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Abstract
With the ever-growing demands for GPUs, most organizations
allow users to share the multi-GPU servers. However, we
observe that the memory space across GPUs is not effectively
utilized enough when consolidating various workloads that
exhibit highly varying resource demands. This is because
the current memory management techniques were designed
solely for individual GPUs rather than shared multi-GPU
environments.

This study introduces a novel approach to provide an illu-
sion of virtual memory space for GPUs, called hierarchical
unified virtual memory (HUVM), by incorporating the tem-
porarily idle memory of neighbor GPUs. Since modern GPUs
are connected to each other through a fast interconnect, it
provides lower access latency to neighbor GPU’s memory
compared to the host memory via PCIe. On top of HUVM,
we design a new memory manager, called memHarvester, to
effectively and efficiently harvest the temporarily available
neighbor GPUs’ memory. For diverse consolidation scenarios
with DNN training and graph analytics workloads, our exper-
imental result shows up to 2.71× performance improvement
compared to the prior approach in multi-GPU environments.

1 Introduction

As the demand for GPUs explodes, it is now a common prac-
tice in both academia and industry to equip multiple GPUs in
a single server and make them shareable. Many enterprises
in the industry have built large GPU clusters comprised of
a set of multi-GPU servers to satisfy the demand for a va-
riety of workloads from deep learning [1, 13, 18, 26, 36] to
graph applications [6, 10, 19, 31] while saving the infrastruc-
ture cost by sharing. However, as a downside, achieving high
GPU resource efficiency in such multi-GPU servers remains a
challenge. Figure 1 presents that the current memory manage-
ment technique is not effective enough for shared multi-GPU
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environments where multiple jobs are running across GPUs
independently. Although a small amount of memory ranging
from hundreds of MB to a few GB remains idle in one or a
few GPUs, other GPUs under heavy memory pressure rely on
the host memory as a swap device that is significantly slower
than remote GPUs within the same server.

Meanwhile, GPU vendors have faced the challenge of scal-
ing the memory capacity of single GPUs. To overcome the
limited capacity of GPUs, a train of previous studies pro-
vides an illusion of infinite memory space with the host mem-
ory [11,14,17,25,28]. However, none of the work does utilize
the idle memory of neighbor GPUs in commodity multi-GPU
systems. As modern GPU servers are commonly equipped
with 8~16 GPUs connected via high-speed interconnect such
as NVLink, accessing the idle memory of neighbor GPUs
is much faster than that of the host. For instance, NVIDIA
DGX-2 has 16 GPUs with point-to-point connections through
NVLink 3.0, yielding a large pool of 512GB GPU memory
at 600GB/s bidirectional bandwidth [23]. On the other hand,
swapping GPU memory to host DRAM via the latest PCIe
4.0 could utilize up to 32GB/s bandwidth only.

In this study, we introduce a new approach providing an
illusion of virtual memory space for GPUs called hierar-
chical unified virtual memory (HUVM) comprised of local
GPU, spare memory of neighbor GPUs, and the host memory.
HUVM opens up a new opportunity for memory virtualiza-
tion by increasing the effective memory space with minimal
performance overhead. When the local GPU memory does
not have free space, HUVM leverages the spare1 memory in
neighbor GPUs as a victim cache between the GPU and host
instead of directly swapping out data to the host memory.

However, it is challenging to effectively and efficiently
harvest the spotty-available, small fraction of neighbor GPUs’
memory because the amount of idle memory is highly variable
and unknown a priori. Beyond the single GPU perspective,
we redesign the memory management scheme for modern
multi-GPU servers. HUVM systems have to find the best

1The terms spare, idle, and harvested are used interchangeably.
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Figure 1: Memory usage snapshot in multi-GPUs hosting memory-intensive workloads (Section 6.1 and Table 2 present the
detailed information for workloads and experimental environment)

way to utilize the small fraction of harvested memory while
minimizing the performance impact on workloads running in
the neighbor GPUs.

To that end, we propose a memory manager of HUVM,
called memHarvester, implemented in the GPU driver layer.
memHarvester functions as a centralized coordinator for dat-
apath in HUVM. As an essential part of memHarvester, we
propose a new multi-path parallel prefetcher, which exploits
the path diversity of HUVM, comprised of PCIe and NVLink.
Unlike many previous approaches [11, 14, 17, 25, 28] rely-
ing only on the host memory via PCIe, memHarvester first
prefetches data from the spare memory to the local GPU
through NVLink. Meanwhile, if the PCIe channel attached
to the neighbor GPU is not contended, memHarvester allows
for prefetching the data from the host memory to the spare
memory of the neighbor GPU through the PCIe channel in
parallel. Therefore, we can convert the latency of fetching data
from the host memory to that of the spare memory effectively.
memHarvester manages the space of harvested memory. Due
to the limited space of spare memory, memHarvester is un-
able to keep all the evicted data in the harvested memory,
leading to the host memory swap eventually. To reduce the
performance overhead of data eviction from GPU to host,
memHarvester supports eviction with 2MB large pages to
host memory instead of 4KB base pages.

When HUVM and memHarvester host multiple workloads,
it can improve memory utilization and overall server effi-
ciency. However, on a downside, memHarvester may cause
performance interference to the applications running on the
GPU yielding idle memory. Thus, memHarvester immedi-
ately reclaims the spare memory to give it back to its original
physical memory space with minimal latency whenever the
application running on the yielding GPU needs additional
memory, thereby minimizing performance interference.

We implement our prototype system on top of NVIDIA’s
unified virtual memory (UVM) driver version 460.67, which is
publicly accessible [29]. Without any modifications to applica-
tions or machine learning platforms, memHarvester transpar-

ently detects the availability of spare memory and dynamically
constructs a new memory hierarchy. We quantify the effec-
tiveness of memHarvester with HUVM for diverse consolida-
tion scenarios on an AWS p3.8xlarge instance. The server
has four NVIDIA V100 (16GB) GPUs connected through
NVLink. Our experimental result shows that memHarvester
can achieve significant throughput improvement for the large
graph analytics workloads. For diverse consolidation scenar-
ios with DNN training and graph analytics workloads, our
experimental result shows up to 2.71× performance improve-
ment compared to the prior approach in multi-GPU environ-
ments with minimum interference of other workloads running
on the same server.

