
This paper is included in the Proceedings of the 
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the 
2022 USENIX Annual Technical Conference 

is sponsored by

DVABatch: Diversity-aware Multi-Entry  
Multi-Exit Batching for Efficient Processing  

of DNN Services on GPUs
Weihao Cui, Han Zhao, Quan Chen, Hao Wei, and Zirui Li, Shanghai Jiao Tong 

University; Deze Zeng, China University of Geosciences; Chao Li and Minyi Guo, 
Shanghai Jiao Tong University

https://www.usenix.org/conference/atc22/presentation/cui



DVABatch: Diversity-aware Multi-Entry Multi-Exit Batching for Efficient
Processing of DNN Services on GPUs

Weihao Cui∗, Han Zhao∗, Quan Chen∗, Hao Wei∗, Zirui Li∗, Deze Zeng⋄, Chao Li∗, Minyi Guo∗
∗Shanghai Jiao Tong University, ⋄China University of Geosciences

Abstract
The DNN inferences are often batched for better utilizing the
hardware in existing DNN serving systems. However, DNN
serving exhibits diversity in many aspects, such as input, oper-
ator, and load. The unawareness of these diversities results in
inefficient processing. Our investigation shows that the ineffi-
ciency roots in the feature of the existing batching mechanism:
one entry and one exit. Therefore, we propose DVABatch, a
runtime batching system that enables the multi-entry multi-
exit batching scheme. We first abstract three meta operations,
new, stretch, and split, for adjusting the ongoing batch of
queries to achieve the multi-entry multi-exit scheme. The
meta operations could be used to form different scheduling
logics for different diversities. To deliver the meta operations
to an ongoing batch, we slice the DNN models into multi-
ple stages. Each stage corresponds to one executor, which
is managed by a state transition diagram. Compared with
state-of-the-art solutions, our experimental results show that
DVABatch reduces 46.4% average latency and achieves up to
2.12× throughput improvement.

1 Introduction

Deep neural networks (DNNs) [27, 37, 57] are widely used
in intelligent services [1, 5, 6, 12]. Since user queries have
stringent QoS in terms of end-to-end latency, dedicated accel-
erators like GPUs [10, 11] and NPUs [21] are used to speed
up the DNN inferences. However, a single DNN query often
cannot fully utilize these accelerators [17, 18, 43, 46, 65] (e.g.,
An Nvidia Titan RTX GPU has 72 SMs [10]). Therefore,
emerging DNN serving systems (e.g., Clipper, Triton, TF-
Serving) [9, 23–26, 51, 62, 63] batch queries for better taking
advantage of the accelerators’ parallelism. Queries that arrive
in a given batch time window are organized into a batch, and
an executor (process) is used by the DNN serving system to
process the entire batch at a time. Such a batching policy uses
the same batch size (bs) across a single inference process.

On GPUs, due to the single program multiple-data (SPMD)
design, all the queries in a batch return at the same time. This
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Figure 1: Serving diversities in real-world services.

batching pattern is referred to be the single-entry single-exit
batching pattern. It works great for best-effort applications,
and the services when the queries arrive in uniform inter-
vals [22]. However, DNN serving scenarios show various
diversities, and the single-entry single-exit batching pattern
results in the long response latency of inference queries on
GPUs. For instance, we find at least three types of diversities
when serving DNN models, as shown in Figure 1.

Input Diversity. The inputs of user queries show high
diversity (e.g., in natural language processing services). Short
queries are all padded to the size of the longest query for
batching. The benefit of batching may be negated by the
wasted computation of the padded part.

Operator Diversity. While all the operators of a DNN
model share the same batch size, they have different preferred
batch sizes. An operator’s preferred batch size is the smallest
batch size that fully utilizes the current GPU. The hardware is
not fully utilized if an operator’s preferred batch size is larger
than the used batch size. Otherwise, the processing time is
increased unnecessarily.

Load Diversity. The service queries do not arrive in a uni-
form interval. In this case, the number of queries collected in
a single batch time window varies. When the load bursts, a
previous non-full batch results in the long latency of subse-
quent queries. In other words, hardware resources are wasted
while the queries are waiting in the next batch time window.

The diversities result in inefficient processing of user
queries (discussed in more detail in Section 3). The ineffi-
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Figure 2: The work manner switch of stage executors.

ciency stems from the batching pattern of single-entry single-
exit. To address the inefficiency, we, therefore, propose a
multi-entry multi-exit batching scheme for DNN serving on
GPUs. For instance, with the multi-entry multi-exit batching
scheme, a short query can exit early without waiting for the
entire batch to exit (input diversity), a batch can be split into
smaller batches to execute an operator with a preferred smaller
batch size (operator diversity), and the queries that arrive later
can join an ongoing but non-full batch (load diversity).

It is nontrivial to implement the multi-entry multi-exit
batching scheme for GPUs. It necessitates the ability of the
serving system to dynamically alter the batch size of an ongo-
ing query batch. Specifically, such a system should enable the
joining of incoming queries into the ongoing batch and the
splitting of an ongoing batch into smaller batches (The queries
in the smaller batches could exit independently). Moreover,
it introduces extra complexity for designing executors in the
DNN serving system. With the multi-entry multi-exit scheme,
the inference of batched queries is broken down into multiple
stages, and each stage’s execution requires one executor. Mul-
tiple executors have to coordinate with each other to ensure
the validity of the query inference.

To this end, we propose DVABatch to enable the multi-
entry multi-exit batching scheme effectively. DVABatch pro-
vides three meta operations, new, stretch, and split, to adjust
the ongoing batch (Section 5). The new operation creates
a new batch, just like the traditional batching strategy. The
stretch operation adds new queries to the ongoing batch. The
split operation breaks a running batch into multiple batches,
which could be scheduled separately. Query batching can be
done in a variety of ways using the three meta operations.

To deliver the meta operations to the stage executors, a
batch queue that stores the batch information is added be-
tween adjacent stage executors, and a global batch table is
utilized to record the to-be-performed meta operations at each
stage (Section 5). When an executor completes its compu-
tation for a batch of queries, it verifies the to-be-performed
meta operations for the next stage in the batch table. If a split
or stretch operation is required, the executor applies the cor-
responding meta operation on the current batch and pushes
new batches of queries into the batch queue of the next stage.

