: DECIDEANDGCUPTO(mack)
25: FORWARD(ni)
26:
27: upon receive <ACCEPT_ACK,ni> from r do:
28: DECIDEANDGCUPTO(ni)
29:

the instance number and generating a new accept message
(Alg. 2, line 9). The accept message contains the following
information: (i) the instance number, which the leader tracks
in maxacpt; (ii) the id of the leader; (iii) the prepare number,
npleader, used by the leader in its previous prepare message;
(iv) the client request (i.e., operation); (v) the number of nodes
which have accepted the value (nacepts), initialized to 0; and
(vi) the highest instance for which the decided value is known
to have been accepted by all replicas (maxack).

The leader is the first to handle the accept message of each
instance, as it starts a new instance by sending the accept to
itself (Alg. 2, line 11). Upon receiving an accept message for
an instance (Alg. 2, line 13), a node stores the information
for the instance, increasing the value of nacpts to indicate the
node itself is accepting the value. If nacpts is greater than n/2,
the message has already been accepted by a majority of nodes,
and its value can be decided (Alg. 2, line 22). Otherwise, the
value will be decided (and garbage-collected) when an accept
message is received with mack greater or equal to its instance
number. This is performed in function DecideAndGCUpTo

(called in Alg. 2, line 24 and defined in Alg. 3, line 35). This
function traverses every (non-garbage-collected) instance up
to instance maxack, marking them as decided (if they were not
yet), and garbage-collecting the information about them after
their execution. This is safe since all instances up to maxack
have been accepted by every node in the chain.

Finally, the node forwards the accept message (with the in-
cremented nacpts) to the next node in the chain. If the replica

is the last node in the chain, it sends an accept ack mes-
sage to the leader, signalling that every node in the chain
has seen and accepted the instance. Upon receiving this mes-
sage, the leader executes DecideAndGCUpTo, increasing its
maxack which leads subsequent accept messages to trigger
DecideAndGCUpTo in every node across the chain.

The nodes in the second half of the chain (starting from the
n/2th node) can decide instances as soon as they receive the
accept message, while the first n/2 nodes only decide (and ex-
ecute an operation) after receiving an acknowledgement (the
leader via an accept ack message, and the other nodes via the
maxack value piggybacked in subsequent accept messages).

In a fault-free run, our protocol simply encodes the mes-
sages of Multi-Paxos in ChainPaxos messages. A ChainPaxos
accept message sent by node n encodes the Multi-Paxos ac-
cept message and the accept ack messages of n and all nodes
that precede it in the chain. It also encodes the accept ack
messages of all nodes in the chain for all instances up to mack.
A ChainPaxos accept ack message encodes the Multi-Paxos
accept ack messages of all nodes in the chain.

3.4 Dealing With Faults and Reconfigurations
To describe how faults and membership reconfigurations are
handled in ChainPaxos, we begin by describing the mech-
anisms used by replicas to suspect other nodes (i.e., fault
detection) and then discuss the steps taken by ChainPaxos to
reconfigure the system, either keeping the current leader or
when the leader is suspected. The main challenge faced by
ChainPaxos is that, when using a chain topology, the failure
of a single node leads the chain to break, making it impossible
for messages to keep flowing along the chain, resulting in a
system halt.

Fault Detection: We have implemented two mechanisms
for fault suspicion. To pinpoint faults in the chain, each replica
expects to receive periodic keep-alive messages from the fol-
lowing node in the chain. If a node does not receive the
keep-alive for a configurable period of time, it suspects the
node, and requests the leader to remove it, triggering a Recon-
figuration not involving the leader. In case the tail suspects
the failure of the leader (which is its next node), it starts the
process of taking leadership (Phase 1 of Paxos), and then
starts the process of removing it. This effectively triggers a
Reconfiguration involving the leader.

We note that, as we assume an asynchronous system, sus-
pecting a node does not necessarily mean that it failed, but
rather that there is a chance it might have, as it can just be
temporarily slow [29]. However, since a single failed (or just
slow) node can block progress in the whole chain, the keep-
alive mechanism is important to allow quick removal of sus-
pected nodes, minimizing their negative impact on the overall
throughput of the chain. Incorrectly removed replicas can
later rejoin the system.

The second mechanism is based on the continuous flow
of accept messages. If a replica does not receive an accept

USENIX Association 2022 USENIX Annual Technical Conference 579

Algorithm 3 ChainPaxos algorithm: auxiliary functions.
1: function MARKFORREMOVAL(ni,node)
2: marked← marked∪{node}
3: if node= cnextok then ▷ We marked the closest unmarked node
4: cnextok = NEXTNODENOTMARKED(self, marked)
5: for n← maxack+1,ni−1 do ▷ Re-propagate accepts
6: FORWARD(n)
7: function FORWARD(ni)
8: if cnextok = leader then
9: SEND(cnextok,<ACCEPT_ACK,ni>)

10: else
11: SEND(cnextok,<ACCEPT,leader,ni,inst[ni].na,

inst[ni].val,inst[ni].nacpts,maxack>)
12: function UPDATELEADERINFO(leader,np)
13: if npleader < np then
14: amLeader← false

15: pending← /0

16: csleader← leader ▷ Set new leader
17: npleader← np ▷ Set the prepare number for the leader
18: for req ∈ submitted do ▷ Redirect requests to new leader
19: SEND(csleader,<REDIRECT_REQUEST,req>)
20: marked←{}
21: cnextok = NEXTNODENOTMARKED(self, marked)
22: function DECIDE(ni)
23: inst[ni].decided← true
24: if inst[ni].val= RemoveNode(node) then
25: marked← marked\{node}
26: chain← chain\{node}
27: else if inst[ni].val= AddNode(node) then
28: chain← chain∪{node}
29: cnextok = NEXTNODENOTMARKED(self, marked)
30: if cnextok = node then ▷ Was added right next to me
31: STATETRANSFER(cnextok,ni)
32: else
33: SMREXECUTE(inst[ni].val)
34: pending← pending\{inst[ni].val}
35: function DECIDEANDGCUPTO(ni)
36: for i ∈ inst∧ i≤ ni do ▷ sequential iteration up to ni
37: if ¬i.decided then
38: DECIDE(ni)
39: inst← inst\{i}
40: maxack← ni

for a configurable period of time, it assumes that the leader is
faulty and attempts to take leadership. If, during this process,
the new leader could not establish a connection to some other
node (to send them the prepare message), it suspects and starts
the process of removing them. To make sure this mechanism
operates correctly even if the system is subjected to a low
load, the leader issues periodic accept messages for a special
NoOP operation if there are no client requests.

Reconfiguration not involving the leader: We now ex-
plain how ChainPaxos reconfigures the chain by removing a
suspected node that is not the leader.

When the leader is notified that node n is suspected, it
starts an instance with RemoveNode(n) operation to remove
node n from the chain. When the instance is decided, n is
removed from the chain, updating the variables with the local
configuration of the chain (chain and marked).

When a RemoveNode operation is being propagated, two
actions need to be taken to guarantee correctness and progress:

i) guarantee that all previous accept messages that might have
been lost due to the failure of the node are forwarded to the
next correct node (to reestablish the flow of those accept mes-
sages); and ii) guarantee that all subsequent accept messages
are forwarded through the chain despite faulty nodes, until
the RemoveNode operation is decided, removing the faulty
node, and repairing the chain.

