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Abstract
Amazon DynamoDB is a NoSQL cloud database service that
provides consistent performance at any scale. Hundreds of
thousands of customers rely on DynamoDB for its fundamen-
tal properties: consistent performance, availability, durability,
and a fully managed serverless experience. In 2021, during the
66-hour Amazon Prime Day shopping event, Amazon systems
- including Alexa, the Amazon.com sites, and Amazon fulfill-
ment centers, made trillions of API calls to DynamoDB, peak-
ing at 89.2 million requests per second, while experiencing
high availability with single-digit millisecond performance.
Since the launch of DynamoDB in 2012, its design and im-
plementation have evolved in response to our experiences
operating it. The system has successfully dealt with issues
related to fairness, traffic imbalance across partitions, moni-
toring, and automated system operations without impacting
availability or performance. Reliability is essential, as even
the slightest disruption can significantly impact customers.
This paper presents our experience operating DynamoDB at
a massive scale and how the architecture continues to evolve
to meet the ever-increasing demands of customer workloads.

1 Introduction

Amazon DynamoDB is a NoSQL cloud database service that
supports fast and predictable performance at any scale. Dy-
namoDB is a foundational AWS service that serves hundreds
of thousands of customers using a massive number of servers
located in data centers around the world. DynamoDB powers
multiple high-traffic Amazon properties and systems includ-
ing Alexa, the Amazon.com sites, and all Amazon fulfillment
centers. Moreover, many AWS services such as AWS Lambda,
AWS Lake Formation, and Amazon SageMaker are built on
DynamoDB, as well as hundreds of thousands of customer
applications.

These applications and services have demanding opera-
tional requirements with respect to performance, reliability,
durability, efficiency, and scale. The users of DynamoDB rely

on its ability to serve requests with consistent low latency. For
DynamoDB customers, consistent performance at any scale
is often more important than median request service times be-
cause unexpectedly high latency requests can amplify through
higher layers of applications that depend on DynamoDB and
lead to a bad customer experience. The goal of the design of
DynamoDB is to complete all requests with low single-digit
millisecond latencies. In addition, the large and diverse set
of customers who use DynamoDB rely on an ever-expanding
feature set as shown in Figure 1. As DynamoDB has evolved
over the last ten years, a key challenge has been adding fea-
tures without impacting operational requirements. To benefit
customers and application developers, DynamoDB uniquely
integrates the following six fundamental system properties:

DynamoDB is a fully managed cloud service. Using the
DynamoDB API, applications create tables and read and write
data without regard for where those tables are stored or how
they’re managed. DynamoDB frees developers from the bur-
den of patching software, managing hardware, configuring a
distributed database cluster, and managing ongoing cluster
operations. DynamoDB handles resource provisioning, au-
tomatically recovers from failures, encrypts data, manages
software upgrades, performs backups, and accomplishes other
tasks required of a fully-managed service.

DynamoDB employs a multi-tenant architecture. Dy-
namoDB stores data from different customers on the same
physical machines to ensure high utilization of resources, en-
abling us to pass the cost savings to our customers. Resource
reservations, tight provisioning, and monitored usage provide
isolation between the workloads of co-resident tables.

DynamoDB achieves boundless scale for tables. There
are no predefined limits for the amount of data each table
can store. Tables grow elastically to meet the demand of the
customers’ applications. DynamoDB is designed to scale the
resources dedicated to a table from several servers to many
thousands as needed. DynamoDB spreads an application’s
data across more servers as the amount of data storage and
the demand for throughput requirements grow.

DynamoDB provides predictable performance. The simple
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Figure 1: DynamoDB yimeline

DynamoDB API with GetItem and PutItem operations allows
it to respond to requests with consistent low latency. An ap-
plication running in the same AWS Region as its data will
typically see average service-side latencies in the low single-
digit millisecond range for a 1 KB item. Most importantly,
DynamoDB latencies are predictable. Even as tables grow
from a few megabytes to hundreds of terabytes, latencies re-
main stable due to the distributed nature of data placement
and request routing algorithms in DynamoDB. DynamoDB
handles any level of traffic through horizontal scaling and
automatically partitions and re-partitions data to meet an ap-
plication’s I/O performance requirements.

DynamoDB is highly available. DynamoDB replicates data
across multiple data centers—called Availability Zones in
AWS—and automatically re-replicates in the case of disk
or node failures to meet stringent availability and durability
requirements. Customers can also create global tables that are
geo-replicated across selected Regions for disaster recovery
and provide low latency access from anywhere. DynamoDB
offers an availability SLA of 99.99 for regular tables and
99.999 for global tables (where DynamoDB replicates across
tables across multiple AWS Regions).

DynamoDB supports flexible use cases. DynamoDB
doesn’t force developers into a particular data model or con-
sistency model. DynamoDB tables don’t have a fixed schema
but instead allow each data item to contain any number of at-
tributes with varying types, including multi-valued attributes.
Tables use a key-value or document data model. Developers
can request strong or eventual consistency when reading items
from a table.

In this paper, we describe how DynamoDB evolved as a
distributed database service to meet the needs of its customers
without losing its key aspect of providing a single-tenant ex-
perience to every customer using a multi-tenant architecture.
The paper explains the challenges faced by the system and
how the service evolved to handle those challenges while con-
necting the required changes to a common theme of durability,
availability, scalability, and predictable performance.

The paper captures the following lessons that we have
learnt over the years

• Adapting to customers’ traffic patterns to reshape the
physical partitioning scheme of the database tables im-
proves customer experience.

• Performing continuous verification of data-at-rest is a
reliable way to protect against both hardware failures
and software bugs in order to meet high durability goals.

