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Abstract
Programmable data planes (DP) enable flexible customiza-

tion of packet processing logic with domain-specific lan-
guages such as P4. To relieve developers from lengthy codes
and tedious hardware details, many researches propose DP
program generators that take high-level intents as input and
automatically convert intents into DP programs. Generators
must be correct, otherwise they may produce buggy programs
or DP logic that is inconsistent with intents. Nevertheless, ex-
isting verification tools are designed to verify individual DP
programs, not generators. They either cannot achieve high bug
coverage or cannot debug generators with high scalability.

This paper presents Firebolt , a blackbox testing tool de-
signed to dig out faults in DP program generators, including
security vulnerabilities, intent violations, and generator crash.
Firebolt achieves high bug coverage by using syntax-guided
intent generation to construct a comprehensive, syntactically
correct, and semantically valid intent set. To avoid intent ex-
plosion, Firebolt designs an intent space pruning approach
that eliminates redundant intents while preserving represen-
tative ones. For high scalability, Firebolt automatically for-
malizes DP programs and intents for verification. We apply
Firebolt to three popular open-source DP generators. Evalua-
tion results demonstrate that Firebolt can detect 2× bugs with
0.1% to 0.01% human efforts compared to existing tools.

1 Introduction

Programmable network devices [1, 2] together with domain-
specific programming languages (e.g. P4 [3]) have enabled
many in-data-plane (DP) network functions, such as monitor-
ing [4–6], security [7–9], routing [10–12] and so on. Mean-
while, booming DP functions heavily burden programmers
with lengthy codes (100s to 1000s lines of code, LoC [13]) and
manual consideration of tedious hardware constraints [14].
To this end, a growing body of research proposes DP genera-
tors [14–27], which provide high-level declarative primitives
to easily express intents, and a compiler to convert intents into
platform-specific DP programs and table entries. DP genera-
tors can reduce LoC by 80% [14] with resource optimizations
that would otherwise require manual efforts. Above benefits
encourage researchers and industries to design various DP
generators for network monitoring [16, 17] and even mission-
critical functions like routing [14] or security [21, 22].

Considering the prevalence of DP generators, guaranteeing
their correctness becomes a must-be-solved problem. How-
ever, our study (§2) reveals that three types of mistakes in-
cluding program security vulnerabilities such as out-of-bound
register access, intent-program inconsistency, and generator
crash, may happen to advanced DP generators [16, 17, 21],
which can result in serious mistakes such as missing attacks
and undesired packet processing procedure.

Unfortunately, little attention has been devoted to guaran-
teeing the correctness of DP generators. Existing tools focus
on finding security vulnerabilities in DP programs [28–34],
or verifying the consistency between high-level intents and
DP programs [28–31]. However, these tools are not designed
for debugging DP generators and thus fall short in two as-
pects: (1) Coverage. Existing verification tools aim to verify
individual intent-program pairs instead of finding all bugs in
advanced DP generators. As intents are numerous, even infi-
nite, verification tools can hardly cover all generator faults. (2)
Scalability. To check intent-program consistency, verification
tools require massive human-written specifications of intents
(100s to 1000s of LoC) for one program, which is error-prone
and time-consuming.

This paper presents Firebolt , a blackbox testing tool de-
signed to dig out DP generator faults including security vul-
nerabilities, intent violations, and crash with high coverage
and scalability. The key idea of Firebolt is thoroughly con-
structing intents as test cases to achieve high coverage, and
automatically producing specifications of intents with little
human intervention for verification to achieve high scalability.

However, realizing such a tool is challenging in three as-
pects: intent generation that should contain every reasonable
intent, intent explosion that results in unacceptably long test-
ing time due to numerous intents, and intent diversity that
hampers automatic specification derivation for verification. In
response, Firebolt proposes the following innovative designs.

• Intent generation. Firebolt should generate a comprehen-
sive intent space containing every reasonable intent for high
coverage. However, random composition of intent grammar
symbols can produce infinite intents, which is impractical
for testing. We first generate syntactically correct intents
based on intent grammar in Backus-Naur form (§4.1). We
then identify semantic dependencies between grammar sym-
bols and filter semantically valid intents (§4.2).
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PacketStream
.filter(…) // Find TCP SYN packets
.map(…).reduce(…) // Count SYN packets of a TCP flow
.filter(filter_vals = (‘count’), func = (‘eq’, 100))

// Report when #SYN of a flow reaches 100

DP generator

table filter {…} // Find TCP SYN packets
counter ++; // Count SYN packets of a TCP flow
if (counter == 1) { // Wrong conversion, should be 100
apply(SYN_flooding_alarm);

}

intent

P4 program

Figure 1: False SYN flooding alarms due to intent violation.

• Intent explosion. Due to wide parameter range and cyclic
symbol reference, there may still exist massive or even in-
finite redundant intents that are syntactically correct and
semantically valid, which compromises testing efficiency.
To handle intent explosion, we design intent space pruning
to eliminate redundant intents while keeping representative
ones (§4.3). Remaining intents are input into generators to
find crash bugs or to generate DP programs for verification.

• Intent diversity. The high diversity of intents and corre-
sponding DP programs for one generator and across gen-
erators makes it challenging to devise a uniform approach
for verification. To achieve high scalability, Firebolt first
formalizes all DP programs into unified Z3 formulas [35]
(§5.1). Next, instead of manually translating (1000s of) in-
tents into specifications, we write specifications for intent
grammar symbols, and automatically compose symbol spec-
ifications into the intent specifications (§5.2). Finally, we
uniformly verify intent specifications and Z3 formulas to
detect intent violations and security vulnerabilities (§5.3).
We apply Firebolt to three popular open-source DP gen-

erators, i.e., Marple [16], Sonata [17], and Poise [21]. In all
test cases of the three generators, Firebolt discovered 19 bugs
including 3 security vulnerabilities, 13 intent violations, and
1 crash bug, while existing verification tools merely cover 10.
Moreover, Firebolt requires 0.1% to 0.01% human-written
LoC compared to existing tools under equal bug coverage.

2 Motivation

If a DP generator fails to faithfully translate programmer
intents (intent violations), or produces logically flawed pro-
grams (security vulnerabilities), or even crashes under reason-
able input intents, it adversely affects production efficiency
and introduces instability into online DP functions. Below we
present two example bugs that have been detected by Firebolt
to reveal the consequences of faulty generators.
#1: False SYN flooding alarm due to intent violation. As
presented in Figure 1, a SYN flooding monitoring function
counts per-flow TCP SYN packet number. If a counter ex-
ceeds a threshold, a SYN flooding alarm is produced. How-
ever, due to a bug in Sonata [17], an advanced monitoring
function generator, the threshold is wrongly configured as 1 in-
stead of the originally intended 100, which results in massive
false alarms that completely violates the monitoring goal.

field_list_calculation hash1 {
…
output_width: 16; // 16-bit hash value

}
register bf1 {

…
instance_count: 86; // 86 slots

}
P4 program

action handle_bf1(){
bf1_stfu.execute_stateful_alu_from_hash(hash1);

// Use hash value as read index
// Read register value to bf1_val

}
table drop_tbl {…} // Drop packets
if (bf1_val == 1 and …) {
apply(drop_tbl);

}

Figure 2: Connection legality misjudgement due to security
vulnerabilities.
#2: Connection legality misjudgement due to security vul-
nerabilities. Poise [21] takes intents as input and generates
context-aware security policies in programmable devices. It
generates an in-DP bloom filter to track illegal connections.
However, the bloom filter has 86 slots but is indexed by a
16-bit variable (0 to 65535), as shown in Figure 2. If the index
exceeds 86, a random value outside the bloom filter will be
returned. Such a vulnerability could incur wrong judgement
of connection legality and lead to potential security leakage.