The former is implemented in MarkForRemoval, executed
when processing an accept message for a RemoveNode opera-
tion (Alg. 2, line 21). The node to be removed is added to the
set of marked nodes (Alg. 3, line 2). If the node to be removed
is the next node that was not previously marked, it is possible
that it failed to propagate previous messages through the chain.
Thus, the node sends to the next non-marked node any accept
messages (or accept ack for the leader) for instances that have
not yet been garbage collected (i.e., instances from mack to
ni−1 (Alg. 3, line 5). This guarantees that, when healing the
chain by bypassing faulty nodes, all accept messages will be
received by all nodes that will not be removed from the chain,
somewhat falling back to the pattern of Multi-Paxos1.

The latter guarantee is provided by the Forward function
(Alg. 3, line 7). This function forwards the accept message
for a given instance to the next node. When one or more
of the following nodes are marked to be removed (because
a RemoveNode operation has been received, but has not yet
been decided), the function forwards the accept message to
the next non-marked node. This guarantees that a node that is
to be removed in instance ni will not vote for instances n > ni.

When a leader change occurs while a RemoveNode opera-
tion for a node r is being propagated through the chain, it is
possible that the operation, while observed by a minority of
replicas (that add r to their marked set), is not decided. Fol-
lowing the regular behaviour of Multi-Paxos, the new leader
might issue a different operation for that instance. Such opera-
tions should be sent to r to ensure correctness. To do so, when
a replica learns about the new leader it removes all nodes from
the marked set and updates the cnextok variable, ensuring that
messages flow across all nodes. (Alg. 3, line 12).

Reconfiguration involving the leader: ChainPaxos sup-
ports changing the leader by having a node become the leader
at a given instance for that and all following instances by
executing the first phase of Paxos.

This process is initiated in function TryToBecomeLeader

(Alg. 4, line 1). The node selects a prepare number higher
than any prepare number already seen in any instance, and
sends a prepare message for instance maxack+1 directly to
all nodes. Although this prepare is for a given instance, it
will make the node leader of all instances from that point
onward – thus, the prepare number must be larger than any

1Note that this might lead to nodes receiving multiple accept messages for
the same instance with the same prepare number from different nodes. This
is addressed by considering the highest observed number of acks reported in
these messages. This is safe because the forward process employed during
recovery never generates cycles.

580 2022 USENIX Annual Technical Conference USENIX Association

Algorithm 4 ChainPaxos algorithm: leader election.
1: function TRYTOBECOMELEADER
2: np = NEXTPREPARENUM(npleader)
3: SEND(∀n ∈ chain, <PREPARE,maxack+1,np>)
4: upon receive <PREPARE,ni,np> from r do:
5: if npleader ≤ np then ▷ Has not seen higher prepare
6: UPDATELEADERINFO(leader,na) ▷ New accepted leader
7: instsaccepted = GETACCEPTEDINSTSFROM(ni)
8: SEND(node,<PREPARE_OK,ni,np,instsaccepted>)
9:

10: upon receive <PREPARE_OK,ni,np,instsaccepted> from rep do:
11: if npleader ≤ np then ▷ Has not seen higher prepare
12: REGISTERPREPAREOK(ni,np,instsaccepted)
13: if HASPREPAREOKQUORUM(ni) then ▷ Became leader
14: amLeader← true ▷ Can now start new instances
15: for (ani,ana,aval) ∈ACCEPTEDINSTSFROM(ni,np) do
16: SEND(self,<ACCEPT,ani,self,np,req,0,maxack>)
17: maxacpt← ani

18:

previously used by any replica. We use maxack+1, since it
guarantees that previous instances have already been accepted
by every node, and all messages regarding those instances can
be discarded. As such, nodes only need to maintain the single
highest prepare number npleader ever received (instead of
keeping a prepare for each instance). Since prepare messages
need to have unique prepare numbers, this number includes
an identifier of the node which is used to make sure that no
two prepare messages from different nodes have the same np.

A prepare message for a given instance is rejected if the
node has already seen a higher prepare number for any in-
stance (either on prepare or accept messages). Otherwise,
the usual Paxos logic is executed for this and all higher in-
stances, with the corresponding prepare ok message being
returned, which includes all previously accepted values (and
corresponding prepare numbers) for the instance indicated
in the prepare message and all following instances (Alg. 4,
line 8). This is necessary as a successful prepare also makes
the node the leader of all future instances. From this point
until a prepare with an higher prepare number is received, the
sender of the prepare message will be set as the supported
leader csleader and all pending and future client requests will
be redirected to it (Alg. 3, line 12).

Upon reception of a quorum of prepare ok messages
(Alg. 4, line 13), the node considers itself the new leader.
It then executes the regular Paxos logic, but for multiple in-
stances: for all instances for which accepted values exist, it
uses the value with the highest associated prepare number as
its proposal for that instance, and forwards the corresponding
accept message over the chain. The regular protocol execu-
tion then resumes. In Annex A, we discuss in more detail the
correctness of leader election and reconfigurations.

Adding a new replica: For adding a node n to the chain,
n sends a request to a replica with AddNode(n) operation as
its value. The leader processes this request by starting an
instance that is executed as any other instance of ChainPaxos.

When the instance is decided, the node is added to the

tail of the chain updating the local chain configuration (vari-
ables chain and cnextok). Once the new node is added, it
requests the current state (history of operations or snapshot)
from another node at the instance in which the operation to
add the node was decided. While this state transfers in the
background, the new node can already participate in the fol-
lowing instances actively forwarding messages (although it
can only locally execute and garbage collect operations after
the completion of the state transfer).

4 Local Linearizable Read Operations
In this section, we discuss our proposal to execute read opera-
tions. As we mentioned previously, in Chain Replication, due
to the use of an external coordination service, reading from
the tail does not provide linearizable reads in the presence
of network partitions, as the tail might become partitioned
and not be aware that it was removed from the system. Guar-
anteeing linearizable reads requires contacting the external
configuration service, which defeats the purpose of the low
overhead achieved by only contacting the tail. Due to similar
issues, most SMR protocols only support linearizable reads
by executing them as normal consensus operations or, in some
cases [5], by contacting a quorum of replicas (and falling back
to executing the read as a normal operation when conflicts
occur). We now discuss how we leverage on the chain topol-
ogy and our integrated membership management to provide
linearizable reads without any added communication cost.

To provide linearizable reads, it is necessary to guarantee
that the result of a read reflects a state that, at the moment the
read is received, is at least as recent as the most recent state
for which any node has returned a result (either for a read or
for a write). The base intuition of our proposal is that a node
can guarantee this property by waiting for a message to loop
around the entire chain, making sure that the local node is as
up-to-date as any node was at the moment the message started
looping around the chain.

Based on this intuition, our solution for linearizable reads
works as follows. Clients issue read operations to any replica
in the chain. Upon receiving the operation, the replica locally
registers that the operation depends on the lowest unseen con-
sensus instance (but no information is sent to other nodes).
For instance, if the highest instance that the replica has seen
so far is 6 (regardless of it being decided or not), the read
operation will depend on instance 7. Upon receiving the ac-
cept ack message to the consensus instance for which the
operation depends on, the read operation is performed locally
in the local committed state and the reply is sent to the client.