• Maintaining high availability as a system evolves re-
quires careful operational discipline and tooling. Mech-
anisms such as formal proofs of complex algorithms,
game days (chaos and load tests), upgrade/downgrade
tests, and deployment safety provides the freedom to
safely adjust and experiment with the code without the
fear of compromising correctness.

• Designing systems for predictability over absolute ef-
ficiency improves system stability. While components
such as caches can improve performance, do not allow
them to hide the work that would be performed in their
absence, ensuring that the system is always provisioned
to handle the unexpected.

The structure of this paper is as follows: Section 2 expands
on the history of DynamoDB and explains its origins, which
derive from the original Dynamo system. Section 3 presents
the architectural overview of DynamoDB. Section 4 covers
the journey of DynamoDB from provisioned to on-demand
tables. Section 5 covers how DynamoDB ensures strong dura-
bility. Section 6 describes the availability challenges faced
and how these challenges were handled. Section 7 provides
some experimental results based on the Yahoo! Cloud Serving
Benchmark (YCSB) benchmarks, and Section 8 concludes
the paper.

2 History

The design of DynamoDB was motivated by our experiences
with its predecessor Dynamo [9], which was the first NoSQL
database system developed at Amazon. Dynamo was created
in response to the need for a highly scalable, available, and
durable key-value database for shopping cart data. In the early
years, Amazon learned that providing applications with direct
access to traditional enterprise database instances led to scal-
ing bottlenecks such as connection management, interference
between concurrent workloads, and operational problems with
tasks such as schema upgrades. Thus, a service-oriented ar-
chitecture was adopted to encapsulate an application’s data
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behind service-level APIs that allowed sufficient decoupling
to address tasks like reconfiguration without having to disrupt
clients.

High availability is a critical property of a database ser-
vice as any downtime can impact customers that depend on
the data. Another critical requirement for Dynamo was pre-
dictable performance so that applications could provide a
consistent experience to their users. To achieve these goals,
Amazon had to start from first principles when designing
Dynamo. The adoption of Dynamo widened to serve several
use cases within Amazon because it was the only database
service that provided high reliability at scale. However, Dy-
namo still carried the operational complexity of self-managed
large database systems. Dynamo was a single-tenant system
and teams were responsible for managing their own Dynamo
installations. Teams had to become experts on various parts of
the database service and the resulting operational complexity
became a barrier to adoption.

During this period, Amazon launched new services (no-
tably Amazon S3 and Amazon SimpleDB) that focused on a
managed and elastic experience in order to remove this op-
erational burden. Amazon engineers preferred to use these
services instead of managing their own systems like Dynamo,
even though the functionality of Dynamo was often better
aligned with their applications’ needs. Managed elastic ser-
vices freed developers from administrating databases and
allowed them to focus on their applications.

The first database-as-a-service from Amazon was Sim-
pleDB [1], a fully managed elastic NoSQL database service.
SimpleDB provided multi-datacenter replication, high avail-
ability, and high durability without the need for customers to
set up, configure, or patch their database. Like Dynamo, Sim-
pleDB also had a very simple table interface with a restricted
query set that served as a building block for many developers.
While SimpleDB was successful and powered many applica-
tions, it had some limitations. One limitation was that tables
had a small capacity in terms of storage (10GB) and of request
throughput. Another limitation was the unpredictable query
and write latencies, which stemmed from the fact that all table
attributes were indexed, and the index needed to be updated
with every write. These limitations created a new kind of
operational burden for developers. They had to divide data
between multiple tables to meet their application’s storage
and throughput requirements.

We realized that the goal of removing the limitations of Sim-
pleDB and providing a scalable NoSQL database service with
predictable performance could not be met with the SimpleDB
APIs. We concluded that a better solution would combine the
best parts of the original Dynamo design (incremental scala-
bility and predictable high performance) with the best parts of
SimpleDB (ease of administration of a cloud service, consis-
tency, and a table-based data model that is richer than a pure
key-value store). These architectural discussions culminated
in Amazon DynamoDB, a public service launched in 2012

Operation Description

PutItem
Inserts a new item, or replaces an old item
with a new item.

UpdateItem
Updates an existing item, or adds a new
item to the table if it doesn’t already exist.

DeleteItem
The DeleteItem operation deletes a single
item from the table by the primary key.

GetItem
The GetItem operation returns a set of at-
tributes for the item with the given primary
key.

Table 1: DynamoDB CRUD APIs for items

that shared most of the name of the previous Dynamo system
but little of its architecture. Amazon DynamoDB was the
result of everything we’d learned from building large-scale,
non-relational databases for Amazon.com and has evolved
based on our experiences building highly scalable and reliable
cloud computing services at AWS.

3 Architecture

A DynamoDB table is a collection of items, and each item is
a collection of attributes. Each item is uniquely identified by
a primary key. The schema of the primary key is specified at
the table creation time. The primary key schema contains a
partition key or a partition and sort key (a composite primary
key). The partition key’s value is always used as an input to
an internal hash function. The output from the hash function
and the sort key value (if present) determines where the item
will be stored. Multiple items can have the same partition key
value in a table with a composite primary key. However, those
items must have different sort key values.

DynamoDB also supports secondary indexes to provide
enhanced querying capability. A table can have one or more
secondary indexes. A secondary index allows querying the
data in the table using an alternate key, in addition to queries
against the primary key. DynamoDB provides a simple in-
terface to store or retrieve items from a table or an index.
Table 1 contains the primary operations available to clients
for reading and writing items in DynamoDB tables. Any oper-
ation that inserts, updates, or deletes an item can be specified
with a condition that must be satisfied in order for the op-
eration to succeed. DynamoDB supports ACID transactions
enabling applications to update multiple items while ensuring
atomicity, consistency, isolation, and durability (ACID) across
items without compromising the scalability, availability, and
performance characteristics of DynamoDB tables.