2 Motivation and Background

This section characterizes memory usage behaviors of emerg-
ing workloads in shared multi-GPU environments and dis-
cusses opportunities to improve overall memory utilization
by exploiting idle memory of neighbor GPUs.

2.1 Memory Usage in Shared Multi-GPUs

With the ever-growing demands of GPUs from development to
deployment, most organizations allow semi-trusted users (e.g.,
employees in a company) to share the multi-GPU servers, re-
ducing the cost of building the infrastructure [9,13,18,35,36].
Due to the shared nature, such GPU servers consolidate a wide
range of workloads. In particular, many of the jobs running
in the shared GPU servers are DNN training workloads for
computer vision and natural language processing [11, 25, 28]
that take a long time to complete. Thus, it leads to limited re-
source availability of certain GPUs at a time. Another widely
witnessed application in multi-GPU servers is graph analyt-
ics [10, 19, 31], which figures out the relationships between
objects in a given graph.

When looking at the memory consumption of such two
emerging workloads, it is usually required for DNN training
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jobs to tune the batch size to almost fit on GPUs to achieve
maximum resource utilization [28]. On the other hand, the
memory consumption of graph analytics jobs depends on the
number of edges and vertices of a given graph. For a large
dataset that does not fit in the given GPU memory, one can
leverage a graph partitioning approach to make each parti-
tion fit on individual GPUs. However, the graph partitioning
task introduces additional complexity in implementation [4]
such that some of the graph algorithms are not supported to
run on multi-GPUs (e.g., Betweenness Centrality in cu-
Graph [6]). To overcome the memory space limitation, we
can leverage host-side memory as a swap device to the GPUs
through the unified virtual memory (UVM) technique that pro-
vides an illusion of infinite memory space [29]. Although this
enables us to run analytics on large graphs or DNN training
with large batches without out-of-memory errors, it signifi-
cantly degrades performance.

In shared multi-GPU servers, we observe that a small
amount of memory space across GPUs remains idle. Figure 1
shows memory snapshots of a 4-GPU (V100) server hosting
multiple memory-intensive workloads. We profile four run-
ning scenarios each of which runs either graph analytics or
DNN training jobs using one or multiple GPUs. The exper-
imental environment is described in Section 6.1. The result
shows that some GPU memory is not fully utilized, causing
memory imbalance across workloads. In Case-1, VGG16 and
WCC leave a small amount of memory of GPU-1, 2, and 3,
whereas Pagerank has to use the host memory for a swap
device to run the large dataset. Another example is to run
Pagerank with a relatively small dataset (web-ClueWeb09)
with two GPUs in Case-3. In this case, the memory of GPU-
2 and 3 is not fully utilized. Even though Louvain and BFS
experience heavy memory pressure, the current memory man-
agement technique does not leverage the idle memory of
the neighbor GPUs. These results confirm that the current
memory management design is still not efficient in shared
multi-GPU systems, wasting valuable GPU memory capacity.
Considering that each workload has highly varying memory
demands, achieving high global memory utilization in multi-
GPU system is a challenging problem.

2.2 Exploiting Neighbor GPU Memory
Modern GPU servers provide useful primitives to facilitate
memory harvesting, i.e., leveraging fast intra-server GPU in-
terconnects without modifying applications or frameworks.

Fast interconnect. Modern GPU servers are commonly
equipped with 8~16 GPUs connected via high-speed intercon-
nect such as NVLink. For instance, NVIDIA DGX-2 has 16
GPUs with direct peer GPU access through fully connected
NVLink topology, yielding a large pool of 512GB GPU mem-
ory at 600GB/s GPU-to-GPU bidirectional bandwidth [23].
With this HW specification, modern GPU servers can pro-
vide an attractive option for GPU-to-GPU communication to
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Figure 2: Unified address space in modern GPUs

transmit data without using the expensive PCIe interconnect.

Transparent control. Memory harvesting must address the
cases that transfer data between GPUs running jobs across
different applications. For example, in Figure 1, the graph
analytics jobs and DL training jobs use their own frameworks.
The unified virtual memory (UVM), introduced by NVIDIA
and AMD, enables large-memory applications to seamlessly
oversubscribe the limited GPU memory [29]. The technology
is implemented as a GPU driver, so implementing memory
harvesting in UVM requires no modification to the GPU
applications or ML frameworks.

This section first explains how the current UVM driver
works to leverage host memory for extending the limited
GPU memory capacity. The UVM driver takes advantage
of the host memory as a swap space for the GPU. Figure 2
presents how the UVM driver provides the unified address
space across the GPU and host memory. The driver identifies
whether the page being accessed by GPU is located on the
GPU or the host memory through the page fault mechanism.
With a single unified page table, UVM translates GPU virtual
address into either GPU physical address or host physical
address. If UVM identifies that the page accessed by the
GPU kernel is mapped to the host by referring to the page
table 1 , a page fault exception is raised 2 and the UVM
driver brings the page into the GPU memory (typically via
PCIe interconnect) 4 . Meanwhile, when no free space is
available in GPU, the driver needs to evict an old page from
GPU memory before transferring the faulted page to GPU 3 .
Moving these pages requires page table entries to be properly
updated to map new locations.

Opportunity. As observed in Figure 1, if one GPU needs
more memory than its memory capacity, it can spill the frac-
tion of oversubscription to one or more neighbor GPUs that
still consume less than the total memory capacity with the
fast interconnect. Moreover, by leveraging the unified address
space supported by the UVM driver, we can serve diverse
jobs ranging from graph analytics to DL training jobs without
modifying applications or frameworks. Such harvesting of
idle memory in neighbor GPUs opens up a unique opportunity
to lower performance overhead under memory oversubscrip-
tion by increasing the effective memory space. To work well
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PCIe NVLink (speedup)

Throughput (GB/s) 12.3 40.1 (3.3×)
Latency (µs) 16.7 5.1 (3.2×)

Table 1: Throughput and latency with PCIe and NVLink

with a very small fraction of idle memory, the mechanism for
harvesting idle memory of neighbor GPUs should be timely
and efficient. In Section 3.2, we address the design challenges
in more detail.