To eliminate above mistakes, programmers have to review
generated DP programs and check intent-program consistency,
which costs extra human efforts. Some recent tools are de-
signed to find security vulnerabilities in DP programs [28–34]
or verify the intent-program consistency [28–31]. However,
using these tools to debug DP generators requires massive
human efforts to verify each intent-program pair, and cannot
fully cover all intents. Therefore, on modifying the intent or
expressing a new intent, these tools must be repetitively ex-
ecuted to ensure program correctness. Unfortunately, doing
so brings the scalability problem. To verify intent-program
consistency, 100s to 1000s of LoC must be written manually
to convert intents into specifications [16, 31]. Such LoC is
comparable to the DP program, which is error-prone, time-
consuming, and not scalable.

Instead of verifying individual programs, we propose Fire-
bolt to debug generators. Firebolt thoroughly generates in-
tents as test cases to detect generator faults, and automatically
derives specifications from intents to improve scalability.

3 Overview

The key idea of Firebolt is thoroughly constructing intents
as test cases to achieve high coverage, and automatically pro-
ducing verification specifications to achieve high scalability.
Firebolt workflow includes two major steps, i.e., intent gener-
ation and program verification, as shown in Figure 3.

§4 - Intent generation. To thoroughly explore the intent
space and cover all generator faults with little redundancy,
Firebolt takes the intent grammar and semantic constraints of
a DP generator as input and generates all possible and correct
intents. Meanwhile, Firebolt losslessly prunes the generated
intent space to eliminate redundancy and produces final test
cases, which are then input into DP generators to generate DP
programs or to find crash bugs.
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Figure 3: Workflow of Firebolt .
§5 - Program verification. To automatically verify the cor-
rectness of generated DP programs, the key is to derive the
specification of intents for verification. Firebolt provides a
general and high-level specification to express every intent
grammar symbol, and automatically derives the specification
of each intent based on per-symbol specifications. Meanwhile,
Firebolt formalizes the output DP programs using Z3 formu-
las. Finally, Firebolt checks whether the Z3 formulas (1) are
consistent with intent specifications and (2) have security
vulnerabilities.

4 Intent Generation

The design goal of intent generation is producing a group of
intents that (1) thoroughly covers all correct intents so that all
generator faults can be discovered and (2) possesses little re-
dundancy so that generator testing can be efficient. To achieve
the above goals, we start by comprehensive intent generation
with both syntactical correctness (§4.1) and semantic valid-
ity (§4.2) in mind. Next we analyze the source of redundant
intents and propose the intent space pruning approach (§4.3).

4.1 Syntax-Guided Intent Generation
A DP generator must expose the intent grammar for express-
ing intents. For example, as shown in Figure 1, Sonata [17]
provides primitives like filter, map, and reduce and parame-
ters like eq and count. The intent grammar describes lawful
function calls, parameter ranges, and syntax, which serves as
the foundation to generate possible intents from scratch.

We refer to syntax-guided synthesis [36, 37], a common
approach in program synthesis that finds the desired program
by searching the program space described by a grammar. We
leverage its idea and redefine the intent generation problem as:
given the grammar G of a DP generator, we need to explore
the intent space and generate all syntactically correct intents.
Intent grammar formalization. Syntax-guided intent gener-
ation takes grammar as input. However, different generators
can provide grammar in various formats [14,16,17]. We need
to formalize grammars of generators into a unified expression.
We observe that Backus-Naur form (BNF) [38] is the most
common context-free grammar (CFG) [39] for describing the

Algorithm 1 Syntax-Guided Intent Generation
1: function SYGUG(G)
2: Q = Queue(G.nr) ▷ Initialize
3: while Q .size()> 0 do
4: n = Q . f ront()
5: Q .pop()
6: if n.has_nt() then
7: A = n. f irst_nt
8: for A → β ∈ G.R[A] do

9: n = αAγ
A→β−−−→ n1 = αβγ ▷ Grow graph

10: Q .push(n1)
11: end for
12: else
13: OUTPUT(n) ▷ Output generated intent
14: end if
15: end while
16: end function

syntactic structure of programming languages. Most DP gen-
erators [14, 16, 21–23] provide a BNF syntax specification.
Thus, Firebolt uses BNF for grammar formalization.

Note that Firebolt can also work with non-BNF grammars
by adopting the expansion rules of these grammars during
syntax-guided intent generation.
Preliminaries of BNF. Dark rectangle in Figure 4 shows par-
tial BNF expression of Marple [16] intent grammar. A gram-
mar G expressed in the BNF format is a quadruple ⟨N,S,Σ,R⟩,
where (1) N is a finite set of non-terminal symbols that can be
expanded to one or more terminal and non-terminal symbols,
(2) S is the start symbol in N, (3) Σ is a finite set of terminal
symbols that can appear in an intent, (4) R is a finite sub-
set of N × (N ∪Σ)∗, where each member (A,β) ∈ R is called
an expansion rule and is written as A → β. A sequence of
non-terminal and terminal symbols in (N ∪Σ)∗ is called a
sentential form, which represents an intermediate intent.
Syntax-guided intent generation. With a grammar G in BNF
format, a possible intent must start with S and then be replaced
with expansion rules in R until there are no non-terminal sym-
bols that need to be expanded, i.e., it ends with a composition
of terminal symbols in Σ. Therefore, generating all possi-
ble syntactically correct intents can be visioned as growing
a single-rooted (S) graph with one or more rules in R, and
collecting all leaf nodes ended with any one symbol in Σ.

We formalize the above process as follows. We define the
intent generation graph G = ⟨N ,E⟩ as a directed labeled
graph derived from grammar G = ⟨N,S,Σ,R⟩, with the nodes
N ⊆ (N ∪Σ)∗ and the edges E ⊆ N ×N ×R. Each node in
N has a sentential form which can be derived from the start
symbol S. Each edge in E represents a non-terminal symbol
expansion according to an expansion rule. At node n1 whose
sentential form is αAγ, where A is a non-terminal symbol, we
can apply the expansion rule A → β ∈ R and derive a child
node n2 with a new sentential form αβγ. G has a root node nr
with sentential form S, and many (maybe infinite) leaf nodes.
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Algorithm 1 depicts the procedure of growing graph G
using depth first search. We maintain a queue Q to store
nodes in G . First, Q is initialized with the root node nr (line 2).
Then, in each iteration (line 3-15), we pop the first node n in
Q . If n has no non-terminal symbols in its sentential form, we
output n as an intent (line 13). Otherwise, we find the first non-
terminal symbol A in n, and apply all possible expansion rules
of A to generate child nodes (line 9), which are then appended
to Q for further expansion. We repeat this process until Q is
empty and all syntactically correct intents are generated.

4.2 Semantic Constraint Injection
Syntax-guided intent generation can cover syntactically cor-
rect intents. Nonetheless, some syntactically correct intents
do not make sense, or, say, are semantically invalid [40]. Be-
low we first introduce two types of semantically invalid in-
tents. Next we identify semantic constraints between grammar
symbols, and present the semantic constraint expression and
injection mechanisms to filter semantically valid intents.
Semantically invalid intents. Besides conforming to the
syntax, intents must also comply with semantic constraints.
Below we identify two types of semantically invalid intents.
• Uncompilable intents. Syntactically correct intents cannot

guarantee successful compilation. Typical examples include
a variable that is not declared before it is referenced, a vari-
able reference whose dimension is inconsistent with the
declaration, or a variable that is repeatedly defined. Nu-
merous such intents violate the semantic constraints of the
intent grammar, and therefore should be ruled out.

• Incomplete intents. Some intents are semantically incom-
plete. For example, the map primitive in Marple [16] dis-
tributes incoming data according to certain match fields,
and assigns a computing expression to process a temporary
variable, which is meaningless if it is not referenced later.
Therefore, an intent with a map primitive in the end of a
query is considered incomplete and should be ruled out.

Semantic constraint identification. The existence of se-
mantically invalid intents indicates that the above mentioned
syntax-guided intent generation graph contains unreasonable
leaf nodes (incomplete intents) or even invalid expansion
rules (branches) for intermediate nodes (uncompliable in-
tents). Thus, we should identify semantic constraints of intent
grammar, and leverage the constraints to supervise the intent
generation process. Overall, we classify the constraints into
exclusion constraints and dependency constraints.
• Exclusion constraints: indicate that if an expansion rule r1

on a node n1 exists, the expansion rule r2 on a node n2 is
not valid. We formally express them as:

i f ∃ r1 on n1, then ∄ r2 on n2

A typical example is that one variable name (such as the
name of a packet stream) cannot be defined repeatedly.