While multiple active executors run independently like
a software pipeline, DVABatch should manage them prop-
erly. Otherwise, the naive parallel execution of the executors
invalidates the execution due to data hazard and results in
unnecessary long latency. For instance, the executor should

run batches with different input sizes in parallel for the input
diversity, and run the sub batches after the split meta operation
sequentially for the operator diversity. DVABatch introduces
a state transition diagram based solution to support the ex-
ecutors’ complicated runtime scheduling (Section 6). Each
executor has four states: active, checking, working, and inac-
tive,. Through the state transition diagram, the work manners
depicted in Figure 2 are both supported.

The main contributions of this paper are as follows.
• We propose a multi-entry multi-exit batching scheme for

efficient DNN service processing on GPUs.
• We provide a general scheduling mechanism that leverages

meta operations, and state transition diagram to create poli-
cies for different serving diversities.

• We implement DVABatch with Triton, a state-of-the-art
DNN serving system. Our experimental results on Nvidia
Titan RTX show that DVABatch reduces 46.4% average
latency and achieves up to 2.12× throughput improvement
for the involved serving diversities.

2 Related Work

Many systems have been proposed for efficient DNN infer-
ence [9, 25, 35]. Clipper [23], TF-Serving [51], Triton [9]
adopted the traditional batch strategy that uses batch time win-
dow and the maximum allowed batch size. They treated the
DNN model as an indivisible whole. They left the scheduling
of inner operators to their supported backends. These works
do not perceive the serving diversity and utilize the DNN
operator scheduling for efficient processing.

There are some prior research on improving operator
scheduling. TensorFlow Fold [47], DyNet [49], and Batch-
Maker [31] focused on the runtime scheduling of operators for
RNN. They are model-specific solutions, removing padding
for RNNs. The RNN cells of the same type share the same
parameter weights and are executed recursively [38]. These
works relied on this property to remove the padding. The
design is restricted to resolving the input diversity for RNN.
It cannot be applied to other models with input diversity, e.g.,
attention-based models, and BatchMaker-like batch mecha-
nism can be achieved through DVABatch’s meta operations.
Besides, LazyBatch [22] cared about the load fluctuation and
proposed batching queries lazily. LazyBatch performed per-
operator scheduling that incurs high scheduling overhead. It
could not handle other diversities. In this work, we focus
on resolving the problems caused by serving diversities in a
holistic way.

There are also some prior works about ragged tensor for
the input diversity [4, 29]. They generated the customized
implementation of operators to remove the padding. However,
operators like GEMM and convolution cannot be optimized
through these works, which dominate the computation in
DNN. These works are orthogonal to DVABatch and can be
combined together to enable even lower latency.
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Figure 3: The long latency of user queries due to (Case-I) input diversity, (Case-II) operator diversity, and (Case-III) load diversity.

Figure 4: The sequence distribution of workloads in GLUE.

3 Background and Motivation

This section shows the long query latency problem due to the
single-entry single-exit batching, and motivates the design
of DVABatch. Figure 3 shows the three involved diversities.
For simplicity of illustration, we assume that each operator
completes in 1 time unit (T ), and the batch size is 4. In this
case, once 4 queries are received or the batch time window
ends, the received queries are batched and issued to run.

3.1 Input diversity

Input diversity widely exists in DNN services. E.g., natural
language processing services often process sentences of differ-
ent lengths. Figure 4 shows the sequence length distribution in
10 workloads of the General Language Understanding Evalu-
ation (GLUE) dataset [59]. As observed, most sentences have
5-20 words, but some have more than 100 words.

For these models, the input of short queries is padded to
the same size as the input of the longest query so that they can
be batched to run [28]. Case-I in Figure 3 shows the batching
with input diversity. As shown in the upper part of Case-I, the
hardware resources are wasted for the computation of extra
paddings (the queries in a batch return simultaneously).

The lower part of Case-I shows a better batching strategy:
the batch is divided into two smaller batches, one for short
queries ①, ②, and ③, and one for the long query ④. In this way,
queries ①, ②, and ③ return earlier, and the average latency
is reduced by 37.5% (from 4T to 2.5T ). Note that the two

where batching takes effect!!!

Figure 5: Latencies of two GEMM operators with different
batch sizes on Titan RTX.

batches may run in parallel before the short batch completes
if 4 operators are required to fully utilize the GPU.

3.2 Operator diversity
For a DNN service, the operators often require different batch
sizes to fully utilize the GPU. Figure 5 shows the latencies of
two General Matrix Multiplication (GEMM) operators con-
verted from two convolution operators of Resnet50 [37], with
the shapes of [bs∗3136,576]× [576,64] and [bs∗49,576]×
[576,512]. GEMM operators dominate DNNs (occupying
86% of the computation time) [44].

As shown, the preferred batch sizes of GEMM-A and
GEMM-B are 1 and 8, respectively. For GEMM-A, batching
only increases its latency without improving the processing
throughput. For GEMM-B, using a batch size smaller than 8
is not able to fully utilize a GPU (the processing time does
not increase until the batch size is larger than 8).

Case-II in Figure 3 shows the batching with operator diver-
sity. In Case-II, operator A prefers batch size 4, operator B, C,
and D prefer batch size 1. The lower part of Case-II shows
a better batching strategy: we can run operator A with batch
size 4, split the batch into four smaller batches with batch size
1 at operator B, and run the small batches sequentially. In this
way, query ①, ②, and ③ return earlier. The average latency
can be reduced by 28.1% (from 4T to 2.875T ).

Many DNN models suffer from operator diversity. Figure 6
shows the processing time of the operators in Unet [56], a
widely used image segmentation network with different batch
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Figure 6: Operator duration of Unet on Titan RTX with vari-
able batch sizes.

sizes on an Nvidia Titan RTX GPU. In the figure, the x-
axis represents each operator’s id in the executive order. As
observed, most operators in the former part (OPGA) benefit
from large batch sizes (e.g., larger than 32), but the operators
in the latter part (OPGB) only benefit from small batch sizes
(smaller than 8). Using a batch size larger than 8 for Unet, the
operators in OPGB have longer latency without throughput
improvement. On the contrary, using a batch size smaller than
32, the operators in OPGA do not fully utilize the GPU.