This protocol implements linearizable reads by enforcing
the following properties: i) a read r returns a value that is at
least as recent as any value outputted by the protocol at the
moment the read was received. By waiting that the following
consensus instance is acknowledged and executing the read
in the current local state, a replica is assured that the result of
any read that was returned at any replica before the reception

USENIX Association 2022 USENIX Annual Technical Conference 581

of r cannot be more recent than the result that will be returned
for r – this follows from the properties of ChainPaxos, which
guarantee that as messages loop the chain they make the
state of replicas advance, so that the following replica in the
chain is in a state that is at least as recent as the previous
replica. As such, if some replica has already returned a value
for state si, by waiting that the following consensus message
is acknowledged, which requires a full loop of an operation
through the chain, the local replica state will be at least as
recent as si. Due to the same reason, the result of a read will
also reflect the result of any committed write operations, at
the moment the read was received; ii), upon a reconfiguration,
a node that is partitioned from the chain will not return stale
values: when a replica loses connection to the others, either it
is eventually removed from the chain, preventing it from ever
replying to client read operations or it eventually reconnects
to the other nodes, allowing it to continue responding to read
requests. In the latter case, since the replica was not removed
from the chain, no progress was made while it was partitioned,
thus linearizability is not lost.

Our proposal trades a potentially higher latency (compared
to executing a read as a normal operation) for the possibility
of processing a read locally at any node, without additional
consensus instances or communication steps. This leads to
lower communication and processing overhead, and allows to
balance the load of read operations across all replicas, leading
to better overall performance. Under low load, write opera-
tions may be less frequent, which could delay read operations.
We note however, that the head of the chain issues periodic
NoOP operations if no write is received, as to show to the
other replicas that the head is still correct, hence the maxi-
mum latency of reads in scenarios with a low load will be
controlled by the frequency of these NoOP operations. Alter-
natively, to ensure faster read processing, a replica processing
a read which has not received the message for the next con-
sensus instance after some configurable timeout can forward
the read to the leader to be executed as a normal operation
(which in turn will allow other pending reads to complete).

5 Evaluation
This section reports the experimental evaluation of Chain-
Paxos in a broad range of scenarios. We start by assessing
the performance and scalability in CPU-bound and network-
bound settings (Section 5.2), and the impact of our novel
read protocol (Section 5.3), using a replicated key-value store
application under the YCSB workload [7], when compared
with other consensus protocols. Then, we report the results
of integrating ChainPaxos with ZooKeeper [12], by replacing
the Zab [14] replication protocol (Section 5.4). Finally, we
study how ChainPaxos behaves in a geo-replicated setting
(Section 5.5) and the impact of reconfigurations in our in-
tegrated membership when compared to using an external
coordination service (Section 5.6).

We have implemented a prototype of ChainPaxos in Java,

using a framework for building distributed protocols, Ba-
bel [9], which relies on the Netty [1] framework for the
communications module. Similarly to other authors [8, 26],
to guarantee fairness in our comparisons, the other consen-
sus protocols were implemented using the same codebase
as ChainPaxos. This guarantees that the results are not influ-
enced by specific implementation aspects, such as the pro-
gramming language, client communication patterns or dif-
ferences in optimizations (such as batching). Each protocol
was implemented following the description presented in their
respective publications as well as available code bases for
EPaxos [25] and Ring Paxos [23]. For the latter, as proposed
by the authors, we limit the number of concurrent instances
the leader can start as a form of flow control to mitigate the
loss of multicast messages and include a mechanism for re-
covering from lost messages.

Each replica includes: an application (either the replicated
key-value store or Zookeeper), which receives client requests,
submits them for ordering, and replies to the client when the
operation is executed; a proxy, serving as the intermediary
between the application and the consensus protocol, also redi-
recting operations to the consensus leader when applicable
and; the consensus solution itself, which receives operations
from the proxy and notifies it once their ordering is decided.

5.1 Experimental Setup and Parameters
The experiments were conducted on the Grid5000 testbed
[3], using a cluster of machines with an Intel Xeon Gold
5220 CPU with 18 cores and 96 GiB DDR4 RAM. Machines
are connected through a 25 Gbps Ethernet switched network.
Each replica executes in its own machine, and clients (running
YCSB [7]) execute on 3 independent machines (with multiple
client threads per machine). Each client thread connects to a
replica for executing operations in a closed-loop.

Every protocol is executed in similar conditions, with the
exception of Chain Replication that uses Zookeeper as the ex-
ternal management service (following [33]). For all protocols,
the leader is elected at the start of the experiment and the pro-
tocols run multiple consensus instances in parallel. All results
are the average of 5 independent runs, discarding the start and
end periods of each experiment. In all results presented, the
standard deviation between runs is always below 10%.

In addition to ChainPaxos, Chain Replication [33], and
Ring Paxos [28], we report as: EPaxos, the execution of
EPaxos [26] in a workload where all operations conflict
(which is the same case of other baselines); and EPaxos-
NoDep, the execution of EPaxos in a workload where no
two operations conflict, which is equivalent to running multi-
ple independent Paxos instance in parallel. We note that this
is an unrealistic workload, as it would require all operations
to be independent from each other, being presented only to
provide the best (theoretical) results for a protocol following
the strategy of EPaxos. MultiPaxos refers to the variant of
Multi-Paxos [16] where acceptors forward their accept ack

582 2022 USENIX Annual Technical Conference USENIX Association

0 20 40 60 80 100 120 140 160
Throughput (1000 ops/s) - 3 Replicas

0

2

4

6

8

10
Av

er
ag

e
la

te
nc

y
(m

s)
ChainPaxos
ChainReplication
U-RingPaxos
MultiPaxos
Multi-1Learn
EPaxos
EPaxos-NoDeps
RingPaxos

0 20 40 60 80 100 120 140 160
Throughput (1000 ops/s) - 7 Replicas

0

5

10

15

Av
er

ag
e

la
te

nc
y

(m
s)

Figure 4: Performance for operations with 128 bytes (CPU
bottleneck).

messages to all replicas, whereas Multi-1Learn represents the
variant where acceptors only send the accept ack to the leader
that, upon collecting a quorum of replies, issues a decided
to all replicas - this protocol has a message flow equal to
Raft [27] in the normal case. U-Ring Paxos [13] is a varia-
tion of Ring Paxos, using unicast instead of multicast, with a
message flow similar to our solution and Chain Replication.

5.2 Performance in a Single Data Center
This section reports the results obtained in a single data center,
running the YCSB benchmark with a replicated key-value
store application. We study scenarios that attempt to saturate
the CPU and the available bandwidth, by varying the size of
the data stored in the key-value store.

CPU Bound. Figure 4 shows the performance of each pro-
tocol in a CPU-bound scenario. For this experiment, clients
execute small (128 bytes) operations and no batching is em-
ployed (i.e., each operation is executed in an individual con-
sensus instance). Clients connect uniformly at random to a
replica, and receive a reply after the operation is executed in
that replica. While this does not provide optimal latency for
some solutions, it maximizes throughput by distributing the
load of handling client requests as much as possible.