3 Hierarchical Unified Virtual Memory

This section first measures the performance benefits of ac-
cessing the neighbor GPU’s memory connected through the
high-speed interconnect (NVLink). Based on the measure-
ments, we introduce a new unified memory, called hierarchi-
cal unified virtual memory, tailored for multi-layered memory
systems comprised of local GPU, neighbor GPUs, and host
memory. With the new memory organization, this section
discusses how to incorporate the spare memory of neighbor
GPUs into the memory hierarchy to bridge the performance
gap between local GPU memory and host memory. Accessing
neighbor GPUs is faster than accessing the host memory, but
the spare memory space is dynamic and often limited, and
may be shared by multiple harvesters. Therefore, utilizing a
small amount of spare memory is crucial for effective harvest-
ing. Finally, we discuss design challenges when leveraging
the spare memory of neighbor GPUs with limited capacity.

3.1 Data Path with HUVM
To understand the performance benefit of harvesting the
neighbor GPU memory, we conduct a performance analy-
sis to measure the throughput migrating 2MB2 data from
a GPU memory to the host memory via PCIe and from a
GPU memory to the other GPU memory via NVLink on
an AWS p3.8xlarge instance. Two GPUs are connected
through NVLink 2.0 with two lanes, providing up to uni-
directional bandwidth of 50GB/s. Table 1 shows a compari-
son of bandwidth and latency between PCIe and NVLink. As
expected, such NVLink provides more than 3× better perfor-
mance in terms of throughput and latency, indicating that data
transfer time can be significantly reduced if we evict pages to
neighbor GPUs. We anticipate that this performance gap will
be higher in the next generation of high-speed interconnect.

Using the fast interconnect, i.e., NVLink, we build a new
data path exploiting the spare memory of neighbor GPUs.
Our approach brings two advantages in terms of performance.
First, the new data path accelerates memory eviction. When
evicting a memory chunk from the local GPU due to the

2Currently, the unit of memory eviction is a 2MB chunk in the UVM.

lack of memory space, if there is idle space in the neighbor
GPU, our approach uses NVLink rather than PCIe to evict
the memory chunk. Second, the new data path can reduce the
latency of fetching. As the spare memory can act as a victim
cache, we populate as many evicted chunks as possible on the
spare memory. If these chunks are accessed again shortly, the
chunks are fetched to the local GPU with the fast NVLink.

3.2 Design Challenges
Although our hierarchical unified virtual memory can reduce
the performance penalty of GPU memory oversubscription,
utilizing the spare memory poses several challenges.

1 Effective harvesting: If the spare memory is not sufficient
to serve all the evicted pages from the GPU applications, the
effectiveness of memory harvesting would be limited to only
buffering the evictions.

2 Minimal interference: Harvesting may cause perfor-
mance interference of the application running on the yielding
GPU. Since we borrow the NVLink and PCIe bandwidth
of the neighbor GPUs for the spare memory, our harvesting
technique needs to minimize the performance interference.

3 Low overhead: Since UVM relies on the page fault mech-
anism, our approach inherits the same performance overhead,
manipulating page table entries. Such overhead can prevent
us from using full PCIe and NVLink bandwidth.

4 Framework-agnostic: All the GPU jobs do not rely on a
specific framework. Our design and implementation need to
be generalized to host a wide range of GPU workloads.

4 Memory Management for HUVM

This section presents a new memory manager, called memHar-
vester, for HUVM. memHarvester aims to hide the latency
from the performance-critical path in accessing host mem-
ory with small but fast spare memory of neighbor GPUs.
memHarvester opportunistically harvests the spare memory
of neighbor GPUs while minimizing the performance penalty
of memory-intensive applications that require more memory
than available in one or more GPUs. To do so, memHar-
vester identifies the availability of spare memory in neighbor
GPUs and plugs the spare memory into the memory hierarchy
dynamically. To effectively harvest the spare memory, we
explore a set of techniques: hierarchical and background evic-
tion, fetching data in parallel, and prefetching in a neighbor
GPU memory.

4.1 Overview
By harvesting spare memory in multi-GPU systems, memHar-
vester creates an illusion of GPU applications having a small
cache between a GPU and host memory. Figure 3 presents the
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overview of our proposed techniques. memHarvester allows
GPU-0 to utilize the spare memory of GPU-1. 1 Instead
of evicting data to the host memory directly, memHarvester
uses the spare memory connected through NVLink as a vic-
tim buffer to shorten the latency of memory evictions. To
reduce the cost of memory evictions, memHarvester takes ad-
vantage of pre-eviction to the spare memory. With the spare
memory, memHarvester reduces the number of evicting data
to the host memory. However, it cannot eliminate accessing
the host memory. 2 To alleviate the penalty of populating
pages on the host, we introduce a large page eviction scheme,
amortizing the cost of evicting multiple base pages. 3 If
accessing data in the host memory is inevitable, we exploit
the parallelism with path diversity in the multi-GPU systems
when handling page fault batches. This approach utilizes the
individual PCIe lanes attached to the harvested GPU and the
local GPU at the same time.

To further hide the latency of migrating data to local GPU
memory, we introduce a new multi-path parallel prefetcher
exploiting the harvested memory and the path diversity in
the multi-GPU systems. 4 The data residing in the spare
memory is prefetched into the local GPU through NVLink.
Meanwhile, we prefetch the data belonging to the host mem-
ory to either the spare memory 5 or local GPU memory
6 , depending on the PCIe congestion. Specifically, when

there are multiple harvesters exercising the same spare mem-
ory, the harvested GPU can receive excessive prefetching
requests, which saturate the PCIe bandwidth and adversely
delay transfers of prefetch data. To address the problem, we
have a facility dynamically enabling and disabling the use of
spare memory in prefetching data from the host memory. Also,
memHarvester prioritizes the memory eviction demands over
prefetching on the harvested area because serving memory
evictions is on the critical path of handling page faults.

Each GPU process has a separate page table. Even though
evicted pages are located in the neighbor GPU yielding spare

memory, the process running in that neighbor GPU is not
allowed to access the evicted pages. This is because the page
table of the process in the neighbor GPU does not have the
mapping information for the evicted pages, like the existing
UVM driver [29]. Therefore, we do not violate the integrity
and secrecy of evicted pages.