A DynamoDB table is divided into multiple partitions to
handle the throughput and storage requirements of the table.
Each partition of the table hosts a disjoint and contiguous part
of the table’s key-range. Each partition has multiple replicas
distributed across different Availability Zones for high avail-

USENIX Association 2022 USENIX Annual Technical Conference    1039



Figure 2: Storage replica on a storage node

Figure 3: Log replica on a log node

ability and durability. The replicas for a partition form a repli-
cation group. The replication group uses Multi-Paxos [14]
for leader election and consensus. Any replica can trigger a
round of the election. Once elected leader, a replica can main-
tain leadership as long as it periodically renews its leadership
lease.

Only the leader replica can serve write and strongly consis-
tent read requests. Upon receiving a write request, the leader
of the replication group for the key being written generates
a write-ahead log record and sends it to its peer (replicas). A
write is acknowledged to the application once a quorum of
peers persists the log record to their local write-ahead logs.
DynamoDB supports strongly and eventually consistent reads.
Any replica of the replication group can serve eventually con-
sistent reads. The leader of the group extends its leadership
using a lease mechanism. If the leader of the group is failure
detected (considered unhealthy or unavailable) by any of its
peers, the peer can propose a new round of the election to
elect itself as the new leader. The new leader won’t serve
any writes or consistent reads until the previous leader’s lease
expires.

A replication group consists of storage replicas that contain
both the write-ahead logs and the B-tree that stores the key-
value data as shown in Figure 2. To improve availability and
durability, a replication group can also contain replicas that
only persist recent write-ahead log entries as shown in Figure
3. These replicas are called log replicas. Log replicas are
akin to acceptors in Paxos. Log replicas do not store key-
value data. Section 5 and 6 discusses how log replicas
help DynamoDB improve its availability and durability.

DynamoDB consists of tens of microservices. Some of the
core services in DynamoDB are the metadata service, the

Figure 4: DynamoDB architecture

request routing service, the storage nodes, and the autoadmin
service, as shown in Figure 4. The metadata service stores
routing information about the tables, indexes, and replication
groups for keys for a given table or index. The request rout-
ing service is responsible for authorizing, authenticating, and
routing each request to the appropriate server. For example,
all read and update requests are routed to the storage nodes
hosting the customer data. The request routers look up the
routing information from the metadata service. All resource
creation, update, and data definition requests are routed to
the autoadmin service. The storage service is responsible for
storing customer data on a fleet of storage nodes. Each of the
storage nodes hosts many replicas of different partitions.

The autoadmin service is built to be the central nervous sys-
tem of DynamoDB. It is responsible for fleet health, partition
health, scaling of tables, and execution of all control plane
requests. The service continuously monitors the health of
all the partitions and replaces any replicas deemed unhealthy
(slow or not responsive or being hosted on bad hardware). The
service also performs health checks of all core components
of DynamoDB and replaces any hardware that is failing or
has failed. For example, if the autoadmin service detects a
storage node to be unhealthy, it kicks off a recovery process
that replaces the replicas hosted on that node to bring the
system back to a stable state.

Other DynamoDB services not shown in in Figure 4 sup-
port features such as point-in-time restore, on-demand back-
ups, update streams, global admission control, global tables,
global secondary indices, and transactions.

4 Journey from provisioned to on-demand

When DynamoDB launched, we introduced an internal ab-
straction, partitions, as a way to dynamically scale both the ca-
pacity and performance of tables. In the original DynamoDB
release, customers explicitly specified the throughput that a
table required in terms of read capacity units (RCUs) and
write capacity units (WCUs). For items up to 4 KB in size,
one RCU can perform one strongly consistent read request
per second. For items up to 1 KB in size, one WCU can
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perform one standard write request per second. RCUs and
WCUs collectively are called provisioned throughput. The
original system split a table into partitions that allow its con-
tents to be spread across multiple storage nodes and mapped
to both the available space and performance on those nodes.
As the demands from a table changed (because it grew in
size or because the load increased), partitions could be further
split and migrated to allow the table to scale elastically. Par-
tition abstraction proved to be really valuable and continues
to be central to the design of DynamoDB. However this early
version tightly coupled the assignment of both capacity and
performance to individual partitions, which led to challenges.

DynamoDB uses admission control to ensure that storage
nodes don’t become overloaded, to avoid interference between
co-resident table partitions, and to enforce the throughput lim-
its requested by customers. Admission control in DynamoDB
has evolved over the past decade. Admission control was the
shared responsibility of all storage nodes for a table. Stor-
age nodes independently performed admission control based
on the allocations of their locally stored partitions. Given
that a storage node hosts partitions from multiple tables, the
allocated throughput of each partition was used to isolate
the workloads. DynamoDB enforced a cap on the maximum
throughput that could be allocated to a single partition, and
ensured that the total throughput of all the partitions hosted
by a storage node is less than or equal to the maximum al-
lowed throughput on the node as determined by the physical
characteristics of its storage drives.

The throughput allocated to partitions was adjusted when
the overall table’s throughput was changed or its partitions
were split into child partitions. When a partition was split
for size, the allocated throughput of the parent partition was
equally divided among the child partitions. When a partition
was split for throughput, the new partitions were allocated
throughput based on the table’s provisioned throughput. For
example, assume that a partition can accommodate a maxi-
mum provisioned throughput of 1000 WCUs. When a table
is created with 3200 WCUs, DynamoDB created four parti-
tions that each would be allocated 800 WCUs. If the table’s
provisioned throughput was increased to 3600 WCUs, then
each partition’s capacity would increase to 900 WCUs. If the
table’s provisioned throughput was increased to 6000 WCUs,
then the partitions would be split to create eight child parti-
tions, and each partition would be allocated 750 WCUs. If
the table’s capacity was decreased to 5000 WCUs, then each
partition’s capacity would be decreased to 675 WCUs.