These results show that, by pipelining a single message per
each operation through all replicas, ChainPaxos minimizes
CPU usage, achieving the best performance and scalability.
Chain Replication and U-RingPaxos perform worse, as they
propagate some extra messages: acknowledge messages in the
former, and proposals being propagated to the leader through
the chain in the latter. These messages could be batched or
piggybacked with a small penalty to latency. We note that the
throughput of ChainPaxos with 7 replicas, which tolerates 3

0 10 20 30 40 50
Throughput (1000 ops/s) - 3 Replicas

0

1

2

3

4

5

6

Av
er

ag
e

la
te

nc
y

(m
s)

ChainPaxos
ChainReplication
U-RingPaxos
MultiPaxos
Multi-1Learn
EPaxos
EPaxos-NoDeps
RingPaxos

0 10 20 30 40 50
Throughput (1000 ops/s) - 7 Replicas

0.0

2.5

5.0

7.5

10.0

12.5

Av
er

ag
e

la
te

nc
y

(m
s)

Figure 5: Performance with network bottleneck.

faults, is higher than that of Chain Replication with both 3
and 7 replicas, which tolerate 2 and 6 faults, respectively.

For both versions of MultiPaxos, the leader (and all replicas
in regular MultiPaxos) transmits and receives messages from,
at least, a majority of replicas, resulting in higher CPU usage
and lower performance. The impact of this effect increases
with the number of replicas. For EPaxos, when all operations
need to be ordered, the algorithm requires two rounds of
communication, leading to an higher number of messages
and lower throughput. The execution of EPaxos-NoDeps is
similar to executing multiple parallel MultiPaxos instances,
distributing the load among replicas. This leads to an higher
throughput than MultiPaxos and EPaxos that, unlike Chain-
Paxos, also decreases with the number of replicas, as more
messages need to be processed. Furthermore, we note that
EPaxos-NoDeps is not totally ordering all operations, as other
protocols do. RingPaxos is tricky to tune, as a single lost mul-
ticast message can stall the entire system. Even for our best
configuration (with 150 simultaneous consensus instances),
RingPaxos performance is worse than U-RingPaxos.

Overall, these results show that lowering the number of
messages processed by each replica allows to achieve higher
throughput with a negligible latency overhead. Furthermore,
the throughput of chain-based protocols degrades very slowly
when increasing the number of replicas, while the through-
put of other protocols degrades quickly, as the number of
messages processed by each node depends on the number of
replicas in the system. This is relevant for supporting critical
systems with high availability requirements.

Network Bound. Figure 5 presents the performance in a
network-bound scenario. For this experiment, the bandwidth
of replicas is limited to 1Gbps, with clients issuing 2048 byte
operations, saturating the bandwidth of the replicas without

USENIX Association 2022 USENIX Annual Technical Conference 583

3 5 7
Number of replicas

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

la
te

nc
y

(m
s)

ChainPaxos
ChainReplication
U-RingPaxos
MultiPaxos
Multi-1Learn
EPaxos
EPaxos-NoDeps
RingPaxos

Figure 6: Latency under low load.

saturating their CPU. For saving the bandwidth consumed in
redirects and maximizing the bandwidth available for the con-
sensus protocol, all clients connect directly to the leader/head
(uniformly distributed in both EPaxos variants).

Results show that ChainPaxos, ChainReplication, and U-
RingPaxos, by only receiving and transmitting each operation
once, achieve maximum use of available bandwidth. For these
solutions, the replicas were consuming approximately 900
Mb/s of both inbound and outbound bandwidth. This allows
the system to maintain its performance with an increasing
number of replicas. For MultiPaxos, since the leader needs
to transmit each operation to all other replicas, its bandwidth
usage is disproportionately higher than that of other replicas,
limiting their throughput. Furthermore, the throughput de-
creases with the number of replicas. EPaxos versions suffer
from the same issue, but since EPaxos uses multiple leaders,
it distributes the load of the leader across all nodes, leading to
better scalability than MultiPaxos. EPaxos-NoDeps requires
less communication steps, having higher throughput, but still
far from ChainPaxos. For RingPaxos, the higher message size
results in more frequent message losses. Even configuring
the number of concurrent instances to 20 as to achieve the
best results, the performance is substantially lower than that
of ChainPaxos and Chain Replication.

Latency with a fixed throughput. Figure 6 shows the
latency with a fixed load – clients execute 9000 operations
per second, using payloads of 128 bytes. In this experiment,
clients are setup to minimize latency: in RingPaxos and Multi-
Paxos clients connect directly to the leader; in EPaxos clients
connect to all replicas uniformly; in Chain Replication and
U-RingPaxos clients connect to the tail; and in ChainPaxos
to the replica in the position n/2+1. Error bars present the
standard deviation of the results.

The results show that, with 3 replicas, ChainPaxos and
MultiPaxos variants exhibit the lowest latency, since they can
respond to client requests after a single communication step.
With increasing numbers of replicas, the latency of Chain-
Paxos increases, while the latency of both MultiPaxos vari-
ants remains mostly unaffected. Since both U-Ring Paxos and

0 200 400 600 800 1000 1200 1400 1600
Throughput (1000 ops/s) - 3 Replicas

0

1

2

3

4

5

Av
er

ag
e

la
te

nc
y

(m
s)

Chain Reads 0-100%
Local Reads 50%
Local Reads 95%
EPaxos-NoDeps 100%

0 200 400 600 800 1000 1200 1400 1600
Throughput (1000 ops/s) - 7 Replicas

0

2

4

6

8

Av
er

ag
e

la
te

nc
y

(m
s)

Figure 7: Performance with read operations.

Chain Replication require more communication steps until a
reply is generated, their latency is always higher than Chain-
Paxos. We note that ChainPaxos with 5 replicas presents a sim-
ilar latency to Chain Replication with 3 replicas, in which case
both tolerate the failure of 2 replicas. In EPaxos, since con-
flicts lead to extra communication rounds, the variant where
all operations conflict (EPaxos) naturally shows higher latency.
For RingPaxos, multicast message drops (which happen even
without saturation) and retransmissions lead to higher latency.

5.3 Performance of Read Operations
Figure 7 shows the impact of ChainPaxos’s novel linealizable
read approach in workloads with different read ratios and
payloads of 128 bytes. The throughput of executing reads as
normal (consensus) operations (Chain Reads) is constant, re-
gardless of the ratio of read operations. For our novel approach
(Local Read), the throughput is much higher than executing
reads as normal operations, and the throughput scales both
with the ratio of read operations and with the number of repli-
cas. This is explained by the fact that as reads impose no
overhead to the consensus protocol and the load is distributed
evenly among replicas, more replicas can process more reads.
The high throughput of ChainPaxos’s local linearizable reads
comes at the cost of a small additional latency under low load.

For comparison, we include the results of EPaxos-NoDeps,
the Paxos-based protocol with best performance in the pre-
vious results. The results show that ChainPaxos achieves a
significantly higher throughput than EPaxos-NoDeps.