4.2 Hiding Eviction Latency to Host

Once the memory capacity is full, it is not allowed to bring
data to the GPU before completing the memory eviction.
The memory eviction is a part of the performance-critical
path. Since migrating data to GPU memory is faster than to
the host memory, our harvesting can reduce the latency of
handling GPU page faults. After evicting the pages, memHar-
vester rapidly moves to the next step of fetching requested
pages. While the harvesting GPU fetches the required pages,
memHarvester invokes a background writeback thread to
make a copy of the evicted page present in the harvested
memory to the host memory. After copying pages, memHar-
vester marks the pages backed in host memory as removable.
The purpose of the background copy is to immediately re-
turn the harvested space to the original GPU with negligible
overhead. Once the application in the yielding GPU requires
more memory than it currently has, it causes a GPU page
fault. Then, memHarvester reclaims the harvested (remov-
able) pages for the yielding GPU to use without the eviction.
It picks the pages that come first into the yielding GPU. If
there is no free or removable page, the yielding GPU may
need to wait until the pages in the harvested region become
removable. Although it can potentially incur the performance
overhead, it rarely happens when evaluating our technique.

Therefore, our approach of using spare memory as a victim
buffer allows that with a small fraction of memory, memHar-
vester turns the latency of host memory access into that of a
neighbor GPU memory almost entirely, eliminating the host
access latency from performance-critical eviction path.

4.2.1 Pre-eviction

When evicting pages to host memory, it is known that the
pre-eviction scheme cannot hide the eviction latency entirely
because the pre-eviction rate is limited to the PCIe band-
width [25,28]. In addition, pre-eviction requests contend with
fetch requests occasionally, adding extra latency to critical
fetch requests by stalling them. On the other hand, when
evicting pages to harvested memory, it uses abundant NVLink
bandwidth without contending the fetch requests from host
memory. Once the memory consumption of harvesting GPU
reaches a threshold of total physical memory (by default, if
less than 50 free chunks are available), memHarvester invokes
a pre-eviction thread. The pre-eviction has a good match with
the background writeback technique because pre-eviction and
writeback are pipelined. Ultimately, such pre-eviction allows
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free memory available most of the time and effectively elim-
inates the eviction time from the GPU page fault latency.
memHarvester uses the well-known LRU policy to select
pages to be evicted. Pre-eviction with LRU policy works well
with the memory access patterns of graphs and DNN work-
loads because most of them exhibit a cyclic memory access
pattern with long reuse distances [2, 19, 35, 37, 38].

4.2.2 Large page eviction

The granularity for page faults is supposed to be the same size
as the host architecture because the UVM driver relies on the
demand paging scheme. On the other hand, the UVM driver
uses a 2MB chunk as an eviction unit to simplify memory
management. While evicting a 2MB chunk from the GPU to
the host, the UVM driver splits the 2MB chunk into 512 4KB
pages and performs the page population for the 512 pages
because the driver is conservatively implemented to use the
base page in the host architecture. To avoid such undesired
inefficiency, memHarvester allocates 2MB of large pages in
host memory by using the kernel’s contiguous memory allo-
cator [21]. Hence, memHarvester performs a single operation
for populating a 2MB page between GPU and host memory
instead of performing for individual 512 4KB pages. With or
without our harvesting scheme, we can apply this large page
eviction to all cases where a GPU has to interact with host
memory.

4.2.3 Eviction policy

As multiple GPUs can leave a small amount of idle mem-
ory, as shown in Figure 1, memHarvester selects a target in a
round-robin fashion to avoid hotspot contention and maximize
the available GPU-to-GPU bandwidth in the system. Addi-
tionally, the round-robin policy enables each yielding GPU to
make the removable pages in parallel through individual PCIe
lanes. Eviction to the spare memory can incur performance
interference to applications running on that yielding GPUs.
We evaluate the negative performance impact of harvesting
memory in Section 6.2.1.

When multiple harvesting requests are concentrated on
a single spare memory, memHarvester handles the requests
following their arrival orders. Note that the spare memory is
used as a shared cache across harvesters.

4.3 Hiding Fetch Latency from Host
Evicting pages to the harvested memory reduces fetching
latency if the local GPU accesses its evicted pages in a short
period because memHarvester can fetch pages from the victim
buffer in the neighbor GPU. In addition to that, memHarvester
deploys two proactive schemes to hide fetch latency from the
host memory with the limited space of harvested memory:
fetching pages in parallel on page faults and pre-fetching
pages with diverse paths.

4.3.1 Fetching pages in parallel

To reduce the cost of handling page faults, modern GPUs
batch multiple page faults. The number of faults in a batch
varies from time to time.3 The UVM driver handles requested
pages corresponding to the page faults one by one. On
the other hand, with the availability of harvested memory,
memHarvester parallelizes handling multiple page faults in
the same batch. memHarvester invokes page fault handling
threads for each GPU (i.e., harvesting GPU and yielding
GPUs), dividing tasks to each handling thread. As shown
in Figure 3 ( 3 ), one thread for harvesting GPU takes faults
from the head of the fault buffer, while the other thread for
yielding GPU traverses the buffer from the tail and places
the data corresponding to the fault on the harvested memory.
memHarvester effectively reduces the latency of handling
faults by fetching pages to local and the spare memory in par-
allel, so it utilizes the individual PCIe lanes attached to each
GPU. Later, the fetched faults on the spare memory will be
consumed through NVLink, reducing the fault latency further.

4.3.2 Multi-path parallel prefetcher

To hide the latency of accessing host and spare memory, we
design a multi-path parallel prefetcher exploiting the path
diversity in multi-GPU systems. When prefetching multiple
memory chunks across the host and spare memory, there is
no dependency between chunks. Our multi-path prefetcher
can exploit the parallelism fetching the chunks with PCIe and
NVLink. memHarvester first places the pages in the spare
memory to the local GPU memory via NVLink ( 4 in Fig-
ure 3). For the pages in the host memory, memHarvester
prefetches them on either the spare memory ( 5 ) or the local
GPU memory through PCIe ( 6 ). The policy paragraph below
explains how to select the target memory when prefetching
from the host dynamically.