• Dependency constraints: indicate that only if an expansion
rule r1 on a node n1 exists, the expansion rule r2 on a node

# Example 1: StreamName cannot be defined repeatedly
𝒊𝒇 ∃ 𝑟1 𝑜𝑛 𝑛1 , ∄ 𝑟2 𝑜𝑛 𝑛2 , 𝑛2 ⟷ 𝑛1
𝑛1 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟1 : streamName →∗
𝑛2 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟2 : 𝑟1

# Example 2: Map query operates on a stream that has been defined
𝒊𝒇 ∃ 𝑟1 𝑜𝑛 𝑛1 , ∃ 𝑟2 𝑜𝑛 𝑛2 , 𝑛2 → 𝑛1
𝑛1 ∶ ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 𝑚𝑎𝑝 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟1 : 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ↛ T
𝑛2 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟2 : 𝑟1
𝑛1 . 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 ≠ 𝑛2 . 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡

Marple.bnf𝑝𝑟𝑜𝑔 ::= 𝑎𝑔𝑔𝐹𝑢𝑛 ∗ 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 I

𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 ::= 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 = 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦
𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ::= R 𝑛𝑢𝑚𝑏𝑒𝑟
𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 ::= 𝑚𝑎𝑝 | …
𝑚𝑎𝑝 ::= map ( 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 , 𝑚𝑎𝑝𝐶𝑜𝑙 , [ 𝑚𝑎𝑝𝐸𝑥𝑝𝑟 ])

Figure 4: Semantic constraint examples in Marple [16].
n2 is valid. We formally express them as:

i f ∃ r1 on n1, then ∃ r2 on n2

A typical example is that a Map primitive must operate on
a stream that has been previously defined.

With the above classification in mind, we thoroughly an-
alyze the intent grammar and derive semantic constraints.
Missing constraints can result in some semantically invalid
intents left as test cases and slightly compromise the testing
efficiency, which is considered acceptable. However, wrongly-
written constraints will incur wrong deletion of semantically
valid intents and impair generator fault coverage. Therefore,
we must guarantee the correctness of the constraints. We
have investigated several advanced generators [16, 17, 21]
and observe that each of them corresponds to <20 semantic
constraints, which is acceptable for manual inspection.

Semantic constraint expression and injection. Identified se-
mantic constraints should be uniformly encoded for injection.
To clearly express a constraint, we need to clearly specify the
constraint type (∃ or ∄) and elements (r1, n1, r2, and n2). Next
we showcase two semantic constraints in Marple [16].

Example 1 shown in Figure 4 presents an exclusion con-
straint. A Marple program ⟨prog⟩ includes multiple streams
⟨streamStmt⟩, each with name ⟨streamName⟩. The names of
streams should not be defined repeatedly. n1 and n2 describe
the node where stream names are defined. Naturally, there
exists an expansion trace from the start symbol ⟨prog⟩ to the
current symbol ⟨streamName⟩. We use ↔ to indicate that the
two nodes can appear in any order on the path. We use ∗ to
match any expansion traces in n and any expansion rules in
r. By making r2 = r1, the constraint prevents ⟨streamName⟩
from taking duplicate values of r1 in any other node n2.

Example 2 in Figure 4 presents a dependency constraint. If
a ⟨map⟩ query in Marple operates on a stream with a name
other than T (the name of the original input stream in Marple),
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this stream should be previously defined. We use n2 → n1 to
constrain the ordering between two nodes, i.e., n2 should be
an ancestor node of n1. By making r2 = r1, the constraint
guarantees that a stream is defined before referenced.

We present all identified semantic constraints of Marple
[16], Sonata [17], and Poise [21] in Appendix A. During
intent generation, an expansion rule r on node n is rejected if
it violates exclusion constraints, and a leaf node is rejected if
not all dependency constraints are satisfied on its path.

4.3 Intent Space Pruning
Despite we guarantee the syntactical correctness and semantic
validity of intents, the massive expansion rules and their com-
binations may still build an extremely large or even infinite
intent space, due to two reasons, as illustrated in Figure 5.

• Wide parameter range. A non-terminal symbol may have
many possible expansion rules, which corresponds to a
large node degree. For example, a 16-bit integer has 65536
possible values. Worse still, if a sentential form has multiple
such non-terminal symbols, the exponential combination
can lead to an explosion of the intent space.

• Cyclic symbol reference. A non-terminal symbol may return
to itself after expansion, i.e., the cyclic symbol reference,
which corresponds to an infinite depth of the intent deriva-
tion graph. For example, an arithmetic expression has an
expansion rule of ⟨S⟩ ::= ⟨S⟩+ ⟨S⟩. The circular expansion
leads to an infinite number of possible intents.
For all generated intents of a DP generator, we observe that

most intents would not cause any bugs, while many could
cause the same bug. To strike a balance between coverage and
efficiency, we propose the following two mechanisms to prune
the intent space without loosing intent representativeness.
Method #1: Intra-symbol representativeness. To handle
wide parameter range, we propose to keep representative ex-
pansion rules, which include three categories.

• Boundary rules. Boundary values in numbers, including
minimum and maximum values (e.g., 0 and 65535 for a
16-bit parameter), usually represent some extreme cases or
conditions, and should be included in the test cases.

• Random rules. In addition to boundary values, we should
take random values from values other than boundary values
(e.g. one value from 1 to 65534 for a 16-bit parameter).

• Previously selected rules. When the same non-terminal
symbol is expanded multiple times in a sentential form, the
choices of expansion rules are actually correlated. In this
case, the previously selected random rules should also be
included in the latter non-terminal symbol expansions. For
example, Marple [16] uses the query name to identify a
query. Suppose a former expansion rule defines the name of
a query Q, and a latter expansion rule references the name
of a query (maybe query Q, maybe not), value Q should be
included in the latter rule to keep representativeness.
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Figure 5: Two types of intent space explosion.
Method #2: Inter-symbol combination representativeness.
For cyclic symbol reference, we can think of an expansion
circle as a non-terminal symbol returning to itself with zero
to many intermediate non-terminal symbols. To handle cyclic
symbol reference induced intent explosion, we should break
infinite symbol recurrence without losing representativeness.

To this end, we refer to the combinatorial testing (CT) the-
ory [41] for software testing in the software engineering field.
Provided that a software is composed of multiple features, the
CT theory indicates that a minimal set of test cases for the
software should include individual features and combinations
of two distinct features, which are enough to effectively test
the software and find most bugs. If a test case containing three
or more features causes a software bug, the root cause may
still lie in the interaction of two features among them.

Inspired by the CT theory, to effectively test the DP gen-
erator with high efficiency, we can first extract all distinct
features, i.e., combination of non-terminal symbols, accord-
ing to the intent grammar. Then, we prune the intent space
and only keep sentential forms that are either (1) individual
features, or (2) possible combinations of n distinct features,
where n = 2. Our evaluation results in §6.2 reveal that using
a higher combination factor (e.g. n = 3) cannot find more
bugs in the DP generator, which proves the effectiveness of
applying the CT theory for DP generator testing.

Finally, we introduce how we extract distinct features, i.e.,
combinations of non-terminal symbols. Recall that the CT
theory limits the recurrence of the same feature to two times.
Therefore, each feature should only include distinct symbols.
Suppose an intent grammar has k non-terminal symbols. By
picking a random number (1 to k) of distinct symbols and
organizing them in all possible sequences, we can generate
N = ∑

k
i=1 Ai

k features where A stands for the permutation
symbol, i.e., Am

n = n!/(n−m)!. With the combination factor
n = 2, there exist at most (N +A2

N) sentential forms com-
posed of non-terminal symbols. Suppose there are s terminal
symbols and p parameter value options, we produce at most
(N +A2

N)× s× p test cases, which are finite and feasible for
testing. Our evaluation results in §6.2 show that using the
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above pruning methods, Firebolt will generate <10K intents
for testing three advanced DP generators [16, 17, 21].