5.4 Zookeeper case-study
To evaluate the performance of our protocol in a more realistic
scenario, we adapted ZooKeeper [12] to use ChainPaxos as its
consensus protocol, instead of Zab [14]. While some features
were not implemented, such as ephemeral nodes, our imple-
mentation fully supports creating, updating, and retrieving

584 2022 USENIX Annual Technical Conference USENIX Association

0 20 40 60 80 100 120
Throughput (1000 ops/s)

0

2

4

6

8

10

12

14
Av

er
ag

e
la

te
nc

y
(m

s)
Zk-Zab 3 Reps
Zk-Zab 5 Rep
Zk-Zab 7 Rep
Zk-Chain 3 Reps
Zk-Chain 5 Rep
Zk-Chain 7 Rep

(a) Write-only workload

0 100 200 300 400 500
Throughput (1000 ops/s)

0

1

2

3

4

Av
er

ag
e

la
te

nc
y

(m
s)

50% Weak Zk-Zab
50% Weak Zk-Chain
50% Strong Zk-Zab
50% Strong Zk-Chain

95% Weak Zk-Zab
95% Weak Zk-Chain
95% Strong Zk-Zab
95% Strong Zk-Chain

(b) Mixed workload with 3 replicas

0 100 200 300 400 500
Throughput (1000 ops/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

la
te

nc
y

(m
s)

50% Weak Zk-Zab
50% Weak Zk-Chain
50% Strong Zk-Zab
50% Strong Zk-Chain

95% Weak Zk-Zab
95% Weak Zk-Chain
95% Strong Zk-Zab
95% Strong Zk-Chain

(c) Mixed workload with 7 replicas

Figure 8: Performance of Chain-based Zookeeper vs original
Zookeeper.

znodes. We evaluated the performance of our implementa-
tion (ZK-Chain) against the original ZooKeeper using Zab
(ZK-Zab), in a setup similar to the CPU bound scenario of
Section 5.2. The results are presented in Figure 8.

For a write-only workload (Fig. 8a), the results show that
ChainPaxos achieves higher throughput than the original
Zookeper, with the difference increasing with the number of

replicas. This is due to the lower number of messages of our
protocol (Zab’s message pattern is similar to Multi-1Learn).

Figures 8b and 8c present mixed workloads (50% and
95% of read operations), with both weak and strong reads.
Weak reads represent the regular reads of ZooKeeper, where
a replica replies with its current state, allowing for stale data
to be served (e.g., with late replicas and under network parti-
tions). Strong reads, in our solution, are executed using lin-
earizable local reads. While ZooKeeper does not support lin-
earizable reads, the authors suggest issuing a sync operation
before a read as a close approximation of linearizability in
most cases. The results show that, unlike with Zab, the strong
reads with ChainPaxos scale to a throughput similar to execut-
ing weak reads. Overall, the throughput with ChainPaxos is
higher than with Zab for the same setting, and the difference
increases with the number of replicas.

5.5 Performance in a Geo-Replicated Setting
We evaluated our protocol in a geo-replicated setting by
emulating an environment with 5 sites. Using the Linux
tc command, we limited the bandwidth to 1Gbps, and in-
creased latency to the following values, extracted from https:
//cloudping.co, related to AWS EC2 data centers.

Sites A B C D E
North Virginia (A) - 92 127 204 186

Frankfurt (B) 88 - 210 288 279
São Paulo (C) 122 207 - 338 359

Sydney (D) 211 292 325 - 161
Seoul (E) 188 287 309 156 -

In these experiments, we did not use Ring Paxos, since
IP multicast is typically unavailable across data centers. The
replica in site A is always the leader/head. Experiments with
3 replicas use sites A, B, and C. Clients connect to the replica
that leads to the best performance: the leader for MultiPaxos;
evenly distributed for EPaxos, and; the tail for chain-based
solutions.

Figure 9 presents the throughput and latency when using
all available bandwidth. As within a single data center, Chain-
Paxos, Chain Replication, and U-Ring Paxos are able to make
optimal use of available bandwidth, providing higher through-
put than other protocols that order all operations. The EPaxos
variant without inter-operation dependencies is able to main-
tain its throughput with a varying number of replicas, since
the cost of transmitting each operation to all nodes is divided
among the multiple leaders. However, we remind the reader
that this configuration of EPaxos provides weaker guarantees
than the other alternatives. As for latency, the latency of the
chain-based solutions degrades as the number of replicas in-
creases, as it takes longer for the messages to traverse the
chain. For a high number of replicas, MultiPaxos variants
provide lower latency, as communication between the leader
and other replicas proceeds in parallel, although with, at most,
half the throughput of ChainPaxos.

USENIX Association 2022 USENIX Annual Technical Conference 585

https://cloudping.co
https://cloudping.co

0 10 20 30 40 50
Throughput (1000 ops/s)

0

200

400

600

800

Av
er

ag
e

la
te

nc
y

(m
s)

ChainPaxos-Perf
ChainReplication
U-RingPaxos
MultiPaxos
Multi-1Learn
EPaxos
EPaxos-NoDeps

(a) 3 Replicas

0 5 10 15 20 25 30 35 40
Throughput (1000 ops/s)

0

200

400

600

800

1000

1200

1400

1600

Av
er

ag
e

la
te

nc
y

(m
s)

(b) 5 Replicas

Figure 9: Performance in geo-replicated setting.

5.6 Impact of Reconfiguration
In our final experiment we evaluate the impact of reconfig-
uration, comparing ChainPaxos that uses its own integrated
management mechanism and Chain Replication that uses an
external management scheme based on Zookeeper (execut-
ing on dedicated machines). We conduct these experiments
in the geo-replicated scenario with independent Zookeeper
instances at sites A, B, and D. This distribution minimizes
latency for replicas without a local Zookeeper replica. We
used 1s timeouts to suspect the failure of another node (both
in ChainPaxos and in ZooKeeper).

Experiments run for 90 seconds. Every 10 seconds the fol-
lowing reconfiguration events occur (denoted by vertical red
lines for replica failures and green lines for replica additions):
10s) the tail node fails; 30s) the middle node fails; 50s) the
head/leader fails; 70s) the head and middle replicas fail simul-
taneously. Replicas are added at 20s, 40s, 60s, 80s, in sites
where a replica had previously failed. Clients issue operations
to a random active replica to distribute the load.

Figure 10 shows the throughput observed during the exper-
iments. Despite Chain Replication using additional resources
(3 extra machines executing Zookeeper), it takes more time to
perform a reconfiguration than ChainPaxos, particularly when

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60 70 80 90

T
h

ro
u
g

p
u

t
(1

0
0

0
 o

p
s
/s

)

Experience time (s)

ChainPaxos
ChainReplication

Figure 10: Reconfiguration

adding replicas to the set (green vertical lines). This happens
because any reconfiguration has to be coordinated through
Zookeeper. However, ChainPaxos takes longer to perform the
reconfiguration when the leader fails because it resorts to the
regular communication pattern of Paxos, whereas Chain Repli-
cation only fetches the new leader from Zookeeper. When
the leader and middle nodes fail simultaneously (70s), both
solutions take the same time to perform reconfiguration be-
cause ChainPaxos can handle both reconfigurations in parallel
(albeit using two operations), whereas Chain Replication per-
forms two sequential reconfiguration steps with Zookeeper.
In general, ChainPaxos handles reconfiguration faster than
Chain Replication without the cost of requiring additional ma-
chines to run the external management system, while avoiding
the vulnerabilities to network partitions that can compromise
the safety of the system [2].