For selecting candidates to be prefetched, memHarvester
uses a simple yet effective next line and stride prefetchers,
which are good enough for graph analytics [2, 19, 38] and
DNN training workloads [7, 32, 33, 35, 37]. By extracting the
memory access pattern from the page fault history, memHar-
vester prefetches the next couple of chunks from either the
host memory or the harvested memory, depending on where
the chunks are located. We empirically select the amount
of prefetch as 32MB and will show the sensitivity study in
Section 6.2.1.

4.3.3 Prefetch policy

Unless the PCIe lane attached to the spare memory is crowded,
we observe that prefetching to the spare memory can further
reduce the fetch latency compared to the prefetch directly
from the host to the local GPU. This is because leveraging

3The stock UVM driver handles up to 128 faults in a batch.
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spare memory can reduce both 1) the number of page faults
by proactively fetching pages and 2) the page fault latency by
placing the pages highly likely to be accessed on the spare
memory. On the other hand, as the number of active harvesters
increases, the PCIe lane attached to the spare memory can be
congested. Then, it slows down supplying the pages to the
spare memory due to the limited PCIe bandwidth, increasing
the fault latency.

To deal with diverse harvesting scenarios in multi-GPU
servers, we have a policy in prefetching to dynamically select
where the data in the host memory to be prefetched to either
the spare memory ( 5 ) or the local GPU memory ( 6 ) based
on the number of active harvesters.

4.4 Putting It All Together

Suppose the application running on the GPU-0 is accessing
page A and B on the host memory. The GPU-0 memory is
fully occupied except for the small number of reserved pages
that hide memory eviction time in handling page faults. Fig-
ure 4a and Figure 4b compare how memHarvester eliminates
the memory eviction latency from the critical path. While
handling the page faults, if the number of the reserved chunks
falls below the threshold (set as 50 chunks), memHarvester
triggers the pre-eviction task to secure the free space for
upcoming page faults without the memory eviction. In this
example, the oldest page X and Y in the GPU-0 are evicted
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Figure 5: Timeline for our multi-path parallel prefetcher

to the harvested memory of the GPU-1 as background. Once
it is completed, memHarvester makes a copy of that pages to
the host and marks them as removable.

While handling the fault for page A, memHarvester looks
up the faulted pages belonging to the same batch group. Fig-
ure 4c presents that page A and B are in the same batch. Thus,
the fault batch can be processed to the local and harvested
memory in parallel. While fetching page A to the local GPU
memory, memHarvester places page B on the harvested mem-
ory. Since each GPU has its PCIe lane, we can fetch page
A and B in parallel. Although it cannot reduce the number
of page faults, we can hide the latency for fetching page B.
Eventually, it does reduce the fault latency by fetching page
B from the harvested memory connected through NVLink,
rather than the host via PCIe.

Since the page A and B are faulted in order, memHar-
vester prefetches the next page C, D, and E. Assume that
the number of pages to be prefetched is three in this exam-
ple. Figure 5a depicts how the multi-path parallel prefetcher
works. As page C and D are in the host memory, those can be
prefetched into either the harvested memory or the local GPU
memory through the PCIe lane. In this example, we assume
that the PCIe lane is not contended so that memHarvester
selects the harvested memory as the target. On the other hand,
page E, which is in the harvested memory, is prefetched to
the local GPU memory in parallel via NVLink. It can elim-
inate the fault if page E is accessed from the application.
Figure 5b presents that we can potentially reduce the fault
latency for page C and D by fetching such pages from the
harvested memory when they are accessed.

5 Implementation

We implement our prototype, memHarvester, in the NVIDIA
UVM driver version 460.67. The modification of the UVM
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driver is 1,838 lines of C code measured by SLOCCount. We
do not require any modifications to runtime and frameworks.

5.1 Managing Spare Memory
As UVM, memHarvester manages GPU physical memory
as 2MB chunks. Each chunk has metadata, which describes
the states and physical address of the 2MB chunk. For each
GPU, memHarvester maintains a linked list of the metadata
for free 2MB chunks. By referencing the free list of GPUs,
memHarvester can easily extract available spare memory in
the system. Once a GPU harvests a neighbor GPU’s memory,
memHarvester marks the metadata to indicate that a 2MB
chunk is harvested from the neighbor GPU.

5.2 Managing GPU Memory Eviction
To evict a chunk, memHarvester selects the oldest chunk from
per-GPU LRU4 lists as the stock UVM. The pre-eviction
path diverges depending on the availability of harvested mem-
ory. If memHarvester has harvested memory, the background
thread evicts chunks to the harvested memory. Otherwise, it
evicts chunks to host memory. When memHarvester evicts
a chunk to the harvested memory, memHarvester moves the
chunk metadata from the LRU list to the evicted list. Since the
evicted chunk resides only on the harvested memory, memHar-
vester does not allow the chunk to be reclaimed by the har-
vestee. Once the eviction to the harvested memory is com-
pleted, memHarvester invokes a writeback thread to duplicate
the chunk in the harvested memory to host memory. After that,
memHarvester marks the chunk as removable and moves the
chunk to the removable list. When the harvested memory has
to be returned to the original GPU, memHarvester reclaims
the removable chunks first. Before completing the writeback
task, we are not able to reclaim the harvested space for serv-
ing the other request. Thus, the throughput of the writeback
thread is critical. memHarvester increases the eviction size
with large page to accelerate writeback thread and eviction.

5.3 Managing Fetch Requests
When a page fault exception occurs, the fault exception han-
dler supplies faults from the head of the fault batch as usual.
At the same time, memHarvester wakes up another kernel
thread to serve fault entries from the tail of the fault batch
to the harvested memory in parallel. As a result, we spend
less time completing the fault batch with harvested memory.
To coordinate consuming the fault batch shared between two
threads, we use the mutex lock to handle a fault entry from
the buffer synchronously.