So far, we have thoroughly explored the intent space to gen-
erate syntactically correct and semantically valid intents with
little redundancy. We feed these reasonable intents into the
DP generator to find crash bugs or to generate DP programs
for verification, which we will introduce in the next section.

5 Program Verification

In this section, we introduce how Firebolt verifies the cor-
rectness of the generated DP programs from two aspects,
i.e., whether there are potential security vulnerabilities, and
whether the DP programs are consistent with corresponding
intents. We use Z3 [35], a Satisfiability Modulo Theories
(SMT) solver, which can take (1) Z3 formulas and (2) Z3
assertions as input, and formally verify whether the formu-
las satisfy the assertions. In the rest of this section, we first
introduce how we automatically formalize the generated DP
programs as Z3 formulas (§5.1). Next, to avoid manually con-
verting 1000s of intents into Z3 assertions, we provide a gen-
eral and flexible specification to express every symbol of the
intent grammar, and automatically compose symbol specifica-
tions into intent specifications, which will then be converted
into Z3 assertions (§5.2). Finally, we check intent-program
consistency and detect security vulnerabilities (§5.3).

5.1 DP Program Formalization
We use the popular P416 language as an example to illustrate
how to formalize DP programs into Z3 formulas. P414 pro-
grams can be first converted into P416 programs using open-
source P4 compiler suite [13] and then formalized into Z3
formulas by Firebolt . Gauntlet [42] has proposed approaches
to convert partial P4 programs into Z3 formulas, but does not
cover the formalization of P4 table entries and externs, which
are essential to faithfully convert P4 programs. Our formaliza-
tion solution is built atop Gauntlet. Below we first introduce
the idea and capability of Gauntlet, and then introduce how
we formalize externs and table entries.
Formalizing each programmable block. A P416 program is
composed of several programmable blocks (e.g., packet parser,
ingress control flow, egress control flow, packet deparser, etc.).
We provide an example of a P4 match-action table residing in
the control flow block in the head of Figure 6. For each block,
Gauntlet performs the following conversion.

• Input parameter → free Z3 variable. Two special types of
Z3 variables, i.e., Z3_INVALID and Z3_UNDEFINED, are
defined to represent invalid and undefined parameter values.

• Function → Z3 operation that refers to input Z3 variables.
For example, a table lookup function is converted into a ref-
erence to the resulting action index. Operations like param-
eter initialization or invalidation can refer to Z3_INVALID
and Z3_UNDEFINED special variables.

Part of P416 Program: Match-Action Table
action a0 (z) {y = z;}
table t0 {

key = k0 : exact;
actions = {

no_op;
a0;

}
default_action = no_op;

}

Input free Z3 variables:
(_ BitVec 32) k0 // Match key of table t0
(_ BitVec 32) t0_index // Action index of table t0
(_ BitVec 32) a0_z // Parameter of action a0
Output Z3 expressions (with table entries):
(_ BitVec 32) y = (ite (= k0 1) 1 (ite (= k0 2) 2 

Z3_UNDEFINED))
Output Z3 expressions (without table entries):
(_ BitVec 32) y = (ite (= t0_index 1) a0_z Z3_UNDEFINED)

Table entries of t0:
1 => a0(1)
2 => a0(2)

Figure 6: Examples of formalizing match-action tables.
• Output parameter → output Z3 expression that is the result

of executing Z3 operations on the input Z3 variables.

Formalizing table entries. Gauntlet assumes that the con-
tents of the table are unknown, and does not include the con-
figuration of table entries in the output Z3 expressions. How-
ever, generating correct table entries is also critical for the DP
generator, as table entries also reflect intents. For instance,
a filter(ip.src=192.168.1.1) intent segment in Sonata indi-
cates that subsequent operations will operate on special flows,
which corresponds to a table entry in generated DP programs.

To formalize table entries, we use a nested if-then-else
statement to imitate a match-action table call, as shown in
Figure 6. When table entries are provided, for each parameter
modified by the table (parameter y in this example), we use an
if-then branch to express the modification in Z3 expressions
as follows: if the key of incoming data matches a specific
table entry (k0 = 1 or k0 = 2), the corresponding action is
executed (y = 1 or y = 2). If the key does not match any entry,
the default action is executed (y is not assigned an initial value,
and is therefore undefined). When no table entry is specified,
we assume that all actions in the table are executable. We
use a free Z3 variable (t0_index) to indicate the index of the
action to be executed, and a separate free Z3 variable for each
action parameter (a0_z for parameter z). A table call can then
be represented by a nested if-then-else statement with each
branch representing the execution of one action.

Formalizing externs. P4 programs often operate on extern
objects such as stateful memory and hash calculations. Gaunt-
let interprets externs as a function call that returns an arbitrary
value. However, an accurate translation of externs is critical,
since externs can maintain program internal states and may
be modified and referenced. For example, the SYN flooding
alarm program shown in Figure 1 maintains a counter that
will later be compared to a threshold, which should be embed-
ded in the Z3 formula. Below we introduce our approaches to
handle stateful memory and hash calculation, respectively.

824    2022 USENIX Annual Technical Conference USENIX Association



Part of P416 Program: Hash Calculation
// Update hash_table_index with hash value
hash(hash_table_index, HashAlg.crc32, 32w0, inKey, 32w1024);

Input free Z3 variables:
(_ BitVec 32) crc32_hash_value // Hash value
(_ BitVec 96) inKey // Hash key
Output Z3 expressions:
(_ BitVec 32) hash_table_index = crc32_hash_value
(_ BitVec 32) crc32_hash_width = 32w0
(_ BitVec 128) crc32_hash_field = inKey
(_ BitVec 32) crc32_hash_size = 32w1024

Part of P416 Program: Register Reading and Writing
register<bit<32>>(32w1024) reg;
reg.read(r_index, r_value); // r_value = reg[r_index]
reg.write(w_index, w_value); // reg[w_index] = w_value

Input free Z3 variables:
(_ BitVec 32) reg_read_value
(_ BitVec 32) r_index, w_index, w_value
Output Z3 expressions:
(_ BitVec 32) reg_instance_count = 32w1024
(_ BitVec 10) reg_write_index = w_index
(_ BitVec 32) reg_write_value = w_value
(_ BitVec 10) reg_read_index = r_index
(_ BitVec 32) r_value = reg_read_value

(a) Register reads and writes
Part of P416 Program: Hash Calculation
// Update hash_table_index with hash value
hash(hash_table_index, HashAlg.crc32, 32w0, inKey, 32w1024);

Input free Z3 variables:
(_ BitVec 32) crc32_hash_value // Hash value
(_ BitVec 96) inKey // Hash key
Output Z3 expressions:
(_ BitVec 32) hash_table_index = crc32_hash_value
(_ BitVec 32) crc32_hash_width = 32w0
(_ BitVec 128) crc32_hash_field = inKey
(_ BitVec 32) crc32_hash_size = 32w1024

Part of P416 Program: Register Reading and Writing
register<bit<32>>(32w1024) reg;
reg.read(r_index, r_value); // r_value = reg[r_index]
reg.write(w_index, w_value); // reg[w_index] = w_value

Input free Z3 variables:
(_ BitVec 32) reg_read_value
(_ BitVec 32) r_index, w_index, w_value
Output Z3 expressions:
(_ BitVec 32) reg_instance_count = 32w1024
(_ BitVec 10) reg_write_index = w_index
(_ BitVec 32) reg_write_value = w_value
(_ BitVec 10) reg_read_index = r_index
(_ BitVec 32) r_value = reg_read_value

(b) Hash calculation

Figure 7: Examples of converting externs into Z3 formulas.
• Stateful memory. We take register, an indexed array of state-

ful cells, as an example to illustrate our approach, which
also applies to other types of stateful memory such as coun-
ters. A naive method to formalize a register is to define
a free Z3 variable to represent the initial value and gener-
ate an output Z3 expression to represent the new value for
each cell in the register. In this way, register reading can
be converted into referencing the Z3 variable, and register
writing can be converted into updating the Z3 expression.
Then formalizing a register array with n instances requires
2∗n Z3 variables and expressions. Furthermore, we notice
that for most commercial switches, a register array can be
read/written only once in the switch pipeline. Thus, we only
need to maintain the index and values for at most two regis-
ter cells, as shown in Figure 7(a). Besides, we use another
Z3 variable to store the size of the register, which can be
used to detect out-of-bound register access in §5.3.