The uniform distribution of throughput across partitions
is based on the assumptions that an application uniformly
accesses keys in a table and the splitting a partition for size
equally splits the performance. However, we discovered that
application workloads frequently have non-uniform access
patterns both over time and over key ranges. When the request
rate within a table is non-uniform, splitting a partition and
dividing performance allocation proportionately can result

in the hot portion of the partition having less available per-
formance than it did before the split. Since throughput was
allocated statically and enforced at a partition level, these non-
uniform workloads occasionally resulted in an application’s
reads and writes being rejected, called throttling, even though
the total provisioned throughput of the table was sufficient to
meet its needs.

Two most commonly faced challenges by the applications
were: hot partitions and throughput dilution. Hot partitions
arose in applications that had traffic going consistently to-
wards a few items of their tables. The hot items could belong
to a stable set of partitions or could hop around to different
partitions over time. Throughput dilution was common for
tables where partitions were split for size. Splitting a partition
for size would cause the throughput of the partition to be
divided equally among the newly created child partitions, and
hence the per partition throughput would decrease.

In both cases, from the customer’s perspective, throttling
caused their application to experience periods of unavailabil-
ity even though the service was behaving as expected. Cus-
tomers who experienced throttling would work around it by
increasing a table’s provisioned throughput and not use all
the capacity. That is, tables would be over-provisioned. While
this allowed them to achieve the performance they needed, it
was a poor experience because it was difficult to estimate the
right level of performance provisioning for their tables.

4.1 Initial improvements to admission control

As we mentioned at the start of this section, hot partitions and
throughput dilution stemmed from tightly coupling a rigid
performance allocation to each partition, and dividing that
allocation as partitions split. We liked that enforcing alloca-
tions at an individual partition level avoided the need for the
complexities of distributed admission control, but it became
clear these controls weren’t sufficient. Shortly after launch-
ing, DynamoDB introduced two improvements, bursting and
adaptive capacity, to address these concerns.

4.1.1 Bursting

The key observation that partitions had non-uniform access
also led us to observe that not all partitions hosted by a storage
node used their allocated throughput simultaneously. Hence,
to absorb temporal spikes in workloads at a partition level, Dy-
namoDB introduced the concept of bursting. The idea behind
bursting was to let applications tap into the unused capacity
at a partition level on a best effort basis to absorb short-lived
spikes. DynamoDB retained a portion of a partition’s unused
capacity for later bursts of throughput usage for up to 300
seconds and utilized it when consumed capacity exceeded the
provisioned capacity of the partition. The unused capacity is
called burst capacity.

DynamoDB still maintained workload isolation by ensuring
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that a partition could only burst if there was unused throughput
at the node level. The capacity was managed on the storage
node using multiple token buckets: two for each partition
(allocated and burst) and one for the node. These buckets
provided admission control. When a read or write request
arrived on a storage node, if there were tokens in the parti-
tion’s allocated token bucket, then the request was admitted
and tokens were deducted from the partition and node level
bucket. Once a partition had exhausted all the provisioned
tokens, requests were allowed to burst only when tokens were
available both in the burst token bucket and the node level
token bucket. Read requests were accepted based on the local
token buckets. Write requests using burst capacity required
an additional check on the node-level token bucket of other
member replicas of the partition. The leader replica of the
partition periodically collected information about each of the
members node-level capacity. In section 4.3 we explain how
we increased a node’s ability to burst.

4.1.2 Adaptive capacity

DynamoDB launched adaptive capacity to better absorb long-
lived spikes that cannot be absorbed by the burst capacity.
Adaptive capacity allowed DynamoDB to better absorb work-
loads that had heavily skewed access patterns across parti-
tions. Adaptive capacity actively monitored the provisioned
and consumed capacity of all the tables. If a table experienced
throttling and the table level throughput was not exceeded,
then it would automatically increase (boost) the allocated
throughput of the partitions of the table using a proportional
control algorithm. If the table was consuming more than its
provisioned capacity then capacity of the partitions which re-
ceived the boost would be decreased. The autoadmin system
ensured that partitions receiving boost were relocated to an
appropriate node that had the capacity to serve the increased
throughput, however like bursting, adaptive capacity was also
best-effort but eliminated over 99.99% of the throttling due
to skewed access pattern.

4.2 Global admission control

Even though DynamoDB had substantially reduced the
throughput problem for non-uniform access using bursting
and adaptive capacity, both the solutions had limitations.
Bursting was only helpful for short-lived spikes in traffic
and it was dependent on the node having throughput to sup-
port bursting. Adaptive capacity was reactive and kicked in
only after throttling had been observed. This meant that the
application using the table had already experienced brief pe-
riod of unavailability. The salient takeaway from bursting and
adaptive capacity was that we had tightly coupled partition
level capacity to admission control. Admission control was
distributed and performed at a partition level. DynamoDB
realized it would going to be beneficial to remove admission

control from the partition and let the partition burst always
while providing workload isolation.

To solve the problem of admission control, DynamoDB re-
placed adaptive capacity with global admission control (GAC).
GAC builds on the same idea of token buckets. The GAC
service centrally tracks the total consumption of the table
capacity in terms of tokens. Each request router maintains a
local token bucket to make admission decisions and commu-
nicates with GAC to replenish tokens at regular intervals (in
the order of few seconds). GAC maintains an ephemeral state
computed on the fly from client requests. Each GAC server
can be stopped and restarted without any impact on the overall
operation of the service. Each GAC server can track one or
more token buckets configured independently. All the GAC
servers are part of an independent hash ring. Request routers
manage several time-limited tokens locally. When a request
from the application arrives, the request router deducts tokens.
Eventually, the request router will run out of tokens because
of consumption or expiry. When the request router runs of
tokens, it requests more tokens from GAC. The GAC instance
uses the information provided by the client to estimate the
global token consumption and vends tokens available for the
next time unit to the client’s share of overall tokens. Thus, it
ensures that non-uniform workloads that send traffic to only
a subset of items can execute up to the maximum partition
capacity.