3.3 Load diversity
User queries do not arrive in a uniform interval, as end users
may randomly submit their queries. The number of received
queries in a single batch time window varies [30,34,36,41,55].

Case-III in Figure 3 presents the batching with the load
diversity. The batch time window is 4T , the operators prefer
batch size 4. With the current batching policy (the upper part
of Case-III), query ① starts to run alone after it waits for 4T ,
and the GPU is not fully utilized. During the processing of
query ①, three queries ②, ③, and ④ arrive, but they have to
wait to be executed in the next batch.

The lower part of Case-III shows a better way to run the four
queries: the first batch (query ①) waits for the second batch
after the first operator A completes. Then, the two insufficient
batches are merged into a new batch that fully utilizes the
hardware. In this way, the average latency can be reduced by
34.4% (from 8T to 5.25T ).

3.4 Diversities among DNN services
The three types of diversities may exist in the same DNN
services. Current batching policies with simple modifications
cannot effectively handle them. In this case, designing a static
batching policy is not able to fulfill the ever-changing diver-
sities. A low-level batching mechanism that supports config-
uring the batching policy accordingly is required. Analyzing
the three better batching cases in Figure 3, they share three
requirements for the batching mechanism.

First of all, the mechanism should be able to interrupt an
ongoing batch so that we can adjust the inappropriate batching
decision. Second, the mechanism should be able to split a
large batch into small batches. In this way, the small batches
may run in a parallel manner (Case-I) or sequentially (Case-
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Figure 7: Design of DVABatch.

II). Third, the mechanism should be able to merge multiple
insufficient batches. In this way, we can build a large batch to
better utilize the hardware resource (Case-III).

A multi-entry multi-exit batching scheme fulfills all three
requirements, and has the potential to achieve better batching,
together with appropriate batching policies.

4 Design of DVABatch

We therefore design and propose DVABatch to resolve the
long latency problem due to the serving diversities.

4.1 Overview

Figure 7 illustrates DVABatch’s methodology. DVABatch
enables the multi-entry multi-exit batching scheme for the
upper-level DNN serving systems (e.g., Triton, TF-Serving).

In general, in order to support the multi-entry and multi-exit
batching, DVABatch slices a DNN model into multiple fine-
grained stages, and each stage has multiple adjacent operators.
The queries are able to join a batch at the beginning of a
stage, and exit from a batch at the end of a stage. Based
on the stages, DVABatch designs and implements batching
policies that manage the batching operation of each stage,
based on the real-time diversities. DVABatch supports three
meta-operations new, stretch, split for adjusting the batching.
The new operation creates a new batch, stretch adds new
queries to the ongoing batch, and split breaks a running batch
into multiple smaller batches. Various batching policies can
be implemented based on the meta-operations.

As shown in Figure 7, DVABatch comprises a batch table,
stage executors, batch queues, and DVAScheduler.
• The batch table records the running status of the ongoing

batches. It supports three meta operations for adjusting the
batches at each stage.

• A stage executor is a process that is responsible for the
corresponding stage’s execution. DVABatch utilizes a state
transition diagram for executor management.

• There is a batch queue between the two adjacent stages, for
transmitting the batch information. A stage executor pulls
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Figure 8: Implementing the meta operations with batch table and batch queues between stages.

out batches from its previous batch queue for execution,
and pushes batches into the batch queue of the next stage.

• DVAScheduler provides diversity-aware scheduling using
various batching policies implemented with the three meta
operations. The policies can be customized according to
the serving diversity.

4.2 The Serving Workflow with DVABatch

Figure 7 also shows DVABatch’s serving workflow for the
involved diversities. The steps for using DVABatch to serve a
DNN service are as follows:

① DVABatch checks the input data pattern of the service,
and profiles it to obtain the diversity patterns. Based on the
profiling, the DNN model is sliced into stages automatically.
A diversity-aware policy is generated for the DNN model.

② Each stage executor loads the corresponding stage of the
model, and DVAScheduler uses the scheduling logic in the
policy to schedule the accepted queries.

③ If a specific condition defined in the DVAScheduler is sat-
isfied, the batch table is instructed to adjust the ongoing
batch by new, stretch, split operations accordingly.
For a new DNN service, DVABatch handles input diversity

before operator diversity. This is because handling input di-
versity directly reduces computation while handling operator
diversity better schedules computation.

5 Enabling Multi-entry Multi-exit Scheme

In this section, we propose the abstraction of meta operations
and how we achieve the multi-entry multi-exit scheme.

5.1 Defining the Meta Operations

As stated before, to achieve low latency query scheduling, the
batched queries should be able to join and exit the batching
system in several forms: Multi-entry. When a new batch of
queries arrives, it can interrupt an ongoing batch, catch up
with the progress of the interrupted one, then be merged into
a single larger batch. In addition, the new incoming batch
also can join the processing by co-running with the ongoing
batches in different stage executors without pausing the on-
going one. Multi-exit. If some queries inside a batch need to

exit early, we need to split the batch into several batches and
allow them to exit execution independently.

DVABatch abstracts three meta scheduling operations in-
side the DVAScheduler: new, stretch, and split, for supporting
the multi-entry multi-exit scheme. With new, the new incom-
ing queries are organized into a new batch. The batch created
by new operation could co-run with the previous batches;
With stretch, an ongoing batch is stretched with new incom-
ing queries. At a specific stage, these queries are merged into
the ongoing batch for processing; With split, a large ongo-
ing batch is split into several smaller batches to be processed
separately. The three meta operations can be used to form
complicated scheduling logic when necessary.

5.2 Implementing the Meta Operations

It is challenging to support the meta operations, as a batch runs
in multiple stages. The meta operations should be performed
based on the stages’ execution status. In general, DVABatch
tracks the stage status of the batches, and notifies the meta
operations to the corresponding stage executors.

5.2.1 Batch Table and Batch Queues

DVABatch uses a batch table to track the processing status of
all the batches on a GPU. The batch table is updated by the
DVAScheduler through the meta operations.