After handling the demand fault batch, memHarvester trig-
gers our multi-path prefetcher utilizing both the PCIe and
NVLink bandwidth. memHarvester employees a simple but

4The LRU term presents the least recently swapped-in page.

effective next-line prefetcher for capturing the memory ac-
cess pattern observed in graph analytics and DNN training. It
keeps track of the addresses for the faulted pages to identify
the direction of previous page fault addresses. Once the direc-
tion is determined, memHarvester prefetches the next 32MB
as default. For the selected chunks, we examine the metadata
to filter out the chunks already in the local GPU. We sepa-
rate the selected chunks into two different queues according
to their origin, either the host or the harvested memory, and
then conduct the multi-path prefetch. While prefetching the
chunks in the host to the harvested memory through PCIe,
we use a kernel thread to prefetch the other chunks in the
harvested memory to the local GPU via NVLink. We mark
prefetched chunks as removable so that it can be immedi-
ately reclaimed when needed. If we encounter on-demand
faults while prefetching, we abandon the ongoing prefetches
to serve the demand faults first.

6 Evaluation

6.1 Experimental Setup

To evaluate the effectiveness of memHarvester, we conduct
performance comparisons with the stock version of the unified
virtual memory (Base) and the prior approach employing the
pre-eviction and prefetch techniques for the host memory [11,
14,17,25,28] (Pre-ef-host). As the implementation of prior
studies is not publicly available, we imitate the behavior of
pre-eviction and prefetch on top of the stock UVM driver.
The evaluation is performed on an AWS p3.8xlarge which
has four NVIDIA V100 GPUs, each with 16GB of memory.
These four GPU cards are connected to each other through
NVSwitch and NVLink 2.0 [16] and 240GB of host memory
is attached through PCIe 3.0.

6.2 Experimental Results

6.2.1 Inter-job Harvesting

First, we evaluate our scheme in a shared multi GPU server
hosting multiple DNN training and graph analytics workloads.
We show how the idle memory of GPUs can be harvested by
memory-intensive workloads running on other GPUs with
inter-job harvesting. In this evaluation, all training workloads
run with PyTorch (version 1.10.1), and all graph analytics
workloads run with cuGraph (version 21.12).

Performance improvement. We evaluate the execution time
of multiple workloads in four scenarios by varying the type
of jobs and the number of harvesters to mimic a shared multi-
GPU server environment. Table 2 presents the scenarios and
the memory usage ratio for each job according to the given
graph dataset or batch size. Figure 6 shows the speedup of the
execution time to Base and also measures the performance
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Figure 6: Execution time speedup of memory intensive workloads with memHarvester on four different harvesting scenarios
(H: Harvesting GPU, Y: Yielding GPU, and the numbers in parentheses indicate the number of participating GPUs)

GPU-0 GPU-1 GPU-2 GPU-3

Case-1 Pagerank (1.87x) VGG16 WCC (0.79x)
(ratio) soc-twitter-2010 256 (0.96x) soc-sinaweibo

Case-2 BFS (1.51x) MobileNet ResNet101
(ratio) web-uk-2005 256 (0.91x) 64 (0.67x)

Case-3 WCC (1.77x) BFS (1.70x) Pagerank (0.74x)
(ratio) soc-twitter-2010 soc-twitter-2010 web-Clue09-50m

Case-4 WCC (1.77x) Louvain (1.47x) ResNet101
(ratio) soc-twitter-2010 web-uk-2005 64 (0.74x)

Table 2: Multi-job scenarios with memory usage ratio in
parentheses, input graph, and batch size (Gray cell: harvester)

of Pre-ef-host (i.e., the prior approach [17, 28]) for perfor-
mance comparison. For all the cases, the execution time of
harvesters, which do not fit on one or more V100 GPU mem-
ory (16GB), can be significantly improved by harvesting the
idle memory of neighbor GPUs connected through NVLink.

In Case-1, Pagerank running on GPU-0 benefits from
the spare memory of GPU-1 and 2 where VGG16 is running
in data-parallelism and spare memory of GPU-3 where WCC
is running, leading to 3.53× and 1.31× improvement over
Base and Pre-ef-host, respectively. The amount of total
spare memory of GPU-1, 2, and 3 is around 4.64GB, which is
much smaller than the overcommitted memory of 13.92GB by
Pagerank. Although the spare memory is unable to serve all
the evictions from Pagerank, our memHarvester effectively
harvests the spare memory to hide the latency of accessing
the host. In addition, the negative performance impact to the
applications running on the yielding GPUs is negligible.

We also evaluate the performance changes by varying the
number of harvesting and yielding GPUs. In Case-2, BFS
running on GPU-0 and 1 harvests the spare memory of GPU-
2 and 3 where MobileNet and ResNet101 are running in
each of the GPUs. memHarvester considers that the sepa-
rated spare memory is logically unified like a shared cache
across the harvesters. Our memHarvester can increase the
performance of BFS by 3.52× and 2.1× compared to Base
and Pre-ef-host, respectively. While harvesting, the perfor-
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Figure 7: Effectiveness of individual techniques

mance impact of yielding GPUs is around 7~9%.
We show a different scenario in Case-3 where two appli-

cations each of which runs on a single GPU contend for the
idle memory of neighbor GPUs. WCC running on GPU-0 and
BFS running on GPU-1 harvests the spare memory of GPU-2
and 3 where Pagerank is running with its graph partitioned
across two GPUs. Our memHarvester can increase the perfor-
mance of WCC by 3.83× and 2.71×, and that of BFS by 3.21×
and 2.67× compared to Base and Pre-ef-host, respectively.
There is no performance degradation in Pagerank running
on the yielding GPU.

In Case-4, we evaluate the effectiveness of our approach
when two workloads share a limited spare memory con-
tributed by a single GPU. ResNet101 yields 4.16GB idle
memory that is shared by WCC running on GPU-0, and
Louvain running on GPU-1 and 2. Although the through-
put improvement is not much compared to other cases, it still
outperforms pre-ef-host by 30~40%. Compared to Base,
the harvesters show around 2.1~2.36× improvement while
the performance impact of yielding GPU is around 7%.

Analysis of performance improvement. We decompose the
contribution of the performance improvement to individual
schemes constituting memHarvester. To this end, Figure 7
shows performance changes for each workload (from the left
to the right) while we enable spare memory harvesting (H),
pre-eviction (PE), large page support (LP), parallel fetch (PLF),
local prefetcher (LPF) and multi-path parallel prefetcher (MPF)
in order. Note that local prefetcher (LPF) is not a scheme of

USENIX Association 2022 USENIX Annual Technical Conference    633



Pagerank (Case-1)
1.0

1.2

1.4

1.6

1.8

BFS (Case-2) WCC (Case-3) Louvain (Case-4)0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
tim

e
sp

ee
du

p
to

pr
ef

et
ch

di
sa

bl
ed

(R
at

io
) 2MB 4MB 8MB 16MB 32MB

Figure 8: Sensitivity to the amount of prefetch

memHarvester and it is evaluated as a baseline to compare the
performance gain of our multi-path parallel prefetcher (MPF).