In addition to the global admission control scheme, the
partition-level token buckets were retained for defense-in-
depth. The capacity of these token buckets is then capped to
ensure that one application doesn’t consume all or a signifi-
cant share of the resources on the storage nodes.

4.3 Balancing consumed capacity

Letting partitions always burst required DynamoDB to man-
age burst capacity effectively. DynamoDB runs on a variety
of hardware instance types. These instance types vary by
throughput and storage capabilities. The latest generation
of storage nodes hosts thousands of partition replicas. The
partitions hosted on a single storage node could be wholly un-
related and belong to different tables. Hosting replicas from
multiple tables on a storage node, where each table could
be from a different customer and have varied traffic patterns
involves defining an allocation scheme that decides which
replicas can safely co-exist without violating critical prop-
erties such as availability, predictable performance, security,
and elasticity.

Colocation was a straightforward problem with provisioned
throughput tables. Colocation was more manageable in the
provisioned mode because of static partitions. Static partitions
made the allocation scheme reasonably simple. In the case
of provisioned tables without bursting and adaptive capacity,
allocation involved finding storage nodes that could accom-
modate a partition based on its allocated capacity. Partitions
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were never allowed to take more traffic than their allocated
capacity and, hence there were no noisy neighbors. All parti-
tions on a storage node did not utilize their total capacity at
a given instance. Bursting when trying to react to the chang-
ing workload meant that the storage node might go above its
prescribed capacity and thus made the colocation of tenants
a more complex challenge. Thus, the system packed storage
nodes with a set of replicas greater than the node’s overall
provisioned capacity. DynamoDB implemented a system to
proactively balance the partitions allocated across the storage
nodes based on throughput consumption and storage to miti-
gate availability risks caused by tightly packed replicas. Each
storage node independently monitors the overall throughput
and data size of all its hosted replicas. In case the throughput
is beyond a threshold percentage of the maximum capacity
of the node, it reports to the autoadmin service a list of can-
didate partition replicas to move from the current node. The
autoadmin finds a new storage node for the partition in the
same or another Availability Zone that doesn’t have a replica
of this partition.

4.4 Splitting for consumption
Even with GAC and the ability for partitions to burst al-
ways, tables could experience throttling if their traffic was
skewed to a specific set of items. To address this problem,
DynamoDB automatically scales out partitions based on the
throughput consumed. Once the consumed throughput of a
partition crosses a certain threshold, the partition is split for
consumption. The split point in the key range is chosen based
on key distribution the partition has observed. The observed
key distribution serves as a proxy for the application’s access
pattern and is more effective than splitting the key range in
the middle. Partition splits usually complete in the order of
minutes. There are still class of workloads that cannot benefit
from split for consumption. For example, a partition receiv-
ing high traffic to a single item or a partition where the key
range is accessed sequentially will not benefit from split. Dy-
namoDB detects such access patterns and avoids splitting the
partition.

4.5 On-demand provisioning
Many applications that migrated to DynamoDB previously
ran on-premises or on self-hosted databases. In either sce-
nario, the application developer had to provision servers. Dy-
namoDB provides a simplified serverless operational model
and a new model for provisioning - read and write capacity
units. Because the concept of capacity units was new to cus-
tomers, some found it challenging to forecast the provisioned
throughput. As mentioned in the beginning of this section,
customers either over provisioned, which resulted in low uti-
lization or under provisioned which resulted in throttles. To
improve the customer experience for spiky workloads, we

launched on-demand tables. On-demand tables remove the
burden from our customers of figuring out the right provision-
ing for tables. DynamoDB provisions the on-demand tables
based on the consumed capacity by collecting the signal of
reads and writes and instantly accommodates up to double
the previous peak traffic on the table. If an application needs
more than double the previous peak on table, DynamoDB
automatically allocates more capacity as the traffic volume
increases to ensure that the workload does not experience
throttling. On-demand scales a table by splitting partitions for
consumption. The split decision algorithm is based on traffic.
GAC allows DynamoDB to monitor and protect the system
from one application consuming all the resources. The ability
to balance based on consumed capacity effectively means
partitions of on-demand tables can be placed intelligently so
as to not run into node level limits.

5 Durability and correctness

Data should never be lost after it has been committed. In
practice, data loss can occur because of hardware failures,
software bugs, or hardware bugs. DynamoDB is designed for
high durability by having mechanisms to prevent, detect, and
correct any potential data losses.

5.1 Hardware failures
As with most database management systems, the write-ahead
logs [15] in DynamoDB are central for providing durability
and crash recovery. Write ahead logs are stored in all three
replicas of a partition. For higher durability, the write ahead
logs are periodically archived to S3, an object store that is
designed for 11 nines of durability. Each replica still contains
the most recent write-ahead logs that are usually waiting to
be archived. The unarchived logs are typically a few hundred
megabytes in size. In a large service, hardware failures such
as memory and disk failures are common. When a node fails,
all replication groups hosted on the node are down to two
copies. The process of healing a storage replica can take
several minutes because the repair process involves copying
the B-tree and write-ahead logs. Upon detecting an unhealthy
storage replica, the leader of a replication group adds a log
replica to ensure there is no impact on durability. Adding a
log replica takes only a few seconds because the system has to
copy only the recent write-ahead logs from a healthy replica
to the new replica without the B-tree. Thus, quick healing of
impacted replication groups using log replicas ensures high
durability of most recent writes.