6 Final Remarks
This paper presented ChainPaxos, a distributed consensus
algorithm for high throughput replication of deterministic ser-
vices. ChainPaxos exploits a pipeline communication pattern
which allows to reduce the number of messages that each
replica needs to send and process, while leveraging the foun-
dations of Paxos to allow leader exchanges. Unlike previous
solutions that exploit this communication pattern, ChainPaxos
relies on a novel approach to execute linearizable read op-
erations without incurring in any additional communication
cost. Finally, ChainPaxos integrates membership manage-
ment within the protocol. The fully specified algorithm fills
an empty space in the literature and, unlike many recent pro-
posal, decouples the fault-tolerance of ChainPaxos from that
of the external coordination service. Our extensive evaluation
shows that ChainPaxos achieves higher throughput and better
scalability when compared to state-of-the-art solutions. Fur-
thermore, our approach for executing linearizable reads has a
huge impact on scalability. The results illustrate the benefits
of our solution in the context of a key value store and the
Zookeeper coordination services (where ChainPaxos leads to
better performance than Zab).

586 2022 USENIX Annual Technical Conference USENIX Association

References

[1] Netty framework. https://netty.io/.

[2] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan,
and Samer Al-Kiswany. Toward a generic fault toler-
ance technique for partial network partitioning. In 14th
{USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 20), pages 351–368, 2020.

[3] Daniel Balouek, Alexandra Carpen Amarie, Ghislain
Charrier, Frédéric Desprez, Emmanuel Jeannot, Em-
manuel Jeanvoine, Adrien Lèbre, David Margery, Nico-
las Niclausse, Lucas Nussbaum, Olivier Richard, Chris-
tian Pérez, Flavien Quesnel, Cyril Rohr, and Luc
Sarzyniec. Adding virtualization capabilities to the
Grid’5000 testbed. In Ivan I. Ivanov, Marten van Sin-
deren, Frank Leymann, and Tony Shan, editors, Cloud
Computing and Services Science, volume 367 of Com-
munications in Computer and Information Science,
pages 3–20. Springer International Publishing, 2013.

[4] William J Bolosky, Dexter Bradshaw, Randolph B Haa-
gens, Norbert P Kusters, and Peng Li. Paxos replicated
state machines as the basis of a high-performance data
store. In Proc. NSDI’11, USENIX Conference on Net-
worked Systems Design and Implementation, pages 141–
154, 2011.

[5] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance. In Proceedings of the Third Sympo-
sium on Operating Systems Design and Implementation,
OSDI ’99, page 173–186, USA, 1999. USENIX Associ-
ation.

[6] Tushar D Chandra, Robert Griesemer, and Joshua Red-
stone. Paxos made live: an engineering perspective. In
Proceedings of the twenty-sixth annual ACM symposium
on Principles of distributed computing, pages 398–407.
ACM, 2007.

[7] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154.
ACM, 2010.

[8] Vitor Enes, Carlos Baquero, Tuanir França Rezende,
Alexey Gotsman, Matthieu Perrin, and Pierre Sutra.
State-machine replication for planet-scale systems. In
Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[9] Pedro Fouto, Pedro Ákos Costa, Nuno Preguiça, and
Joao Leitao. Babel: A framework for developing per-
formant and dependable distributed protocols. arXiv
preprint arXiv:2205.02106, 2022.

[10] Rachid Guerraoui, Dejan Kostic, Ron R Levy, and
Vivien Quema. A high throughput atomic storage algo-
rithm. In 27th International Conference on Distributed
Computing Systems (ICDCS’07), pages 19–19. IEEE,
2007.

[11] Heidi Howard, Dahlia Malkhi, and Alexander Spiegel-
man. Flexible paxos: Quorum intersection revisited.
arXiv preprint arXiv:1608.06696, 2016.

[12] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX annual technical
conference, volume 8. Boston, MA, USA, 2010.

[13] Parisa Jalili Marandi, Marco Primi, Nicolas Schiper, and
Fernando Pedone. Ring paxos: High-throughput atomic
broadcast. The Computer Journal, 60(6):866–882, 2017.

[14] Flavio P Junqueira, Benjamin C Reed, and Marco Ser-
afini. Zab: High-performance broadcast for primary-
backup systems. In 2011 IEEE/IFIP 41st International
Conference on Dependable Systems & Networks (DSN),
pages 245–256. IEEE, 2011.

[15] Leslie Lamport. The Part-time Parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[16] Leslie Lamport. Paxos made simple. ACM SIGACT
News (Distributed Computing Column) 32, 4 (Whole
Number 121, December 2001), pages 51–58, December
2001.

[17] Leslie Lamport. Generalized consensus and paxos.
Technical report, Technical Report MSR-TR-2005-33,
Microsoft Research, March 2005.

[18] Leslie Lamport. Fast paxos. Distributed Computing,
19(2):79–103, 2006.

[19] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Ver-
tical paxos and primary-backup replication. Technical
report, 2009.

[20] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Re-
configuring a state machine. SIGACT News, 41(1):63–
73, 2010.

[21] Leslie Lamport and Mike Massa. Cheap paxos. In
International Conference on Dependable Systems and
Networks, 2004, pages 307–314. IEEE, 2004.

[22] Yanhua Mao, Flavio P Junqueira, and Keith Marzullo.
Mencius: building efficient replicated state machines for
wans. In Proceedings of the 8th USENIX conference on
Operating systems design and implementation, pages
369–384. USENIX Association, 2008.

USENIX Association 2022 USENIX Annual Technical Conference 587

https://netty.io/

[23] Parisa Jalili Marandi. U-Ring paxos code.
https://github.com/sambenz/URingPaxos. (Accessed
Oct 2019.).

[24] Parisa Jalili Marandi, Marco Primi, and Fernando Pe-
done. Multi-ring paxos. In Proceedings of the 2012
42Nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), DSN ’12,
pages 1–12, Washington, DC, USA, 2012. IEEE Com-
puter Society.

[25] Iulian Moraru, David G. Andersen, and Michael Kamin-
sky. Epaxos code. https://github.com/efficient/epaxos.
(Accessed Mar-2019.).

[26] Iulian Moraru, David G. Andersen, and Michael Kamin-
sky. There is More Consensus in Egalitarian Parliaments.
In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pages 358–
372, New York, NY, USA, 2013. ACM.

[27] Diego Ongaro and John Ousterhout. In search of an un-
derstandable consensus algorithm. In 2014 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 14),
pages 305–319, 2014.

[28] Parisa Jalili Marandi, M. Primi, N. Schiper, and F. Pe-
done. Ring paxos: A high-throughput atomic broadcast
protocol. In 2010 IEEE/IFIP International Conference
on Dependable Systems Networks (DSN), pages 527–
536, June 2010.

[29] Daniel Porto, João Leitão, Cheng Li, Allen Clement,
Aniket Kate, Flavio Junqueira, and Rodrigo Rodrigues.
Visigoth fault tolerance. In Proceedings of the Tenth
European Conference on Computer Systems, pages 1–
14, 2015.

[30] Fred B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Comput. Surv., 22(4):299–319, December 1990.

[31] Jeff Terrace and Michael J Freedman. Object storage on
craq: High-throughput chain replication for read-mostly
workloads. In USENIX Annual Technical Conference,
2009.

[32] Robbert Van Renesse and Deniz Altinbuken. Paxos
made moderately complex. ACM Comput. Surv.,
47(3):42–1, 2015.

[33] Robbert van Renesse and Fred B. Schneider. Chain
replication for supporting high throughput and availabil-
ity. In Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Vol-
ume 6, OSDI’04, pages 7–7, Berkeley, CA, USA, 2004.
USENIX Association.