• Hash calculation. Hash is used to map large data to fixed-
size values. We define a free Z3 variable to represent the
computed hash value. Meanwhile, we store the parameters
that impact the hash value, e.g., the hash key and hash size,
in the output expressions, as shown in Figure 7(b). Then,
we can flexibly adjust the effect of the hash mapping by
imposing the mapping relationship between the hash value
and hash parameters when checking the Z3 expressions. For
example, a conflict-free hash implies the one-to-one map-
ping between the hash key and hash value. In this way, we
can avoid the complex hardware-specific hash calculation
while maintaining the properties of hash operations.

5.2 Intent Formalization

The intent generation process can produce thousands of (§6)
intents for one DP generator. Manually converting intents that
are composed of different symbols of the same generator, or
intents belonging to different generators, is time-consuming
and not scalable. We observe that intents are generated by
expanding non-terminal symbols. Therefore, instead of con-
verting each intent, our key idea is first writing the specifica-
tions of each symbol in the grammar, and then automatically
composing symbol specifications into intent specifications,
which will finally be converted into Z3 assertions.

Symbol specification. To uniformly express highly-
diversified intent grammar symbols across generators, we
need to design an expression format that should be general
enough to specify various symbols, and flexible enough for
composition. The reason why we do not directly use Z3 as-
sertions as the specification is that Z3 assertions are logical
expressions that are low-level and counter-intuitive.

We propose to uniformly express each symbol as a high-
level function written in python-like expressions. The func-
tion specification satisfies above requirements. It is general
enough to specify the format and semantics of input, logic,
and return values of individual symbols, and flexible enough
for composition by sequentially performing function calls and
correlating input and output of different functions.

Specifically, we regulate that one function consists of
two segments, a declaration function DECL_FUNC that de-
fines internal states of symbols, and an execution function
EXEC_FUNC that describes the processing logic of input pa-
rameters, internal states, and output values. Stateless symbols
such as a flow filter maintain no internal states and therefore
can be expressed with only EXEC_FUNC. A typical execution
function often takes network packets as input, and starts by
PARSE-ing input packets into a series of header fields, e.g.,
Ethernet → IPv4 → TCP. For each packet, we also gener-
ate standard metadata fields regulated by the P4 grammar,
such as the output port. Next, symbol logic can operate on
packet headers, metadata fields, and symbol internal states by
packet modification, counting, forwarding, or other actions,
and finally provide return values or return directly.

Figure 8 takes the ⟨groupby⟩ symbol in Marple [16] as
an example to illustrate how to construct a stateful sym-
bol specification. An entire ⟨groupby⟩ symbol is formatted
as ⟨groupby⟩ ::= groupby(⟨stream⟩,⟨columns⟩,⟨aggFunc⟩),
which groups streams according to specific columns with
the aggregation function aggFunc. In the declaration func-
tion DECL_FUNC, a key-value storage is declared for each
possible option ⟨var⟩ in the child symbol ⟨aggFunc⟩. The
EXEC_FUNC updates the internal states with no packet pars-
ing, modification, or forwarding. First, we initialize a variable
tuple with the tuple contained in the input stream whose name
is ⟨streamName⟩. Then we get the aggregation key from the
aggregation field in ⟨columns⟩. Using the aggregation key,
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# 𝑔𝑟𝑜𝑢p𝑏𝑦 ∷= 𝑔𝑟𝑜𝑢𝑝𝑏𝑦 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 , 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 , 𝑎𝑔𝑔𝐹𝑢𝑛𝑐
# 𝑎𝑔𝑔𝐹𝑢𝑛𝑐 ∷= 𝑑𝑒𝑓 𝑎𝑔𝑔𝐹𝑢𝑛 𝑣𝑎𝑟𝑠 , 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 : 𝑐𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘
DECL_FUNC() =

states = []
for var in <aggFunc>.<vars>.exec():

KEY_VALUE_STORAGE REG_NAME_var
states.append(REG_NAME_var)

EXEC_FUNC(stream_list) =
tuple = <streamName>.exec(stream_list)
key = tuple[<columns>.exec()]
old_state = [reg[key] for reg in states]
new_state = <aggFunc>.exec(old_state, tuple)
states.update(key, new_state)
tuple.append(new_state)
return tuple

Figure 8: An example for constructing stateful specifica-
tions of non-terminal symbols: ⟨groupby⟩ in Marple [16].

we read the old states and execute the aggregation function
⟨aggFunc⟩. The output values of the aggregation function are
used to update states of ⟨groupby⟩. Also, the output states are
included in tuple for future usage in subsequent symbols.
Symbol specification composition. For each generated intent,
Firebolt constructs its specification based on its generation
path, i.e., the non-terminal symbol expansion process and the
final terminal symbols. Starting from the semantics of the start
symbol, Firebolt recursively appends the semantics of child
symbols in the expansion rules by sequentially connecting
their FUNCs to automatically construct the final specification.
Specification conversion into Z3 assertions. A Z3 assertion
is a series of algebra expressions connected with logical oper-
ators, e.g. (x > 10)&&(y < 5). We use a special type of Z3
assertions, i.e., implies( f ,g), to verify DP programs. implies
is an implication operator, which assumes a condition expres-
sion f on the input Z3 variables and asserts that the output
satisfies the implication expression g. After expressing intents
as a series of functions, we can identify how each parameter
(e.g., header fields, forwarding port, and internal states) is
modified by the functions. Therefore, we develop a tool that
can automatically convert the functions into the implies Z3
assertions that will be used to verify the DP programs.

5.3 Program Correctness Verification

With the Z3 formulas representing semantics of DP pro-
grams and intents formalized into Z3 assertions, we first check
whether each P4 program is consistent with the corresponding
intent. Then, we summarize security vulnerabilities from the
literature, and introduce how to detect them in each program.
Intent-program consistency. To verify consistency, we take
the Z3 formulas as input and use the Z3 constraint solver [35]
to verify the Z3 assertions, i.e., a set of implies( f ,g). Specifi-
cally, we need to check the following three types of consis-
tency, each with a different set of f and g.
• Packet parsing consistency. It indicates that parsed headers

and header fields are ordered consistently with the original

intent, and each header field is parsed correctly. During DP
program formalization, when formalizing the parser block,
Firebolt treats the entire input packet header as a free Z3
variable, and outputs individual Z3 expressions to represent
different header fields. We verify the parsing consistency
by asserting that for each header field in the parsing part
of the intent specification, (1) there is a corresponding out-
put Z3 expression, (2) a failed parsing implies an invalid
value. For example, the first 16 bits of the Ethernet header
should be 0x800. The parsing of Ethernet fails if an Ether-
net header does not start with 0x800, and (3) a successful
parsing implies a correct parsed value. For example, given
the condition that the first 16 bits of the header are 0x800,
we should be able to obtain the Ethernet.dstAddr field by
extracting specific bits from the input header variable.

• Packet deparsing consistency. It refers to the correct order
and values of headers and header fields in the output packet.
The checking of the deparser block is similar to the parser
block. We omit details here for brevity.

• Packet processing consistency. Packet processing includes
packet modification, forwarding and state updates, and cor-
responds to the behavior of several programmable blocks
of a P4 program, e.g., both the ingress control flow and the
egress control flow. To construct a complete Z3 formula, we
first concatenate the Z3 formulas of individual related pro-
grammable blocks into a complete block. For each output
Z3 expression of a block, if it is an input Z3 free variable of
latter blocks, we replace the corresponding input with the
current output, and recompute the output expressions of lat-
ter blocks. We iterate this process until the output of a block
is no longer referenced by any blocks, which becomes the
final output of the DP program and completes the Z3 for-
mula for packet processing. Then, for each modified packet
field and metadata in the Z3 formula, we extract related
operators and construct an individual Z3 expression, which
can be checked against corresponding intent specifications.