5.2 Silent data errors
Some hardware failures can cause incorrect data to be stored
[5, 7]. In our experience, these errors can happen because of
the storage media, CPU, or memory [5]. Unfortunately, it’s
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very difficult to detect these and they can happen anywhere in
the system. DynamoDB makes extensive use of checksums to
detect silent errors. By maintaining checksums within every
log entry, message, and log file, DynamoDB validates data
integrity for every data transfer between two nodes. These
checksums serve as guardrails to prevent errors from spread-
ing to the rest of the system. For example, a checksum is
computed for every message between nodes or components
and is verified because these messages can go through various
layers of transformations before they reach their destination.
Without such checks, any of the layers could introduce a silent
error.

Every log file that is archived to S3 has a manifest that
contains information about the log, such as a table, partition
and start and end markers for the data stored in the log file.
The agent responsible for archiving log files to S3 performs
various checks before uploading the data. These include and
are not limited to verification of every log entry to ensure that
it belongs to the correct table and partition, verification of
checksums to detect any silent errors, and verification that
the log file doesn’t have any holes in the sequence numbers.
Once all the checks are passed, the log file and its manifest
are archived. Log archival agents run on all three replicas of
the replication group. If one of the agents finds that a log file
is already archived, the agent downloads the uploaded file to
verify the integrity of the data by comparing it with its local
write-ahead log. Every log file and manifest file are uploaded
to S3 with a content checksum. The content checksum is
checked by S3 as part of the put operation, which guards
against any errors during data transit to S3.

5.3 Continuous verification

DynamoDB also continuously verifies data at rest. Our goal
is to detect any silent data errors or bit rot in the system.
An example of such a continuous verification system is the
scrub process. The goal of scrub is to detect errors that we
had not anticipated, such as bit rot. The scrub process runs
and verifies two things: all three copies of the replicas in a
replication group have the same data, and the data of the live
replicas matches with a copy of a replica built offline using
the archived write-ahead log entries. The process of building
a replica using archived logs is explained in section 5.5 below.
The verification is done by computing the checksum of the
live replica and matching that with a snapshot of one gener-
ated from the log entries archived in S3. The scrub mechanism
acts as a defense in depth to detect divergences between the
live storage replicas with the replicas built using the history
of logs from the inception of the table. These comprehensive
checks have been very beneficial in providing confidence in
the running system. A similar technique of continuous veri-
fication is used to verify replicas of global tables. Over the
years, we have learned that continuous verification of data-at-
rest is the most reliable method of protecting against hardware

failures, silent data corruption, and even software bugs.

5.4 Software bugs

DynamoDB is a distributed key-value store that’s built on a
complex substrate. High complexity increases the probability
of human error in design, code, and operations. Errors in the
system could cause loss or corruption of data, or violate other
interface contracts that our customers depend on. We use
formal methods [16] extensively to ensure the correctness
of our replication protocols. The core replication protocol
was specified using TLA+ [12, 13]. When new features that
affect the replication protocol are added, they are incorporated
into the specification and model checked. Model checking
has allowed us to catch subtle bugs that could have led to
durability and correctness issues before the code went into
production. Other services such as S3 [6] have also found
model-checking useful in similar scenarios.

We also employ extensive failure injection testing and
stress testing to ensure the correctness of every piece of soft-
ware deployed. In addition to testing and verifying the repli-
cation protocol of the data plane, formal methods have also
been used to verify the correctness of our control plane and
features such as distributed transactions.

5.5 Backups and restores

In addition to guarding against physical media corruption, Dy-
namoDB also supports backup and restore to protect against
any logical corruption due to a bug in a customer’s application.
Backups or restores don’t affect performance or availability
of the table as they are built using the write-ahead logs that
are archived in S3. The backups are consistent across mul-
tiple partitions up to the nearest second. The backups are
full copies of DynamoDB tables and are stored in an Ama-
zon S3 bucket. Data from a backup can be restored to a new
DynamoDB table at any time.

DynamoDB also supports point-in-time restore. Using
point-in-time restore, customers can restore the contents of
a table that existed at any time in the previous 35 days to
a different DynamoDB table in the same region. For tables
with the point-in-time restore enabled, DynamoDB creates
periodic snapshots of the partitions that belong to the table
and uploads them to S3. The periodicity at which a partition
is snapshotted is decided based on the amount of write-ahead
logs accumulated for the partition. The snapshots, in conjunc-
tion to write-ahead logs, are used to do point-in-time restore.
When a point-in-time restore is requested for a table, Dy-
namoDB identifies the closest snapshots to the requested time
for all the partitions of the tables, applies the logs up to the
timestamp in the restore request, creates a snapshot of the
table, and restores it.
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6 Availability

To achieve high availability, DynamoDB tables are distributed
and replicated across multiple Availability Zones (AZ) in a
Region. DynamoDB regularly tests resilience to node, rack,
and AZ failures. For example, to test the availability and
durability of the overall service, power-off tests are exercised.
Using realistic simulated traffic, random nodes are powered
off using a job scheduler. At the end of all the power-off tests,
the test tools verify that the data stored in the database is
logically valid and not corrupted. This section expands on
some of the challenges solved in the last decade to ensure
high availability.

6.1 Write and consistent read availability

A partition’s write availability depends on its ability to have a
healthy leader and a healthy write quorum. A healthy write
quorum in the case of DynamoDB consists of two out of
the three replicas from different AZs. A partition remains
available as long as there are enough healthy replicas for a
write quorum and a leader. A partition will become unavail-
able for writes if the number of replicas needed to achieve
the minimum quorum are unavailable. If one of the replicas
is unresponsive, the leader adds a log replica to the group.
Adding a log replica is the fastest way to ensure that the write
quorum of the group is always met. This minimizes disrup-
tion to write availability due to an unhealthy write quorum.
The leader replica serves consistent reads. Introducing log
replicas was a big change to the system, and the formally
proven implementation of Paxos provided us the confidence
to safely tweak and experiment with the system to achieve
higher availability. We have been able to run millions of Paxos
groups in a Region with log replicas. Eventually consistent
reads can be served by any of the replicas. In case a leader
replica fails, other replicas detect its failure and elect a new
leader to minimize disruptions to the availability of consistent
reads.