In general, we observe higher performance gain while we
enable each scheme one by one. This is because each scheme
has its complementary benefit to memHarvester: i) spare mem-
ory harvesting (H) utilizes the spare memory as an eviction
buffer and a victim cache to reduce the latency of migrating
chunks by using NVLink rather than PCIe; ii) pre-eviction
(PE) eliminates the eviction latency from the critical path
by reducing on-demand page faults; iii) large page support
(LP) reduces the time of making removable pages by writ-
ing back the chunks to host in batch; and iv) parallel fetch
(PLF) reduces the latency of handling on-demand page faults
by fetching the pages in the fault batch in parallel with both
PCIe and NVLink. While the first three schemes (H, PE, LP)
focus on optimizing the eviction penalty, parallel fetch (PLF)
focuses on reducing the latency when handling page faults.

Finally, we investigate our multi-path parallel prefetcher
(MPF) which drastically improves performance compared with
local prefetcher (LPF). For Case-1, 2, and 3, some of the
evicted data reside in the host memory due to the lack of
aggregated idle GPU memory in the system. Our multi-path
parallel prefetcher utilizes the PCIe of the yielding GPU to
prefetch data in host to the harvested memory. For Case-4,
however, our multi-path parallel prefetcher (MPF) selects to
prefetch data in the host memory to the local GPU memory
rather than the harvested memory to avoid contention in the
PCIe lane attached to the yielding GPU. Because there is
more than one harvester per one spare memory, multi-path
parallel prefetcher (MPF) changes the policy to directly fetch
data from the host to local GPU memory. Thus, multi-path
parallel prefetcher (MPF) has no performance gain compared
to local prefetcher (LPF) in Case-4.

Sensitivity study. In this subparagraph, we present the sensi-
tivity study of memHarvester to examine three aspects.

1 Prefetch size and stride: We evaluate the sensitivity study
for our next line and stride prefetches used in multi-path
parallel prefetcher. Figure 8 depicts the execution time
improvement by varying the amount of prefetches from 2MB
to 32MB with a 2MB stride. Since both graph analytics and
DNN training workloads exhibit sequential access patterns
during the execution [2, 19, 35, 37, 38], our prefetcher extracts
the direction of accessing the memory address and issues the
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Figure 9: Sensitivity to the size of spare memory (The num-
bers in parentheses indicate the overcommitment ratio)

prefetch requests for the next chunks to either the host memory
or the spare memory depending on where the selected chunk
is located (host to spare and spare to local). While evaluating
our prefetcher, we observe that the 2MB stride shows better
throughput than the next line (0MB stride). For all four cases,
increasing the amount of prefetch steadily improves the per-
formance. We select 32MB as our default prefetch size with
a stride of 2MB. We will further investigate how the amount
of prefetch can be dynamically adjusted for maximizing the
prefetch effects in our future study.

2 Available spare memory: In a shared multi-GPU server,
we expect that the available memory for harvesting fluctuates.
We evaluate the execution time of four graph analytics work-
loads by manually varying the amount of spare memory from
5% to 60%. We imitate a scenario with 2 GPUs with one GPU
running a memory-intensive graph analytics workload and
the other GPU yielding spare memory with an appropriate
size of cudaMalloc. Figure 9 exhibits that the performance
can be improved by harvesting more idle memory of neighbor
GPUs. Interestingly, even with 5% (800MB) of spare mem-
ory, we can achieve more than 2× improvement for all four
workloads. By effectively managing the small amount of idle
memory of a neighbor GPU, the performance improvement is
significant. However, when a certain amount of spare memory
is harvested to accommodate all the active working sets to
fit in the local GPU with the harvested memory, maximum
performance is achieved and there is no additional improve-
ment even if we increase the amount of spare memory. We
observed that the amount of overcommitment size is larger
than the active working set. For Louvain with an overcommit-
ment ratio of 1.83×, the maximum performance is achieved
when the spare memory size is 40% and even if the spare
memory size is increased, there is no additional performance
gain. We found a discrepancy between the size of the active
memory working set and the size of memory malloc’ed by
the user-level and will further investigate whether we can also
harvest the unused memory space that is not included in the
active working set in our future study.

3 Performance interference: While harvesting spare mem-
ory, our approach can cause performance interference to
the applications running on GPUs that yield the spare
memory. This is because the harvesters piggyback the
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ResNet101

Base H H+PE+LP memHarvester

VectorAdd (1) 1 0.99 0.99 0.97

VectorAdd (3) 1 0.91 0.88 0.87

Table 3: Normalized execution time of ResNet101 by increas-
ing the number of VectorAdd harvesters

memory and PCIe bandwidth of yielding GPUs. Table 3
presents the impact of performance interference through a
VectorAdd microbenchmark designed to generate a signif-
icant memory harvesting traffic. By increasing the number
of VectorAdd harvesters, we measure the performance of
ResNet101, which yields idle memory on one GPU. To in-
vestigate the interference incurred by individual schemes, we
decompose our schemes into harvesting only (H), with pre-
eviction and large page (H+PE+LP), and with all the prefetch-
ers (memHarvester). When running with a single harvester,
the impact of performance interference for ResNet101 is neg-
ligible, up to 3% compared to the baseline. The maximum
pressure to the GPU yielding idle memory is bounded by the
network bandwidth of two GPUs through NVLink.

Meanwhile, three harvesters reduce performance by 13%.
Even with harvesting only (H), it shows 9% performance
degradation. As the number of harvesters increases, the
amount of memory traffic to the idle memory can also in-
crease, leading to the memory bandwidth contention. When
enabling pre-eviction and large page (H+PE+LP) schemes, it
can utilize the idle memory more effectively, but it poses
an additional 3% overhead. When all the proposed schemes
are applied (memHarvester), the performance interference is
not much different. Since our multi-path parallel prefetcher
(MPF) selects to prefetch data in the host memory to the lo-
cal GPU memory rather than the harvested memory to avoid
contention in the PCIe lane attached to the yielding GPU. We
anticipate that throttling the harvesting traffic can reduce the
performance interference though it decreases the benefits to
the harvesters. We leave this optimization to future work.