Security vulnerabilities. Security vulnerabilities are intrin-
sic flaws of DP programs without corresponding intents. For
example, out-of-bound register access may cause unexpected
behaviors and even online risks, and is never intended. We
observe that security vulnerabilities can be converted into
special Z3 assertions and verified against DP programs as
introduced above. Therefore, we summarize security vulner-
abilities highlighted by previous literature [28–32, 34], and
introduce how to express them as Z3 assertions.

• Invalid header access may occur when the validity of a
header is not checked before referencing it. To detect this
bug, for each output Z3 expression, we assert that (1) each
referenced header (Z3_h) belongs to a branch in an if-then-
else statement, and (2) the if-condition in this branch in-
cludes a validity check (i.e., Z3_h != Z3_INVALID).

• Implicit packet drops occur when the egress_port is not
specified. To detect this bug, in the output Z3 expression
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Table 1: (1) Bugs detected by Firebolt , and (2) efficiency of Firebolt when debugging the three DP generators.

DP
Generator 
Under Test

# Generated
Intent

# Detected Bugs / # Intents
Causing Bugs Human-written LoC Test-Case Size

(Min / Max)
Running Time

(Total / Average)
Crash
Bug

Security 
Vulnerability

Intent
Violation

Intent 
Grammar

Semantic 
Constraints

Per-Symbol 
Specification

Intent 
LoC

P4 Program 
LoC

# Table
Entries

Intent
Generation

Program 
Verification

Marple 7341 1 / 12 1 / 7329 2 / 23 93 70 323 1 / 32 211 / 481 0 / 0 168s / 23ms 1204s / 164ms
Sonata 7912 0 / 0 2 / 7912 5 / 243 34 10 178 1 / 19 253 / 375 7 / 43 27s / 3ms 926s / 162ms
Poise 2362 0 / 0 2 / 2362 6 / 362 25 25 132 1 / 12 704 / 893 1 / 12 23s / 10ms 355s / 150ms

of egress_port, we assert that no branch results in the unde-
fined special variable, i.e., Z3_UNDEFINED.

• Out-of-bound register access occurs when the read/write
index exceeds the register array size. Since we use separate
output Z3 expressions to record the read/write index and
the array size in §5.1, we can detect this bug by comparing
the array size and the index range. For direct access, where
index is assigned an exact value, we assert that index < size.
For non-direct access, i.e., the index expression includes
symbolic variables, such as hash values, we assert that the
range of the symbolic variables is within the allowed range.

• Decapsulation errors happen when invalid headers are de-
parsed in the deparser. To detect this bug, we assert that
for each output header expression, no branch results in the
invalid special variable (i.e., Z3_INVALID).

• Forbidden writes happen when a P4 program tries to write
certain metadata values which are read-only, but the P4
compiler allows the program to write them. To detect this
bug, we assert that for all read-only metadata fields, the
values remain unchanged, i.e., the output values are the
original undefined values (i.e., Z3_UNDEFINED).

6 Evaluation

We implement Firebolt with ∼1200 lines of Python code for
intent generation, and ∼800 lines of C++ code for program
verification. Our verifier is built atop Z3 [35], and can verify
both P416 and P414 programs with the aid of P4 compiler
suite [13]. All experiments were conducted in a Ubuntu 16.04
virtual machine with 4GB RAM and two 2.3GHz CPU cores.

We use Firebolt to test three popular open-source DP gen-
erators, including two for network telemetry, i.e., Marple [16,
43] and Sonata [17, 44], and one for security policy enforce-
ment, i.e., Poise [21, 45]. Marple and Sonata both use sequen-
tial composition of data flow operators to construct telemetry
queries, while Marple is more complicated by supporting
self-defined variable names in each query and dependencies
between queries. Poise is relatively simpler and enforces se-
curity policies by filtering customized packet header fields.
Finally, we implement two advanced DP program verification
tools (i.e., Aquila [31] and p4v [30]) for comparison.

Our evaluation intends to answer the following questions.
• Bug coverage. We first discuss all discovered generator

bugs by Firebolt . (§6.1) Next, we prove the bug coverage
of Firebolt by (1) showing the intent representativeness of
Firebolt , and (2) comparing the number of bugs discovered

by Firebolt and existing verification tools over open-source
intents and programs of the generators. (§6.2)

• Efficiency. We introduce (1) the human efforts required by
Firebolt to debug the generators, (2) the size of intents, P4
programs, and table entries that are generated and verified
by Firebolt , and (3) the running time of intent generation
and program verification. (§6.3)

• Scalability. We first compare the human efforts, i.e., lines
of hand-written codes, required by Firebolt and existing
verification tools to debug the three generators. Then we
evaluate the time required by Firebolt when verifying larger
programs and more table entries. (§6.4)

6.1 Bug Analysis

As shown in Table 1, we find that all three generators have
bugs, and discover 5 security vulnerabilities, 13 intent vio-
lations, and 1 crash bug in total. Below we introduce the
detected bugs. To the best of knowledge, this is the first effort
that comprehensively analyze and reason DP generator faults.
Security vulnerability. Firebolt finds security vulnerabilities
in all generated programs of all three DP generators.

• Invalid header access is a common bug. All generated pro-
grams refer to some headers without checking validity.

• Out-of-bound register access is found in Poise, which may
use a hash value that exceeds the size of the the register as
the read/write index for the register.

• Implicit drops happen in Sonata. Generated programs never
explicitly specify the egress port of input packets.

Intent violation. Due to the high intent diversity, intent viola-
tions are the most insidious bugs that cannot be easily detected
by the developers of DP generators. Next we introduce intent
violations in the three DP generators, respectively.

For Sonata, Firebolt finds 5 types of intent violation bugs
in 243 generated programs out of 7912 programs in total.

• Bug #1: Incorrect query combination. When a filter query
with the eq (=) function follows a reduce query, Sonata
converts it into comparing the result of reduce and the
default value of 1, regardless of the true value in the filter
query. This bug may lead to false attack alarm (§2).

• Bug #2, #3, #4: Missing/Incomplete table entries. Sonata
designs a filter(k,v,f) symbol to filter packets whose key (k)
fields satisfy function ( f ) of value (v) fields. To implement
a filter query in DP programs, both match-action tables and
table entries should be generated. However, there are three
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Table 2: The number of detected bugs and generated in-
tents with different intent space pruning methods.

Pruning 
Method

# Detected Bugs # Generated Intents
Marple Sonata Poise Marple Sonata Poise

Intra-
Symbol

None > 50K > 50K > 50K

r=1 7341 7912 2362
r=2 14812 12384 3804

Inter-
Symbol

None > 50K > 50K 2362
n=1 2346 3523 2362

n=2 7341 7912 2362
n=3 > 50K > 50K 2362

Security VulnerabilityCrash Bug Intent Violation

11 2 211

1 2 1 2 3 4 5 61 2 1 2 3 4 51 211
1 2 1 2 3 4 5 61 2 2 31

1 2 1 2 3 4 5 61 2 1 2 3 4 51 211

1 2 1 2 3 4 5 61 2 1 2 3 4 52111

1 2 1 2 3 4 5 61 2 1 2 3 4 51 211

1 2 1 2 3 4 5 61 2 2 3 4 51 211

cases where table entries can be missing or incomplete.
First, when a filter query operates on a variable, e.g., a
counter, table entries are forgotten. Second, when a filter
query has a mask function, Sonata translates it into an LPM
table, but forgets to include the prefix length in table entries.
Third, when a filter query has a geq (≥) function and does
not follow a reduce query, no table entries are generated.

• Bug #5: Incorrect mask translation. Sonata uses bit-wise
AND for mask operations in a map query. It translates the
mask m into 0xFF...F (F occurs m/4 times). When the mask
length is not a multiple of 4, the translation is incorrect.

For Poise, Firebolt finds 6 types of intent violation bugs in
362 generated programs out of 2362 programs in total.