6.2 Failure detection

A newly elected leader will have to wait for the expiry of the
old leader’s lease before serving any traffic. While this only
takes a couple of seconds, the elected leader cannot accept
any new writes or consistent read traffic during that period,
thus disrupting availability. One of the critical components
for a highly available system is failure detection for the leader.
Failure detection must be quick and robust to minimize dis-
ruptions. False positives in failure detection can lead to more
disruptions in availability. Failure detection works well for
failure scenarios where every replica of the group loses con-
nection to the leader. However, nodes can experience gray
network failures. Gray network failures can happen because
of communication issues between a leader and follower, is-

sues with outbound or inbound communication of a node, or
front-end routers facing communication issues with the leader
even though the leader and followers can communicate with
each other. Gray failures can disrupt availability because there
might be a false positive in failure detection or no failure de-
tection. For example, a replica that isn’t receiving heartbeats
from a leader will try to elect a new leader. As mentioned in
the section above, this can disrupt availability. To solve the
availability problem caused by gray failures, a follower that
wants to trigger a failover sends a message to other replicas
in the replication group asking if they can communicate with
the leader. If replicas respond with a healthy leader message,
the follower drops its attempt to trigger a leader election. This
change in the failure detection algorithm used by DynamoDB
significantly minimized the number of false positives in the
system, and hence the number of spurious leader elections.

6.3 Measuring availability
DynamoDB is designed for 99.999 percent availability for
global tables and 99.99 percent availability for Regional tables.
Availability is calculated for each 5-minute interval as the per-
centage of requests processed by DynamoDB that succeed.
To ensure these goals are being met, DynamoDB continu-
ously monitors availability at service and table levels. The
tracked availability data is used to analyze customer perceived
availability trends and trigger alarms if customers see errors
above a certain threshold. These alarms are called customer-
facing alarms (CFA). The goal of these alarms is to report
any availability-related problems and proactively mitigate the
problem either automatically or through operator interven-
tion. In addition to real-time tracking, the system runs daily
jobs that trigger aggregation to calculate aggregate availabil-
ity metrics per customer. The results of the aggregation are
uploaded to S3 for regular analysis of availability trends.

DynamoDB also measures and alarms on availability ob-
served on the client-side. There are two sets of clients used
to measure the user-perceived availability. The first set of
clients are internal Amazon services using DynamoDB as
the data store. These services share the availability metrics
for DynamoDB API calls as observed by their software. The
second set of clients is our DynamoDB canary applications.
These applications are run from every AZ in the Region, and
they talk to DynamoDB through every public endpoint. Real
application traffic allows us to reason about DynamoDB avail-
ability and latencies as seen by our customers and catch gray
failures [10, 11]. They are a good representation of what our
customers might be experiencing both as long and short-term
trends.

6.4 Deployments
Unlike a traditional relational database, DynamoDB takes
care of deployments without the need for maintenance win-
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dows and without impacting the performance and availability
that customers experience. Software deployments are done
for various reasons, including new features, bug fixes, and
performance optimizations. Often deployments involve updat-
ing numerous services. DynamoDB pushes software updates
at a regular cadence. A deployment takes the software from
one state to another state. The new software being deployed
goes through a full development and test cycle to build confi-
dence in the correctness of the code. Over the years, across
multiple deployments, DynamoDB has learned that it’s not
just the end state and the start state that matter; there could
be times when the newly deployed software doesn’t work
and needs a rollback. The rolled-back state might be different
from the initial state of the software. The rollback procedure
is often missed in testing and can lead to customer impact.
DynamoDB runs a suite of upgrade and downgrade tests at a
component level before every deployment. Then, the software
is rolled back on purpose and tested by running functional
tests. DynamoDB has found this process valuable for catch-
ing issues that otherwise would make it hard to rollback if
needed.

Deploying software on a single node is quite different from
deploying software to multiple nodes. The deployments are
not atomic in a distributed system, and, at any given time,
there will be software running the old code on some nodes
and new code on other parts of the fleet. The additional chal-
lenge with distributed deployments is that the new software
might introduce a new type of message or change the protocol
in a way that old software in the system doesn’t understand.
DynamoDB handles these kinds of changes with read-write
deployments. Read-write deployment is completed as a multi-
step process. The first step is to deploy the software to read
the new message format or protocol. Once all the nodes can
handle the new message, the software is updated to send new
messages. New messages are enabled with software deploy-
ment as well. Read-write deployments ensure that both types
of messages can coexist in the system. Even in the case of
rollbacks, the system can understand both old and new mes-
sages.

All the deployments are done on a small set of nodes before
pushing them to the entire fleet of nodes. The strategy reduces
the potential impact of faulty deployments. DynamoDB sets
alarm thresholds on availability metrics (mentioned in section
6.3). If error rates or latency exceed the threshold values
during deployments, the system triggers automatic rollbacks.
Software deployments to storage nodes trigger leader failovers
that are designed to avoid any impact to availability. The
leader replicas relinquish leadership and hence the group’s
new leader doesn’t have to wait for the old leader’s lease to
expire.

6.5 Dependencies on external services

To ensure high availability, all the services that DynamoDB
depends on in the request path should be more highly avail-
able than DynamoDB. Alternatively, DynamoDB should be
able to continue to operate even when the services on which
it depends are impaired. Examples of services DynamoDB
depends on for the request path include AWS Identity and
Access Management Services (IAM) [2], and AWS Key Man-
agement Service (AWS KMS) [3] for tables encrypted using
customer keys. DynamoDB uses IAM and AWS KMS to au-
thenticate every customer request. While these services are
highly available, DynamoDB is designed to operate when
these services are unavailable without sacrificing any of the
security properties that these systems provide.