6.2.2 Intra-job Harvesting.

Our memory harvesting technique can be applied to multi-
GPU applications where the memory consumption of individ-
ual GPUs is not even. The representative example is multi-
GPU DNN training exploiting pipeline parallelism [20]. Such
memory usage imbalance is primarily due to non-identical
model partitions placed across the GPUs to balance the com-
putation of each partition, leading to different memory de-
mands (e.g., some of the GPUs need to have multiple weight
and activation versions in pipeline parallelism). We evaluate
the effectiveness of HUVM with memHarvester for single
DNN training jobs. For this evaluation, we select GNMT16,
GNMT8, ResNet50, and VGG16 with PyTorch. For the baseline,
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Figure 10: Throughput improvement for single training work-
loads (H: # harvesting GPU and Y: # yielding GPU)
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Figure 11: Memory usage for single training workloads (H: #
harvesting GPU and Y: # yielding GPU)

the PyTorch framework is modified to support the memory
oversubscription with NVIDIA UVM.

Performance improvement. Figure 10 shows the re-
sults of throughput comparison among memHarvester,
Pre-ef-host, and Base. To initiate memory oversubscrip-
tion, the batch size in each model is chosen such that at least
one of the four GPUs goes beyond the local memory capacity.
The figure shows that for all the models, memHarvester outper-
forms Pre-ef-host. In particular, for GNMT16 and ResNet50,
memHarvester can effectively eliminate the host memory ac-
cesses in the increased batch size by harvesting only idle
memory of neighbor GPUs. This leads to the throughput in
memHarvester 1.5~1.6× higher than that in Pre-ef-host
for the two models.

Figure 11 shows the memory profiles of the four models
across the individual GPUs. It is worth noting that model
training under memHarvester achieves throughput gains via
diverse memory harvesting paths. For GNMT16, GPU-1 is the
only GPU harvesting the spare memory of GPU-0, 2, and
3. On the contrary, for ResNet50, GPU-0 and 1 are the two
harvesting GPUs that utilize the spare memory of the other
two yielding GPUs, i.e., GPU-2 and 3.

More interestingly, for GNMT8 and VGG16, the aggregated
idle memory across the yielding GPUs is not sufficient to
serve the data evicted from the harvesting GPUs. In VGG16
with batch size 128, GPU-0, 1, and 2 use up all the idle mem-
ory of GPU-3 and then require using the host memory ad-
ditionally. In spite of exercising the host memory, memHar-
vester shows meaningful throughput gains for both workloads.
memHarvester improves throughput over Pre-ef-host by
2.16× and 1.24× for GNMT8 and VGG16, respectively.
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7 Related Work

To the best of our knowledge, memHarvester is the first to
propose a framework that allows GPU applications to utilize
neighbor GPU’s memory connected through the high-speed
interconnect (NVLink). There have been significant efforts in
both the architecture and systems community to support GPU
memory oversubscription while minimizing the performance
degradation of applications. Demand paging on GPUs [3, 22,
24] allows the GPUs to move pages from the GPU’s memory
to/from the CPU’s memory automatically. We survey recent
techniques that provide mechanisms to allow applications
with a large working set to run on GPUs.

Framework-guided approach. For deep learning (DL) train-
ing workloads, prior studies proposed to have the framework
insert the pre-eviction and pre-fetch operations by analyzing
the dataflow graph [11,17,28]. Peng et al. introduced a sophis-
ticated technique employing the pre-fetch and recomputation
opportunistically without relying on the dataflow graph [25],
these also require the intensive framework modification in
terms of tensor allocation. Besides the pre-fetch technique,
Animesh et al. proposed to compress the data, which shows
the long reuse distance to save memory while the data is not
being actively used [12]. Although this design approach can
be effective, it requires the framework modification and under-
standing of the target applications, incurring the engineering
overhead. Unlike such previous studies, we design and imple-
ment our solution in the GPU driver which can coordinate all
the GPU memory in a centralized way.

Architectural approach. The architecture community also
explored hardware techniques to minimize the overhead of
GPU memory virtualization. Recently, Choukse et al. ex-
plored the advantage of leveraging the neighbor GPU memory
which is connected through the high-bandwidth interconnect
(NVLink). Unlike our approach, they studied a HW-based
compression scheme to squeeze the limited neighbor GPU
memory [5]. Ganguly et al. studied the prefetch technique
used in the NVIDIA UVM driver in the overcommitted envi-
ronment and proposed a HW-based pre-eviction and pre-fetch
techniques [8]. Kim et al. exploited that modern GPUs handle
the page faults in a batch and co-designed the GPU runtime
and hardware to overlap the page eviction and migration effec-
tively [14]. Li et al. proposed a framework for memory over-
commitment [17] to efficiently virtualize GPU memory, but
the disadvantage of those studies requires significant changes
to the GPU runtime and hardware. Although such hardware
approaches can further improve the performance as well as
the efficiency, it requires new hardware structures.

Memory compression. Many previous studies [5, 15, 17, 27,
30,34] proposed techniques to perform memory compression.
While these techniques allow more data on the GPU memory,
they are orthogonal to HUVM and can be used in conjunction
to further improve the effectiveness of our proposal.

8 Conclusion

In this study, we propose a new approach of virtualizing multi-
GPU memory, hierarchical unified virtual memory, by dynam-
ically incorporating the spare memory of neighbor GPUs in
multi-GPU systems. This can alleviate the memory fragmen-
tation problem by creating the illusion of GPU applications
having an increased effective memory space. To effectively
utilize the small fraction of neighbor GPUs’ memory, we
introduced a memory manager for multi-GPU systems that
has a set of techniques, including large page support, parallel
fetch, and multi-path parallel prefetcher. Since our techniques
can effectively reduce the latency of accessing host memory,
for memory-intensive workloads, throughput performance is
significantly improved compared to baseline and prior studies
based on pre-eviction and prefetch techniques.
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