[34] Avishai Wool. Quorum systems in replicated databases:
Science or fiction? IEEE Data Eng. Bull., 21(4):3–11,
1998.

588 2022 USENIX Annual Technical Conference USENIX Association

A Correctness

In this section, we present the correctness argument for Chain-
Paxos, by showing that the execution of an instance of Chain-
Paxos is equivalent to an execution in Multi-Paxos. We con-
sider the following cases: (i) an instance where all nodes agree
on the leader; (ii) an instance that elects a new leader; (iii) in-
stances following a new leader election; and (iv) instances
where a replica is removed or added.

A.1 All nodes agree on the leader
This case is the one described in Section 3.3. In Multi-Paxos,
an equivalent run would consist in: (i) the leader sending the
accept message to all replicas; (ii) each node replying with
an accept ack message to the leader that learns the decided
value; (iii) the leader informing all other nodes of the learned
value.

In ChainPaxos, the accept message is also sent to all nodes,
but instead of being sent directly it is sent indirectly as the
accept message is forwarded across all nodes of the chain.

The accept message also encodes the accept ack messages
of the nodes through which it passes. When the leader re-
ceives the accept ack message from the tail of the chain, this
message is equivalent to having all nodes sending the accept
ack message to the leader in Multi-Paxos.

Piggybacked in the following accept messages (even for
the NOOP request), the leader sends to all other nodes in-
formation that it has received the accept ack from all nodes
of the chain (mack in accept message), which is equivalent to
forwarding the learned value to all replicas in Multi-Paxos.

As messages are used to update the local state using the
same logic in both ChainPaxos and Multi-Paxos, the execution
of an instance in ChainPaxos is equivalent to the execution of
an instance in Multi-Paxos.

A.2 Instance with a leader election (two-
phases)

We start by considering the effects of an instance executed
with the two phases of the Paxos protocol. In this case, the
first phase of both protocols is identical – ChainPaxos uses
the same message flow as Paxos, since prepare and prepare
ok messages are sent directly between the node starting the
prepare and all other replicas. The logic to process the pre-
pare message in ChainPaxos differs from Multi-Paxos in the
following aspect: ChainPaxos only acknowledges prepare
messages for a given instance with prepare numbers higher
than any prepare number used by any other leader in any
other instance. The only implication of this is that the replica
executing the prepare, might time-out several times. This is
not different from Multi-Paxos, where the replica will com-
plete the prepare in the current instance, and then, if any other
following instance had already been executed by a different

leader (potentially using the special prepare number zero), it
would have to repeat the prepare phase for each such instance.
This is true because in ChainPaxos the prepare number is
continually used by a leader in all subsequent instances after
the one in which it complete the prepare phase successfully.

The second phase of ChainPaxos consists in sending the
accept message to all nodes. As explained in the previous
case, ChainPaxos flow of messages is equivalent to the Multi-
Paxos flow of messages. As the logic employed to process the
messages is the same as in Multi-Paxos, also in this case, the
execution is equivalent to that of an instance of Multi-Paxos.

A.3 Instances following a new leader election
When a new leader is elected, by running the first phase of
Multi-Paxos for instance ni, it becomes the leader of all in-
stances n j such that nj ≥ ni, for which it will subsequently
issue accept messages through the chain (in order). To prove
the correctness of ChainPaxos, we show that this execution
is equivalent to running the two phases of the Paxos protocol
for all instances nj, such that nj ≥ ni.

The processing of the prepare message ignores the prepare
if the node has seen an higher prepare number employed by
another leader (for any instance). If the prepare is not ignored,
it runs the Paxos logic for all instances nj, such that nj ≥
ni, with the prepare ok message including the information
relative to all these instances. This information includes any
accepted value for each of those instances and the prepare
number associated with that accepted value. The processing
of the prepare ok message also executes the Paxos logic for
all instance nj ≥ ni, such that the new leader will send new
accept messages for all those instances (in order) where, if
there was already a value accepted by any replica for that
instance, the new leader will propose that value and, similar
to Multi-Paxos, if more than one value had been accepted
by different replicas, the leader proposes the value with the
highest associated prepare number. This ensures that for every
instance nj ≥ ni, if some value had already been accepted by
a majority of replicas, then the new leader will propose that
value with his current propose value.

Thus, executing the first phase of the Multi-Paxos in Chain-
Paxos for instance ni and issuing the accept for all instances
nj, such that nj ≥ ni as described above is equivalent to exe-
cuting the two phases of the Paxos protocol for all instances
nj, such that nj ≥ ni, thus ensuring the correctness of Chain-
Paxos.

A.4 Leader Conflicts
As in Paxos, it is possible that two nodes receive a quorum
of prepare ok messages for different prepare numbers con-
currently. In this case, accept messages from the node with
the lowest prepare number will be dropped during their prop-
agation and will never be accepted by a majority of replicas.

USENIX Association 2022 USENIX Annual Technical Conference 589

The processing of accept messages also sets the leader and
prepare number being used by the leader in all replicas. This
is needed because a minority of replicas might have missed
the prepare message.

If a previous leader is incorrectly suspected of being faulty,
it might send accept messages for instances ni ≥ n while
a new node becomes leader in instance n. In this case, just
like in regular Multi-Paxos, there are two possible scenarios
for each instance ni: i) the accept message of the previous
leader reached a majority of nodes (i.e., has been decided)
before the prepare message of the new leader, in which case at
least one prepareOk message received by the new leader will
contain the value proposed by that accept message, and the
new leader will simply propose that same value; ii) the accept
has been “cut-off” by the prepare message of the new leader
(i.e., a node in the chain rejected the accept after receiving
the prepare with an higher sequence number). In this case,
the new leader may or may not receive the value proposed
by that accept in a prepareOk message. Regardless, since the
instance had not been decided, both alternatives are correct.

A.5 Removal and addition of a replica

We now discuss the correctness of ChainPaxos when reconfig-
uring the system to either remove or add a replica, which has
been presented in Section 3.4. Such reconfigurations resort to
special SMR operations which have to be ordered by Chain-
Paxos and executed by replicas. A challenge that is present
in such reconfigurations is that the number of replicas that
constitute a majority of the system might change due to the
execution of these operations.

In ChainPaxos, we define a minimum quorum size, and
then vary the size of the quorum required to decide operations
to always be a majority quorum. For instance, assuming a
configuration with 5 initial replicas (where a majority quorum
is 3), and a minimum quorum size of 3, adding 2 replicas
(to a total of 7), would increase the majority quorum to 4.
If 2 replicas are then removed, the majority quorum will
be back to 3. However, due to the minimum quorum size,
removal of further replicas would not decrease the quorum
size below 3, which also ensures that the number of replicas
in the system can never be below 3. The minimum quorum
size is independent from the initial configuration, serving as a
threshold below which we do not wish the system to continue
functioning.

Note that in ChainPaxos no replica considers an instance as
decided before knowing the operations that have been ordered
in all previous instances, hence a replica will never use the
incorrect quorum size to decide (and execute) an operation.