• Bug #1: Incorrect list comparer. Poise provides list com-
parer (in and notin) to check whether a value is in a list.
However, notin is wrongly equated with in when translated.

• Bug #2, #3, #4: Incorrect comparison operator. Poise trans-
lates the comparison operators (> and <) into a match-
action table with range match and a table entry represent-
ing the comparison range. However, this range incorrectly
includes the boundary value that should be excluded. That
is, > and < are translated into ≥ and ≤. Besides, Poise
sets a default range (0∼10000) for comparisons without
considering the real range of variables.

• #5: Missing table entries. Poise provides the monitor ex-
pression count(p) that counts the number of packets satisfy-
ing a predicate p. However, table entries are not generated.
Thus, no packets would satisfy the predicate and be counted.

• #6: Missing action parameters. Poise uses registers to main-
tain states. However, for some registers, the read/write ac-
tions do not specify the index to read or write.

For Marple, Firebolt finds 2 types of intent violations in 23
generated programs out of 7329 generated programs in total.

• Bug #1: Incorrect infinity translation. Marple uses infinity
to represent a variable that exceeds its pre-defined upper
limit. However, it assigns a fixed value 231 −1 to infinity
without considering the actual upper bound.

• Bug #2: Incorrect key storage. Marple uses 32-bit registers
to store keys in the groupby query. When storing a value
with a width greater than 32 bits, e.g., the ingress timestamp,
the stored value would be the truncation of the value.

Table 3: Detected bugs by existing verification tools.
DP

Generator 
Under Test

#
Intents

# Detected Bugs

Crash Bug Security 
Vulnerability

Intent
Violation

Marple 14 0 1 ( ) 0
Sonata 13 0 2 ( ) 1 ( )
Poise 7 0 2 ( ) 4 ( )

1
1 2

1 2

2

2 3 4 6

Crash bug. Firebolt finds one crash bug in Marple, while
Sonata and Poise do not report any crash bugs. Marple con-
verts the division expression (a/2b) into a right-shift operation
(a >> b), but sets the maximum shift width to a fixed value
of 8. According to the code, the generator would crash when
the exponent b satisfies a legal value of 8 < b < log2a.

6.2 Bug Coverage
To evaluate the bug coverage of Firebolt , first, we compare the
bugs detected using different intent space pruning methods to
demonstrate that the intent generation approach of Firebolt is
able to thoroughly cover the intent space to find bugs. Then,
we compare the bugs detected between Firebolt and existing
verification tools to demonstrate that the automatic testing of
Firebolt can detect more bugs, compared to verifying hand-
written test cases using existing tools.
Intent representativeness. We examine whether our two
intent space pruning methods (§4.3) compromise intent rep-
resentativeness by checking the bug coverage of generated
intents. For each type of pruning method, we configure the
extent of the other method as the default value (the number
of random rules r = 1 for intra-symbol and the combination
factor n = 2 for inter-symbol), vary the pruning extent of the
current method, and check the resulting bug coverage. As
there exist infinite possible intents, obtaining all intents is im-
practical. We randomly generate 50K intents (> 10× intents
generated by Firebolt) as the baseline.

We present the results in Table 2. The None row repre-
sents the baseline, where only 6 bugs are discovered (19 by
Firebolt). This is because a limited number of intents (50K)
represent a very small fraction of the entire intent space. Intra-
symbol pruning can greatly reduce the intent space, but in-
creasing the number of random rules (r) from 1 to 2 does not
increase the bug coverage. For inter-symbol pruning, we can
see that a small combination factor (n= 1) can find many bugs,
but misses one interactive bug, i.e., Sonata’s reduce-then-filter
bug, which can be found when n = 2. Further increasing the
combination factor (n = 3) cannot find more bugs, but greatly
increases generated intents from O(1K) to above 50K.

Therefore, compared to random intent generation, Firebolt
intent pruning can maintain representativeness with much
fewer test cases. Moreover, the recommended pruning extent
is r = 1 for intra-symbol pruning and n = 2 for inter-symbol
pruning, which is adequate for comprehensive bug detection.
Comparison with existing tools. We compare the bug cover-
age of Firebolt with that of existing verification tools [30,31].
For existing verification tools, we collect all open-source
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manually-written intents [43–45] as input to find as many
bugs as possible. For each collected intent, we manually write
the corresponding specification for each verification tool and
perform program verification. The results are shown in Ta-
ble 3. With a limited number of O(10) hand-written intents,
the existing verification tools can only discover 10 bugs out
of 19 by Firebolt , and cannot find other bugs undetected by
Firebolt . This highlights the high bug coverage of Firebolt
over existing tools. By delving into these open-source intents,
we find that the developers of DP generator did make an effort
to write different examples, but the hand-written test cases
struggle to efficiently find all bugs in DP generators.

To find more bugs with existing tools, we can use the (1000s
of) intents generated by Firebolt as input for existing tools.
However, doing so requires manually writing specifications
for 1000s of intents, which is time-consuming and error-prone.
We will analyze the scalability issues in §6.3.

6.3 Efficiency
Next, we evaluate the debugging efficiency of Firebolt by
counting the lines of input human-written codes (Figure 3),
the lines of intents that Firebolt generates, the size of gen-
erated test cases (including intents, P4 programs, and table
entries), and the running time for intent generation and pro-
gram verification. We summarize the results in Table 1.
Human-written LoC. In general, Firebolt requires a limited
number of O(10) LoC for intent grammar, O(10) LoC for
semantic constraints, and O(100) LoC for per-symbol specifi-
cations. Although the per-symbol specifications occupy the
majority of human-written LoC, writing specifications is also
required for existing verification tools, and Firebolt is still the
most efficient. We further discuss Firebolt scalability in §6.4.
Test case size. As Firebolt utilizes pruning mechanisms to
generate representative intents, the resulting intents are rela-
tively small, i.e., from one LoC to 10s of LoC. For the same
reason, only a few table entries are generated. Marple even
has no output table entries, since it uses flexible expressions in
the P4 program to implements the intents. Finally, correspond-
ing P4 programs are often with 100s of LoC. This is because
generated programs contain many necessary components for
all intents such as the definition of headers and parsers. Thus,
even the smallest P4 program contains 100s of LoC.
Running time. Firebolt generates O(1K) intents for each DP
generator. Intent generation and program verification in all
scenarios can be done within 25 minutes. DP generators with
more semantic constraints (e.g., Marple) take more time to
generate a correct intent (23ms vs 3ms for Sonata). This is
because relatively more semantically invalid intermediate sen-
tential forms will be detected and rejected during generation.

6.4 Scalability

Manual effort. We compare the manual efforts (i.e., lines of
specifications) required by Firebolt and existing verification

Table 4: Comparing lines of human-written specifications.
DP Generator 

Under Test
Verifying One 

Program
Verifying All

Generated Programs
Finding All Bugs

(1 Bug / 1 Program)

p4v O(1K) O(1M) O(10K)

Aquila O(100) O(100K) O(1K)
Firebolt O(100)
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Figure 9: Time needed to verify larger P4 programs with
more table entries.
tools, Aquila [31] and p4v [30], to debug a DP generator with
equal bug coverage. This means that both Firebolt and verifi-
cation tools take thousands of intents generated by Firebolt as
input. As shown in Table 4, Firebolt requires O(100) of per-
symbol LoC to automatically generate the specifications of
all intents. In comparison, verification tools require O(100) to
O(1K) LoC to convert one intent. Converting all intents means
O(100K) to O(1M) LoC. Under equal bug coverage, Firebolt
consumes merely 0.1% to 0.01% manual efforts compared to
existing tools. Moreover, human-written specifications can be
faulty, which further reflects the scalability of Firebolt .
Scaling to larger test case. We evaluate the scalability of
Firebolt when verifying larger P4 programs with more table
entries. We use several open-source or vendor-supplied P4
programs instead of the small programs generated by Firebolt .

First, we measure the time required by Firebolt to verify P4
programs of different sizes. For each program, we manually
write <3 entries for each table, and also write the correspond-
ing specifications for verification. As shown in Figure 9(a),
Firebolt requires more time for verification as the complex-
ity of the P4 program increases. Nevertheless, even the most
complex switch.p4 can be verified in 8 minutes.