As shown in Figure 8, a row in the batch table records the
status of an ongoing batch. In a row, id is the batch’s identifier,
bs is its current batch size, time is the timestamp the batch
is created, statusmap is a map that records the number of
completed queries in each stage of the batch. For instance,
the first row of statusmap in Figure 8(a) means stage 1 has
completed 2 queries in its batch. We need statusmap because
the latter queries of a stretched batch should catch up with the
ongoing queries. With statusmap, the executors could get the
right number of queries to execute after stretch operation.

After the current stage executor completes its execution,
it notifies the subsequent stage executor to run. DVABatch
maintains batch queues between adjacent stage executors to
trigger such execution. In a row of a batch queue, id is the
batch’s identifier, start is the id of the to-be-processed query,
and num is the number of to-be-processed queries in the batch.
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The stage executor pulls a batch from its batch queue, and
processes the queries accordingly. For instance, executor1 in
Figure 8(a) will run query 0 to query 1 (start = 0, num = 2)
in the current batch. Once the execution completes, the stage
executor updates the row of the processed batch in batch table,
and pushes an item into the next batch queue.

5.2.2 Handling Meta Operations

Based on batch table and batch queues, Figure 8 shows an
example that three meta operations are performed on the same
batch, batch0. In the example, we first new the batch batch0
with 2 queries (Figure 8(a)); Then, we stretch the batch batch0
with another 2 new queries while it is already processed by
executor2 (Figure 8(b)); Last, we split the batch batch0 into
2 smaller batches at the third stage (Figure 8(c)).

Handling new. Once batch0 is received, ① a new opera-
tion is instructed, and a new item is added to the batch table.
Meanwhile, an item is pushed to the first stage executor’s
batch queue (BatchQueue1). ② the executor of the first stage
(hereinafter, we refer to the executor of stagei as executori)
is notified to obtain the item and perform the execution. Once
executor1 completes, it ③ updates statusmap in the batch table,
and ④ pushes an item into BatchQueue2.

Handling stretch. ① As 2 new queries are added into
batch0 with the stretch operation at stage 2, bs of batch0
in the batch table is changed from 2 to 4. Because batch0 is
stretched to 4 queries while being processed by executor2, the
executor does not push an item into BatchQueue3, but only
updates statusmap. ② A new item (a batch with id = 0,start =
2,num = 2) is pushed into BatchQueue1, so that the newly
added queries can catch up with the progress of the current
batch. ③ Once the new queries catch up, executor2 updates
statusmap and ④ pushes a merged batch into BatchQueue3 (a
batch with start = 0 and num = 4). The stretch operation is
only performed on the latest batch stored in the batch table.

Handling split. When batch0 goes to stage 3, ① executor3
pulls batch0 from the batch queue and runs it with bs = 4. Af-
ter that, executor3 is instructed with a split operation. ② The
original batch is split into two batches in the batch table. ③
Lastly, the generated batches are all pushed into BatchQueue4
one by one. The split operation can happen when a new batch
of queries comes or during the execution of an ongoing batch.

The meta operations co-exist without conflict. Although
split happens at any stage, a potential split operation can be
known when generating the batch by new and stretch. We
disable further stretch for the batch that we perceive split
operation. The batches generated by split inherit this property.

6 Managing Stage Executors

In this section, we present the way the stage executors are
organized to process the batches.
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Figure 9: (a) Stage executor processes batches with multiple
buffers; (b) Traditional state transition diagram of executori.

6.1 Processing with Multiple Buffers
With multiple stages, the executors of adjacent stages have
“producer-consumer” relationships. In this case, there are data
hazards on the buffers between stages.

Figure 9(a) shows the way the stages are connected. Multi-
ple buffers are used because multiple batches may be active
concurrently. An executor needs to obtain an input-output
buffer pair before it can process a batch. The output buffer of
executori is also the input buffer of executori+1. If executori
is using a buffer pair bp, there is a Write-After-Read hazard
on bp’s input buffer, as executori−1 may write to the very
buffer before executori reads the data. Similarly, there is a
Read-After-Write hazard on bp’s output buffer.

For ensuring the execution correctness, a buffer can be in
the available, invalid, inreading, or inwriting state. A buffer is
invalid when it cannot be used as an input buffer currently. It
is inreading/inwriting when it is used as an input/output buffer
for a batch’s execution. It is available when it is not used by
any executor. Figure 9(a) shows an example that executori
is using the first buffer pair bp1, and executori+1 is using the
output buffer of the second buffer pair bp2 as its input.
• The input buffer of bp1 is in inreading state and the output

buffer of bp1 is in inwriting state.
• The input buffer of bp2 is in invalid state because the output

buffer of bp2 is currently used by executori+1 for execution.
executori cannot use it to run a new batch.

• The third buffer pair are both in available states.
A stage executor can run a batch only when it suc-

cessfully obtains a legitimate buffer pair. A buffer pair is
legitimate, when both the input and output buffer are avail-
able, or the input buffer is available but the output buffer is
invalid. This is because an invalid buffer can be used as the
output buffer of an executor, but cannot be used as the input
buffer of the later stages.

6.2 State Transition of the Executors
Based on the buffer states, there are some traditional ways
to create a naive state transition rule for the stage executors
to run as a pipeline. For instance, a stage executor can be in
three states: active, working, inactive, and the states change
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Figure 10: (a) Inconsistency of buffer pairs; (b) Fail to run in
serial manner with single buffer pair.

according to the diagram in Figure 9(b).
However, these traditional state transition rules assume

all the stage executors use the buffer pairs in some fixed
order (e.g., ID order). While the traditional rules work
well for the single-entry single-exit pipeline, they will en-
counter the validity problem for the multi-entry multi-exit
pipeline.

Specifically, the requirement of meta operations stretch and
split invalids the above traditional transition rules. stretch
merges the outputs from different buffer pairs into a single
one, and split may split the output into multiple buffer pairs.
That means some stage executors may use more buffer pairs
than others, and the access order of these buffer pairs is scram-
bled. As shown in Figure 10(a), while executori is using bp3
for execution, executori is active with bp2. Such inconsistency
invalidates the traditional state transition rule.