In the case of IAM and AWS KMS, DynamoDB employs
a statically stable design [18], where the overall system keeps
working even when a dependency becomes impaired. Per-
haps the system doesn’t see any updated information that its
dependency was supposed to have delivered. However, every-
thing before the dependency became impaired continues to
work despite the impaired dependency. DynamoDB caches
result from IAM and AWS KMS in the request routers that
perform the authentication of every request. DynamoDB peri-
odically refreshes the cached results asynchronously. If IAM
or KMS were to become unavailable, the routers will continue
to use the cached results for pre-determined extended period.
Clients that send operations to request routers that don’t have
the cached results will see an impact. However, we have seen
a minimal impact in practice when AWS KMS or IAM is
impaired. Moreover, caches improve response times by re-
moving the need to do an off-box call, which is especially
valuable when the system is under high load.

6.6 Metadata availability

One of the most important pieces of metadata the request
routers needs is the mapping between a table’s primary keys
and storage nodes. At launch, DynamoDB stored the metadata
in DynamoDB itself. This routing information consisted of
all the partitions for a table, the key range of each partition,
and the storage nodes hosting the partition. When a router
received a request for a table it had not seen before, it down-
loaded the routing information for the entire table and cached
it locally. Since the configuration information about partition
replicas rarely changes, the cache hit rate was approximately
99.75 percent. The downside is that caching introduces bi-
modal behavior. In the case of a cold start where request
routers have empty caches, every DynamoDB request would
result in a metadata lookup, and so the service had to scale
to serve requests at the same rate as DynamoDB. This effect
has been observed in practice when new capacity is added
to the request router fleet. Occasionally the metadata service
traffic would spike up to 75 percent. Thus, introducing new
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request routers impacted the performance and could make the
system unstable. In addition, an ineffective cache can cause
cascading failures to other parts of the system as the source
of data falls over from too much direct load [4].

DynamoDB wanted to remove and significantly reduce
the reliance on the local cache for request routers and other
metadata clients without impacting the latency of the cus-
tomer requests. When servicing a request, the router needs
only information about the partition hosting the key for the
request. Therefore, it was wasteful to get the routing infor-
mation for the entire table, especially for large tables with
many partitions. To mitigate against metadata scaling and
availability risks in a cost-effective fashion, DynamoDB built
an in-memory distributed datastore called MemDS. MemDS
stores all the metadata in memory and replicates it across the
MemDS fleet. MemDS scales horizontally to handle the entire
incoming request rate of DynamoDB. The data is highly com-
pressed. The MemDS process on a node encapsulates a Perkle
data structure, a hybrid of a Patricia tree [17] and a Merkle
tree. The Perkle tree allows keys and associated values to be
inserted for subsequent lookup using the full key or a key
prefix. Additionally, as keys are stored in sorted order, range
queries such as lessThan, greaterThan, and between are also
supported. The MemDS Perkle tree additionally supports two
special lookup operations: floor and ceiling. The floor
operation accepts a key and returns a stored entry from the
Perkle whose key is less than or equal to the given key. The
ceiling operation is similar but returns the entry whose key
is greater than or equal to the given key.

A new partition map cache was deployed on each request
router host to avoid the bi-modality of the original request
router caches. In the new cache, a cache hit also results in
an asynchronous call to MemDS to refresh the cache. Thus,
the new cache ensures the MemDS fleet is always serving a
constant volume of traffic regardless of cache hit ratio. The
constant traffic to the MemDS fleet increases the load on the
metadata fleet compared to the conventional caches where
the traffic to the backend is determined by cache hit ratio, but
prevents cascading failures to other parts of the system when
the caches become ineffective.

DynamoDB storage nodes are the authoritative source of
partition membership data. Partition membership updates
are pushed from storage nodes to MemDS. Each partition
membership update is propagated to all MemDS nodes. If the
partition membership provided by MemDS is stale, then the
incorrectly contacted storage node either responds with the
latest membership if known or responds with an error code
that triggers another MemDS lookup by the request router.

7 Micro benchmarks

To show that scale doesn’t affect the latencies observed by
applications, we ran YCSB [8] workloads of types A (50
percent reads and 50 percent updates) and B (95 percent reads

Figure 5: Summary of YCSB read latencies

Figure 6: Summary of YCSB write latencies

and 5 percent updates). Both benchmarks used a uniform
key distribution and items of size 900 bytes. The workloads
were run against production DynamoDB in the North Virginia
region. The workloads were scaled from 100 thousand total
operations per second to 1 million total operations per second.
Figure 5 shows the read latencies of both workloads at 50th

and 99th percentiles. The purpose of the graph is to show, even
at different throughput, DynamoDB read latencies show very
little variance and remain identical even as the throughput
of the workload is increased. The read throughput of the
Workload B is twice that Workload A and still the latencies
show very little variance. Figure 6 shows the writes latencies
of both workloads at 50th and 99th percentiles. Like the read
latencies, the write latencies remain constant no matter the
throughput of the workload. In case of YCSB, workload A
drives a higher throughput than workload B, but the write
latency profile for both workloads are similar.

8 Conclusion

DynamoDB has pioneered the space of cloud-native NoSQL
databases. It is a critical component of thousands of applica-
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tions used daily for shopping, food, transportation, banking,
entertainment, and so much more. Developers rely on its
ability to scale data workloads while providing steady perfor-
mance, high availability, and low operational complexity. For
more than 10 years, DynamoDB has maintained these key
properties and extended its appeal to application developers
with game-changing features such as on-demand capacity,
point-in-time backup and restore, multi-Region replication,
and atomic transactions.
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