We start with the addition of a replica. To ensure correct-
ness we need to show that the replica that is added in an
instance ni will be considered towards forming the major-
ity of accept ack messages necessary to decide any instance
n j > ni. This derives from the agreement property of Chain-

Paxos, which ensures that all (correct) replicas will agree on
the instance in which the new replica is added to the sys-
tem. Since replicas only consider an operation as decided
after learning the decided values for all previous instances, no
replica will ignore the participation of the new replica when
deciding the value of any instance n j, since the replica has
already been added on instance ni (i.e., the instance where the
new replica is added), affecting the size of the quorums.

Regarding removal of nodes, to ensure correctness we need
to show that the removal of a replica in instance ni, makes
it impossible for that replica to affect the decided value in
any instance n j > ni (i.e., the accept ack messages of that
replica are never considered to achieve a majority in such
instances). As discussed previously, the accept message that
is forwarded along the chain, in round ni, to remove a replica
r is forwarded by the node directly before r to both r and its
successor replica in the chain. Any node that receives such a
message, adds r to its marked set. This makes that any accept
message for a subsequent instance is never sent to r, hence r
is not able to increment the the counter for accept ack within
those messages.

This happens, even if nodes have not yet locally decided
the outcome of instance ni. This could be problematic if a
new leader is meanwhile elected before the outcome of this
instance is locally decided (and executed) by every node, since
that node could be continuously skipped despite the fact that
he was never removed from the system. However, if a leader
change happens, the contents of the marked set of replicas
are removed. This is performed either when the node replies
to the prepare of the new leader, or when it receives an accept
message from the new leader (which can be identified locally
since the accept message will carry a prepare number higher
than the last prepare number observed by that replica). This
ensures that r receives subsequent accept messages for the
re-executions of instances n j > ni until the leader proposes
the removeNode(r) in some instance (assuming r remains
suspected).

Finally, in the case of concurrent addition or removal of
replicas to the system, we note that ChainPaxos executes each
addition or removal as an independent operation. We note that
the fault detection mechanism may lead replicas to incorrectly
suspect other replicas (e.g. due to temporary network failures).
In this case, if a replica is incorrectly removed, it can ask to
rejoin the system (note that ChainPaxos tries to propagate the
remove operation to the node to be removed, as it is still part
of the system in that instance). Finally, we note that it is easy
to minimize scenarios where replicas ask for the removal of
correct replicas by having the leader avoid to either remove
replicas that he perceives as active, or removing replicas that
were suspected by replicas being currently removed.

590 2022 USENIX Annual Technical Conference USENIX Association

B Artifact Appendix

Abstract
The artifact includes the implementation of ChainPaxos, along
with the other consensus algorithms that are studied in the
evaluation, with intructions on how to launch and test them.
These implementations include a simple replicated key-value
store that was used to benchmark the algorithms. Additionally,
we include our implementation of ChainPaxos in ZooKeeper,
which replaces Zab.

For reproducibility, our artifact includes the client-side code
that was used in the paper to measure the various performance
metrics of the algorithms, along with instructions on how to
run it and how to parse and interpret its results.

Scope
The artifact allows executing our consensus algorithm, Chain-
Paxos, which supports different read execution techniques.
Our prototype fully supports the operations related with the
integrated membership. The artifact includes everything that
was used in the paper: source-code of all solutions; client
source-code; scripts to execute the experiments; scripts to
generate the plots from the experiment logs and; instructions
on how to reproduce all plots.

Contents
The artifact is divided in four parts, which are distributed
across four repositories:

ChainPaxos: This repository contains the code for our full
implementation of ChainPaxos. Additionally, it includes
the key-value store application and the different consen-
sus algorithms that we used to compare against Chain-
Paxos (in the Figures 4 to 7, 9 and 10). The repository
also includes information on how to compile and deploy
ChainPaxos.

The source-code in the repository is divided in multiple
Java packages, with the following structure: the pack-
age chainpaxos contains our implementation of Chain-
Paxos; the code for the key-value store application is on
package app; packages frontend and common contain
some generic interfaces and classes to uniformize the
interaction between the application and all consensus
algorithms and; all other packages are named after the
consensus algorithms that we used to compare against
our solution in the paper.

ZooKeeper with ChainPaxos: This part contains our modi-
fied version of ZooKeeper that replaces Zab by Chain-
Paxos, that was used for the results of Figure 8. The
majority of code modifications are contained in the pack-
age chain that is on the zookeeper-server module.

Client-side benchmark: This part contains all the client
code that was used in the entire experimental evaluation,
both to benchmark the various algorithms using the key-
value store, and to benchmark the original ZooKeeper
against our version with ChainPaxos. The source-code
itself consists of YCSB drivers, one for the key-value
store and another for ZooKeeper. The repository also in-
cludes the scripts used to perform our experiments, and
instructions on how to use them in order to reproduce
the results in the paper.

Results parser: Finally, our artifact includes a series of
Python scripts that were used to parse the results of
each experiment and generate the plots presented in this
paper. The client-side benchmark repository contains
instructions on how to use these scripts.

Hosting
The artifacts can be found in the following locations:

• ChainPaxos

– https://github.com/pfouto/chain

– master branch
– commit 72cebf2

• ZooKeeper with ChainPaxos

– https://github.com/pfouto/chain-zoo

– master branch
– commit 65a9690

• Client-side benchmark

– https://github.com/pfouto/chain-client

– master branch
– commit ed28200

• Results parser

– https://github.com/pfouto/
chain-results

– master branch
– commit e716e4a

Requirements
While the artifact does not have special hardware require-
ments, all experiments were conducted in the Grid5000
testbed, using the Gros cluster. The client-side benchmark
repository includes instructions on how to reproduce the ex-
periments on this cluster. Furthermore, the same repository
provides instructions on how to deploy and run the experi-
ments in any other cluster platform (e.g. on a cloud infrastruc-
ture), which requires some additional setup, but should still
allow to reproduce all the results in the paper.

USENIX Association 2022 USENIX Annual Technical Conference 591

https://github.com/pfouto/chain
https://github.com/pfouto/chain/tree/73ef5fa68ba751f02dd837cb57fff2aac080338b
https://github.com/pfouto/chain-zoo
https://github.com/pfouto/chain-zoo/tree/65a9690a2956415aedd4234dd39d244704660f1e
https://github.com/pfouto/chain-client
https://github.com/pfouto/chain-client/tree/ed2820020a56a0aca634f249eedc85ae73d9f4f2
https://github.com/pfouto/chain-results
https://github.com/pfouto/chain-results
https://github.com/pfouto/chain-results/tree/e716e4ad7f7a664dea5dacd55e2f9fbbf97a0b75
https://www.grid5000.fr/w/Grid5000:Home
https://www.grid5000.fr/w/Nancy:Hardware#gros

	Introduction
	Related Work
	Minimizing latency
	Communication cost
	Distributing the load
	Linearizable reads

	ChainPaxos
	Overview
	Protocol State
	Fault-free execution
	Dealing With Faults and Reconfigurations

	Local Linearizable Read Operations
	Evaluation
	Experimental Setup and Parameters
	Performance in a Single Data Center
	Performance of Read Operations
	Zookeeper case-study
	Performance in a Geo-Replicated Setting
	Impact of Reconfiguration

	Final Remarks
	Correctness
	All nodes agree on the leader
	Instance with a leader election (two-phases)
	Instances following a new leader election
	Leader Conflicts
	Removal and addition of a replica

	Artifact Appendix