On the other hand, stage executors need to run multiple
batches in parallel for load diversity and input diversity, and
run batches sequentially for operator diversity (Section 3).
The traditional transition rule supports parallel manner well
but fails to satisfy the requirement of serial manner. As shown
in Figure 10(b), the stage executors always run in parallel
even if only one buffer pair is used. Because executori legit-
imizes bp1 for executori−1 after it completes the execution,
executori−1 is active with bp1, when executori+1 is in work-
ing state with bp1. In this case, executori−1 is able to run in
parallel with executori+1.

We therefore design the transition diagram in Figure 11.
Suppose executori is in the active state with a legitimate
buffer pair currently. Once executori pulls out a batch with
buffer pair bp j, it checks the states of bp j instead of start-
ing execution directly. If bp j is legitimate, executori enters
working state and starts the execution. Meanwhile, the input
buffer and output buffer of bp j enter in-reading and in-writing
states respectively. If bp j is not legitimate, executori enters
checking state, waiting for bp j to become legitimate. When
executori completes a batch with bp j, the input buffer of bp j
enters invalid state, and the output buffer of bp j restores to its
previous state. If executori gets another legitimate buffer pair,
it enters active state. Otherwise, it enters inactive state. The
last stage executor always re-enters active state directly.

Note that, after executori re-enters active state with any
legitimate buffer pair, executori updates the j-th input
buffer of executori−1 to available state. It denotes that
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Figure 11: State transition diagram of executori in DVABatch.

executori−1 can use bp j now.
In short, we first add a checking state for the stage executor

to guarantee using the right buffer pair. We also move the
buffer pair legitimation for executori−1 after executori enters
active state. In this case, while DVABatch only configures one
available buffer pair, all stage executors stay in inactive state
until the current batch is executed by the last stage executor.
Therefore, the serial work manner is supported.

6.3 Implementing the Transition Diagram
We implement the transition diagram of stage executors
through CUDA synchronization APIs for the correctness guar-
antee. Each stage executor is bound to a CUDA stream for par-
allel execution, and each buffer pair is equipped with a CUDA
event to enforce its legitimation. Upon finishing launching
the CUDA functions with a buffer pair, the stage executor
performs a record operation with the buffer pair’s event on
its stream. After that, if the corresponding buffer pair is le-
gitimate, the other stage executor requires synchronization
with the event on its own stream before using the buffer pair
to avoid data hazards on GPUs. In order to deliver the best
performance, the stage executor calls cudaStreamWaitEvent
instead of explicit synchronizations on the host side.

7 Scheduling Policies of Serving Diversities

In this section, we present the way to deal with the serv-
ing diversities using DVABatch. First of all, we identify the
existing diversities in a DNN model and divide the model
into several stages. Then, at runtime, DVABatch is able to
schedule the batches of the model appropriately.

7.1 Identifying Diversities and Slicing Models
For a DNN service, We identify the existing diversities and
slice the model offline, by checking the input patterns and
profiling the model with several different batch sizes (e.g., 1,
2, 4, 8, 16, 32, 64) using the tools provided by Nvidia [7, 8].

All the models are considered to have load diversities, as the
load pattern is often determined by the end-users. The model
that accepts inputs with different shapes (dynamic dimension
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1 //stage executors run within a while loop
2 void Run():
3 Batch& inBatch = BatchQueue.Get();
4 CheckBuffer(inBatch);//Check buffer pair
5 Execute(inBatch);
6 Schedule(inBatch , outBatches);
7 for (auto& batch : outBatches):
8 nextBatchQueue.Push(batch)
9 getBuffer(); //get legitimate buffer pair

10 updatePrExecutor();//update preceding executor
11 //call Schedule to perform meta operations
12 void Schedule(Batch& inBatch , vector <Batch >&

outBatches):
13 BatchTable.update(inBatch);
14 if userDefined1:
15 outBatches = BatchTable.New(inBatch);
16 else if userDefined2:
17 outBatches = BatchTable.Stretch(inBatch);
18 else if userDefined3:
19 outBatches = BatchTable.Split(inBatch);
20 else:
21 outBatches.Copy(inBatch);

Figure 12: Creating scheduling policies with meta operations.

except for batch size) has input diversity. During the profiling,
we obtain the preferred batch size of each operator, as shown
in Figure 5. When the operators have different preferred batch
sizes, the model has operator diversity.

Once the diversities are identified, DVABatch slices the
DNN models into stages. If a model is sliced into Nst stages,
the operators are time-evenly assigned to the stages in the
topological order for simplicity. It is non-trivial to theoreti-
cally identify the optimal Nst . If Nst is too small, the opportu-
nity for batch scheduling is limited. Otherwise, if Nst is too
large, the fine-grained stages incur heavy scheduling overhead.
Moreover, unlike Pipedream [48], the model slicing in DV-
ABatch can also be tight with diversities. E.g., DVABatch con-
siders the operators’ preferred batch size and slices a model
at specific operators for operator diversity. We currently de-
termine the optimal Nst through profiling. It can be done in
10 minutes (8 tries) for emerging benchmarks on each type of
GPU. It is worth noting that the model slicing does not con-
flict with the compilation techniques like kernel fusion [64].
We slice the model after it is already optimized by the DNN
compilers.

7.2 Defining Policies with Meta Operations

Figure 12 shows the interface provided by DVABatch to de-
fine batch scheduling policies with the meta operations. Each
stage executor runs in a while loop (Line 2-11) to execute
the batches (Line 3, 6, 8 stated in Section 5, Line 4, 5, 9, 11
stated in Section 6). The stage executor calls Schedule() to
schedule the batches at Line 5. Inside Schedule(), the stage ex-
ecutor updates the batch table, and performs meta operations
if user-defined conditions are satisfied accordingly.

Stage1
DNN serving

system
Stage2 Stagei+1

Tremain_64 ≥ 2xTremain_32 ?

bs=64 ≥
< not changed,bs=64

split,bs=32×2

Figure 13: Scheduling according to the preferred batch size.

The policy is implemented outside user models, and does
not require modification to the model. We then show the
policies defined to handle the three diversities.

Policy I for input diversity. The input diversity requires
running multiple small batches in parallel. While accept-
ing a batch of queries from the upper-level serving systems,
DVAScheduler clusters the queries according to their input
sizes. The queries with similar input sizes are batched and
padded to the same size for processing. DVABatch processes
these batches in parallel for better utilizing the hardware par-
allelism. As the batches run in parallel, the scheduler prefers a
smaller batch time window instead of generating the batches
as large as possible. Practically, we set the batch time window
to be the duration of the first stage with the largest allowed
batch size bsmax. The number of active queries in the software
pipeline does not exceed bsmax.

Policy II for operator diversity. Figure 13 shows the way
DVABatch schedules the next stage when a stage completes.
Assume the current batch size (denoted by bs) is 64 for stage1
in the figure. The DVAscheduler compares the processing
time of all the remaining stages with different batch sizes. Let
Tremain_i represent the time needed when batch size is i. In
Figure 13, if Tremain_64 ≥ 2×Tremain_32, the large batch is split
into two batches with bs = 32. The two smaller batches run
in the serial manner, as the hardware is already fully utilized
with bs = 32. The duration of each stage with the different
batch sizes is already profiled offline.

Policy III for load diversity. At load diversity, a latter batch
should be able to join a previous batch, if it does not result
in the QoS violation of the previous batch. In this case, DV-
ABatch uses stretch operation to enlarge the batch at runtime.
We set a time threshold Tcomp_wait to eliminate the possible
QoS violation. If a batch is already processed for Tcomp_wait ,
no stretch operation is allowed on this batch.

Load diversity is widespread. For input diversity, as the
new batches are allowed to enter the software pipeline inde-
pendently, it already resolves the load diversity. For operator
diversity, Policy III and Policy II work together due to the
co-existence of stretch and split, as stated in Section 5.2.2.

8 Evaluation of DVABatch

In this section, we evaluate the performance of DVABatch in
reducing the latencies of DNN services.
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Figure 14: Average latencies of six DNN services at low, medium, high load with ZeroBatch, DelayBatch, and DVABatch.

Table 1: Evaluation specifications.

Hardware CPU: Intel Xeon E5-2620, GPU: Nvidia Titan RTX

OS & Driver Ubuntu: 18.04.6 (kernel 4.15.0); GPU Driver: 470.57

Software CUDA: 11.4; TensorRT: 8.03; Triton 21.10

Benchmarks
Unet [56]; LinkNet [16];BertBase;

BertLarge [27]; VGG19 [57]; ResNet152 [37]

Dataset GLUE [59]

8.1 Experiment Setup

We implement the prototype of DVABatch with 5k lines of
C++ codes as a runtime backend for Triton [9], a DNN serving
system from Nvidia. As the latency of a DNN model/operator
varies with DNN frameworks [14, 19, 20,39, 52] or compilers,
we use TensorRT [13] to provide SOTA operator performance.
DVABatch relies on Triton to batch the accepted queries.
However, Triton sends the batched queries to DVABatch in an
asynchronous fashion, and DVABatch enables the multi-entry
multi-exit scheme for it. We also modify the model loading
logic to load multiple stages (each stage is a sub-model) for a
single DNN service.

Table 1 lists the setups of the experiments. We perform all
the experiments on a machine that equips an Nvidia Turing
Titan RTX (Titan RTX) GPU. We use six representative im-
age processing and natural language processing DNN models
as the benchmarks. All models experience load diversity. Be-
sides, BertBase and BertLarge show input diversity, LinkNet
and Unet show operator diversity.

We compare DVABatch with two batching policies: the de-
fault scheduling policy with batch time window Twindow = 0
(ZeroBatch for short), and one with an optimized Twindow (De-
layBatch for short). The optimized Twindow of DelayBatch is
tuned for supporting the max peak throughput [2]. In all ex-
periments, the maximum allowed batch size bsmax is 64 and
the QoS target is 200ms to support a high load. Current pro-
duction DNN serving systems (e.g., Triton [9], Clipper [23],
TFServing [51]) all use the above batch time window and
batch-size-based batching mechanism [22].

The load used for evaluation is generated using the method
in MLperf [55], and the arrival time pattern satisfies the Pois-
son distribution [55]. We obtain the performance of the bench-
marks at low, medium, and high loads. For a benchmark, we
use 1/4, 3/5, 9/10 of its peak throughput as low load, medium

load, high load. The three load levels are obtained by feeding
each benchmark with a stepping load [3] in Section 8.3. For
BertBase and BertLarge, we use the workloads in GLUE [59]
to simulate the sequence length distributions of real-world
services. By default, the RTE workload of GLUE is used
for evaluating BertBase and BertLarge. Other workloads are
evaluated in Section 8.4.

8.2 Reducing Average Latency
Figure 14 shows the average latencies of all benchmarks with
ZeroBatch, DelayBatch, and DVABatch at low, medium, high
loads. DVABatch reduces the average latency of the bench-
marks by 16.1%/39.0%/57.7% compared with ZeroBatch,
35.4%/47.3%/48.5% compared with DelayBatch on average
at low, medium, and high loads, respectively. DVABatch re-
duces the average latency in all cases with the multi-entry
multi-exit batching scheme. Meanwhile, DelayBatch shows
lower average latency at high load compared with ZeroBatch,
and ZeroBatch achieves lower latencies at low load. It is be-
cause DelayBatch has an optimized batch time window for
peak throughput, and ZeroBatch does not introduce latency
due to the batch time window at low load.

BertBase and BertLarge show both input diversity and load
diversity. The latency reduction of DVABatch is compara-
tively high at all loads compared with the two baselines. This
is because DVABatch perceives the input diversity, and splits
the large batches into small batches to reduce the extra com-
putation due to padding in all cases. DVABatch processes the
small batches in the form of a software pipeline to accelerate
the computation, which further reduces the latency.

LinkNet and Unet show both operator diversity and load di-
versity. At low load, DVABatch and ZeroBatch reduce latency
due to the smaller batch window, compared with DelayBatch.
At high load, DVABatch performs much better than ZeroBatch
and DelayBatch. When the load is high, the batch received
from the upper-level serving system has more queries. There
is a higher opportunity that DVABatch can split a large batch
into batches with the preferred batch size. Operators do not
use a batch size larger than their preferred batch sizes. Some
queries can exit the batching early with shorter latency.

VGG19 and ResNet152 only show load diversity. At low
load, DVABatch achieves equivalent latency performance
compared with ZeroBatch, and reduces the average latency
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Figure 16: 99%-ile latencies of six DNN services at three
loads with ZeroBatch, DelayBatch, and DVABatch.

compared with DelayBatch. This is reasonable because DV-
ABatch and the baselines are all processing the queries with
bs = 1 in this case. At high load, DVABatch and DelayBatch
both perform better than ZeroBatch. The latency reduction
benefits from the reasonable batching parameters. With DV-
ABatch, early arrived queries are executed in advance, and
latter queries are also considered to be merged with the former
batch. Then, their response latencies are all reduced.

Comparison with Limited Solutions. While we do
not compare DVABatch with BatchMaker [31] and Lazy-
Batch [22] directly in this section, DVABatch outperforms
them for the evaluated benchmarks. BatchMaker cannot han-
dle input diversity for BertBase and BertLarge, as it is RNN-
specific for input diversity and Bert-like models are not based
on RNN cells. In this case, BatchMaker performs the same as
the two baselines presented in Figure 14. LazyBatch only han-
dles load diversity and performs per-operator scheduling. DV-
ABatch degenerates to LazyBatch while evaluating VGG19
and ResNet152, if we slice the model into the granularity of
operators and only enable stretch operation. However, experi-
ments in Section 8.7 indicates this incurs severe performance
degradation. Meanwhile, per-operator model slicing for Lazy-
Batch cannot be implemented with TensorRT, as it is against
the compilation techniques like kernel fusion. Compared with
them, DVABatch achieves better performance for all evalu-
ated benchmarks by promising a multi-entry multi-exit batch
scheme with minimal runtime scheduling overhead.

Comparison of Tail Latency. Other than the aver-
age latency, Figure 16 shows the 99% latencies of all
benchmarks. DVABatch reduces the 99%-ile latencies
by 16.9%/27.4%/53.7% compared with ZeroBatch, and
45.2%/45.1%/29.2% compared with DelayBatch. In terms
of tail latency, DelayBatch has better performance at high

load, ZeroBatch performs better than DelayBatch at low load.
The multi-entry multi-exit design allows DVABatch to main-
tain consistent low tail latency at varying loads.

8.3 Robustness at Stepping Load
In this experiment, we evaluate the robustness of DVABatch
in handling dynamic loads. Similar to prior work [3, 40],
we use stepping load to obtain the peak load supported by
DVABatch. We only compare DVABatch with DelayBatch
in the following section, as ZeroBatch always shows poor
performance at high load.

The stepping load is generated as follows. At first, the load
is low (66 queries per second), and we gradually increase
the load for every 2000 queries. After 30,000 queries, the
load is increased to 4000 queries per second (QPS). We use
the corresponding highest load under the constrain, that the
latency is shorter than the QoS target 200ms, as the peak
throughput.

Figure 15 shows the latencies of the benchmarks at stepping
loads. In each subfigure, the x-axis represents the query ID
in the issuing order. The left y-axis represents the latency of
each query, and the right y-axis represents the load.

As observed, all the benchmarks have lower latency with
DVABatch than with DelayBatch in all cases. For BertBase
and BertLarge, DVABatch improves the peak throughput, be-
cause it eliminates the computation wasted for the padded in-
puts. On average, DVABatch increases 46.81% peak through-
put for BertBase, 1.37× peak throughput for BertLarge. For
operator diversity and load diversity, DVABatch has not im-
pact on the computation. In that case, the peak throughput of
DVABatch is limited by the hardware capacity. DVABatch
maintains the same peak throughput as DelayBatch.

8.4 Impact of Input Distributions
The effectiveness of DVABatch for input diversities is affected
by how different the inputs are. In this experiment, we show
the performance of DVABatch when different workloads in
GLUE [59] are used as the inputs of Bert and BertLarge. We
use the same stepping load in Section 8.3.

Figure 17 shows the supported peak loads of BertBase and
BertLarge with different workloads in GLUE. As observed,
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Figure 17: Peak load supported by DVABatch for Bert-
Base/BertLarge with different workloads.
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Figure 18: Comparison of split operation for LinkNet/Unet.

DVABatch improves the peak throughput by 46.8% for Bert-
Base, 1.37× for BertLarge compared with DelayBatch on av-
erage. DVABatch brings different throughput improvements
for different datasets. The more imbalanced the sequence
distribution is, the higher the workload’s input diversity is.

In general,DVABatch works better for workloads with
higher input diversity, as DVABatch can eliminate more un-
necessary padding. For instance, while the input diversity
of SST-2 is higher than that of MRPC, the performance gap
between DelayBatch and DVABatch for SST-2 workload is
much larger than that for MRPC. The more imbalanced the
sequence distribution is, the higher throughput improvement
DVABatch achieves.

8.5 Effectiveness of split operation

In this experiment, we evaluate the effectiveness of split
for load diversity. Figure 18 shows the average latencies of
LinkNet and Unet with DVABatch, DVABatch-split, and De-
layBatch. DVABatch-split is a variant of DVABatch that only
split is enabled in DVABatch.

As shown, DVABatch-split reduces the latencies most at
high load for LinkNet and Unet. Compared with DelayBatch,
DVABatch-split reduces average latency by 15.0% at high
load. This is because DVABatch-split rarely has the choice to
split a batch at low and medium loads.

We can also find that DVABatch-split brings different im-
provements for the two DNN services. The difference origi-
nates from the operator diversity and load diversity. We look
into the processing details and find that DVABatch-split gener-
ates larger batches for LinkNet than Unet. Half of the batches
generated for LinkNet are with bs > 50 and Unet are with
bs > 30. In this case, DVABatch-split has more chances to
identify the preferred batch size for LinkNet than Unet.
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Figure 19: The average latencies of DVABatch with different
number of buffer pairs under peak load.

Figure 20: The average latencies and peak throughput of the
benchmarks when sliced into different numbers of stages.

8.6 Impacts of the Number of Buffer Pairs
This experiment evaluates the impact of the number of buffer
pairs used in DVABatch. Figure 19 presents the average la-
tencies of DVABatch with different numbers of buffer pairs
at the peak load. As shown, the average latencies are always
the lowest with two buffer pairs for all benchmarks.

Therefore, two buffer pairs are already enough to preserve
the execution validity and enable the work manner switch.
More buffer pairs degrade the performance. Each buffer pair
uses a set of CUDA [50] synchronization data structures to
guarantee scheduling correctness. When two buffer pairs are
used, DVABatch only needs to switch between them. How-
ever, managing many buffer pairs requires extra FIFO queues
to transmit these data structures. Too many buffer pairs incur
a high scheduling overhead.

8.7 Impacts of the Stage Numbers
In this experiment, we investigate the number of stages on the
performance of DVABatch. We use BertBase, LinkNet, and
ResNet152 as the representative benchmarks with the three
types of diversities, respectively, due to the limited space.

Figure 20 shows the throughputs and average latencies of
the benchmarks with different stage numbers. In the figure,
the left y-axis represents the peak throughput and the right
y-axis represents the corresponding average latencies.

As observed, the best stage number is 2 for BertBase, 4 for
LinkNet and ResNet152 in terms of latency and throughput,
respectively. For BertBase, the accepted batch is split into
two batches in most cases. DVABatch avoids generating too
many small batches to reduce scheduling overhead. Therefore,
2 stages are enough for BertBase. LinkNet and ResNet152
require more stages to enable stretch and split. If the number
of stages is too large (e.g., 20), managing queues between
stages incur a high overhead for all benchmarks.
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Figure 21: Close-loop latencies of ZeroBatch and DVABatch.

8.8 Scheduling Overhead
As mentioned in Section 7.1, the profiling for model slicing
needs to be done for a single time on each type of target
GPU, and completed in 10 minutes. To measure the runtime
overhead introduced by DVABatch, we run the six bench-
marks in a close loop, and compare the end-to-end latencies
of the queries with ZeroBatch. In this experiment, we set the
batch time window of DVABatch to 0. Figure 21 shows the
experimental results.

As observed, the average latency overhead is 0.29ms, and
DVABatch achieves almost the same latency compared with
ZeroBatch. DVABatch has a low overhead because it does
not interrupt the execution of stage executors at the extremely
low load, and the two executors overlap the overhead of CPU-
GPU synchronization for each stage. As depicted in Figure 12,
Line5 is usually an asynchronous operation on GPU and the
scheduling operation in Line4 is overlapped by the execution.
Moreover, the model slicing in DVABatch does not invalidate
the optimization of DNN compilers.

DVABatch needs extra global memory (buffer pairs) to
avoid read-write hazards while maintaining the software
pipeline, which takes 200 MB of space on average.

9 Discussion

9.1 Implication for Future DNN Inference
Omnipresent Diversity. Readers can find that all the men-
tioned diversities are caused by dynamic attributes (dynamic
input, operator, load). Existing DNNs may have a dynamic
architecture in depth, width, and routing [32,33,45,53,58,60].
As more dynamic attributes emerge, diversity spreads across
new DNNs.

Intra-model Scheduling. DVABatch performs fine-
grained scheduling within the DNN models. As DNNs grow
larger and show more diversity, the execution of DNNs cannot
be treated as a single function call. Large models [15,54] like
Bert are being deployed on multiple machines. MoE [42] mod-
els activate different paths for different inputs. Intra-model
scheduling is a trend for future DNN inference.

9.2 Flexibility
DVABatch is flexible to other diversities. For instance., in the
services with early-exiting and layer-skip[42,53,55] models,

the inference returns at early stages or skips some stages
when the intermediate results satisfy a predefined threshold.
Users can modify the user-defined condition in DVABatch
to check the intermediate results during batch inference. If
some queries meet the predefined threshold, users then utilize
the split operation for them to exit the ongoing batch without
executing the rest layers. Then, the layer skip mechanism is
implemented by the holistic design of multi-entry and multi-
exit in DVABatch.

9.3 Limitations

DVABatch targets on efficient batch processing of models
with diversities. It performs the same as the traditional batch
policy for the models without any diversity. The CV models
commonly crop the images to the same size before processing.
Then input diversity does not exist in these models. Because
the same blocks share the favored batch size, models with
repetitive blocks like ResNet-50 and Bert do not show opera-
tor diversity. Load diversity also vanishes when the queries
arrive with a uniform load. In these cases, DVABatch has no
opportunity to achieve a better batch scheme. But as stated
in Section 9.1, more and more model are showing diversities
due to dynamic attributes. As long as a more efficient batch
scheme is available for the diversities, DVABatch takes effect
through its holistic design, even on platforms like CPUs [61].

10 Conclusion

In this work, we utilize the multi-entry multi-exit scheme to
resolve the long latency problem due to serving diversity in ex-
isting DNN serving systems. We dig out the root inefficiency
of the existing batching policy when facing serving diversities.
Therefore, we propose DVABatch runtime batching system.
Firstly, DVABatch divides the DNN models into stages and
abstracts three meta operations to support the multi-entry
multi-exit scheme. Secondly, DVABatch introduces a state
transition diagram to manage the execution of stages. And
then, DVABatch conducts diversity-aware batch scheduling
with the meta operations for the incoming batch of queries.
Overall, DVABatch achieves 46.4% average latency reduc-
tion and up to 2.12× throughput improvement for involved
diversities, compared with state-of-art solutions.
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A Artifact Appendix

Abstract
This artifact provides a prototype of DVABatch implemented
as a runtime backend for Triton Inference Server

Scope
This artifact is licensed with Apache 2.0

Hosting
The code is available on Github https://github.com/sjtu-
epcc/DVABatch.git.

Requirements
Hardware Requirements.

1. CPU: Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz
2. Memroy: 252G
3. NVIDIA TitanRTX

Software Requirements.
1. Ubuntu 18.04.6 (Kernel 4.15.0)
2. GPU Driver: 460.39
3. CUDA 11.3
4. CUDNN 8.2
5. TensorRT 8.0.3.4
6. RapidJSON
7. Cmake 3.17
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