Next, we compare the verification time when installing
different numbers of table entries to the same P4 program
fabric.p4. As shown in Figure 9(b), the number of table
entries has a larger impact on the verification time than the
size of P4 program. When the number of entries does not
exceed 1500, Firebolt can complete the verification in <30
minutes. When the number of entries exceeds 2000, Firebolt
takes >100 minutes for verification. The increase is not lin-
ear because the table entries are converted into if-then-else
branches, resulting in an exponential increase in the size of the
generated Z3 formulas. This non-linear scalability of verifica-
tion time with table entries has also been recognized in other
verification works [31] and solved using encoding optimiza-
tions. Currently, Firebolt by design generates small test cases
without losing bug coverage using intent space pruning. For
upcoming generators, we may encounter larger intents, pro-
grams, and table entries that become more time-consuming
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to verify. In that case, Firebolt can refer to the optimization
techniques in existing verification tools [30, 31] to accelerate
the verification of individual intent-program pairs.

7 Discussion

Human effort required by Firebolt . Firebolt requires three
inputs, including grammar, semantic constraints, and per-
symbol specification to debug a DP generator. First, the gram-
mar should already be provided by the designers of DP gen-
erators [14, 16, 21–23] so that the DP generator can be used
correctly by others. Second, accurate semantic constraints
also help to better use the DP generator. We summarize the
semantic constraints of three advanced DP generators in Ap-
pendix A. They all have <20 semantic constraints that can
be classified into four types, i.e., banned variable redefini-
tion, necessary variable definition, illegal variable reference,
and special ones. The former three types account for the ma-
jority of the constraints and are closely related to variable
definitions and references. Semantic constraints can shrink
the intent space, and missing some semantic constraints will
not affect the bug coverage but merely produce more intents.
Third, Firebolt requires manually writing per-symbol spec-
ification. However, compared with existing tools, Firebolt
saves significant human efforts by automatically composing
per-symbol specifications into intent specifications.
Cross-platform generality of Firebolt . The formalization
phase of Firebolt considers extern behaviors because they are
critical for the correctness of DP generators. However, the
semantics of extern behaviors are target-specific. Currently,
Firebolt supports two common extern implementations in-
cluding stateful memory and hash calculation. Since externs
can be taken as arithmetic operations on some variables (e.g.,
temporal variable, metadata field, and packet header), they
can always be converted into logical Z3 formulas. As a future
work, we would like to extend Firebolt to support user-defined
extern semantics to improve cross-platform generality.

8 Related Work

Data plane generator. To simplify DP programming, a grow-
ing body of research proposes data plane generators which
convert high-level intents into platform-specific DP programs.
DP generators provide primitives to specify developer intents
in different domains, e.g., query primitives for monitoring
tasks [15–20], measurement and control primitives to specify
security policies [21, 22] and routing policies [23], and some
other intent languages for their own purposes [14,24–27]. DP
generators greatly relieve the burden of DP programming,
but their own correctness is not guaranteed. In this paper, we
design a blackbox-based testing system to debug them.
Data plane program verifier. Several efforts have been pro-
posed to verify DP programs. P4-assert [28] and Vera [29]
translate P4 programs into other language models (SEFL

and C) and rely on existing symbolic execution framework
(SymNet [46] and Klee [47]) to analyze the behavior of the
resulting programs. p4v [30] and Aquila [31] use Dijkstra’s
classic verification approach by formalizing the P4 program
in Guarded Command Language (GCL) and using the Z3
theorem prover [35] to check whether the specifications hold.
Some other tools, such as bf4 [32] and P6 [34], utilize vari-
ous techniques such as static verification, code changes and
runtime checking to ensure that the deployed P4 program is
bug-free. However, using these tools to debug DP generators
cannot cover all generator bugs and requires massive manual
efforts to verify each possible intent-program pair. Different
from all of them, Firebolt can automatically generate represen-
tative intents as test cases for high coverage and automatically
produce intent specifications for high scalability.
Testing in networking. Testing is a popular technique to find
bugs in network systems by generating and running many
test cases. Metha [48] tests network verification tools by gen-
erating network configurations as test cases and comparing
the tool’s output with that of the actual router. p4pktgen [49]
tests P4 programs by generating test cases using symbolic
execution. Gauntlet [42] and P4Fuzz [50] both test the P4
compiler by generating random P4 programs. If the intermedi-
ate representation (IR) of the compiler is accessible, Gauntlet
compares the transformed programs after different compiler
passes, otherwise it generates packets to test the behavior of
the P4 program to debug the compiler. P4Fuzz compares the
output of different compilers to find potential bugs. Firebolt
also uses generation-based testing to debug DP generators.
However, unlike existing work to test specific targets, Firebolt
needs to handle a variety of DP generators. Firebolt adopts
a syntax-guided approach to generate test cases and designs
generic methods to verify the correctness of each test case.

9 Conclusion

This paper presents Firebolt , a blackbox testing tool designed
to debug DP generators. We propose syntax-guided intent
generation with semantic constraint injection and intent space
pruning techniques, and program verification with automatic
intent and program formalization. By evaluating three popular
open-source DP generators, we show the high bug coverage
and scalability of Firebolt compared to existing solutions.

This work does not raise any ethical issues.
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Appendix A Semantic Constraints of Ad-
vanced DP Program Generators

Table 5 lists the identified semantic constraints for
Marple [16], Sonata [17], and Poise [21]. The semantic con-
straints can be classified into four categories, i.e., banned vari-
able redefinition, necessary variable definition, illegal variable
reference to generate compilable intents, and other special
constraints to generate complete intents. For each category,
we give an example of how the constraint can be expressed
with the formal if-then expressions in §4.2.
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Table 5: Summary of semantic constraints of Marple [16], Sonata [17], and Poise [21].

Constraints Description Type Expression

Marple

Banned
Variable

Redefinition
(3)

#1: Each query has a stream name, which
cannot be repeatedly defined.

Exclusion

#1 as an	example:
𝑖𝑓 ∃ 𝑟1 𝑜𝑛 𝑛1, ∄ 𝑟6 𝑜𝑛 𝑛6, 𝑛1 ↔ 𝑛6
𝑛1 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟1 : 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 → ∗
𝑛6 ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟6 : 𝑟1

#2: Each aggregation function has a function
name, which cannot be repeatedly defined.

#3: A aggregation function may define
multiple aggregation states. The aggregation
state names cannot be repeatedly defined.

Necessary
Variable

Definition
(8)

#4~7: Each query (map/groupby/filter/zip)
operates on a stream, which should be either
defined or the default input stream T.

Dependency

#4 as an	example:
𝑖𝑓 ∃ 𝑟1 𝑜𝑛 𝑛1, ∃ 𝑟6 𝑜𝑛 𝑛6, 𝑛1 → 𝑛6
𝑛1 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 𝑚𝑎𝑝 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟1 : 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ↛ 𝑇
𝑛6 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟6 : 𝑟1

#8: groupby queries take an aggregation
function name as input. The function should
be defined.

#9: groupby queries may include self-defined
variables in the aggregation key. The
variables should be defined.

#10: filter queries may reference self-defined
variables in its predicate. The variables should
be defined.

#11: map queries may reference self-defined
variables. The variables should be defined.

Illegal
Variable

Reference
(2)

#12: map queries assign specified or self-
defined variables to computed expressions,
where the variables should not be assigned
repeatedly. Exclusion

#12 as an	example:
𝑖𝑓 ∃ 𝑟1 𝑜𝑛 𝑛1, ∄ 𝑟6 𝑜𝑛 𝑛6, 𝑛1 ↔ 𝑛6
𝑛1 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 streamQuery 𝑚𝑎𝑝 𝑚𝑎𝑝_𝑐𝑜𝑙 ,∗
𝑟1 : 𝑚𝑎𝑝_𝑐𝑜𝑙 → ∗
𝑛6 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 streamQuery 𝑚𝑎𝑝 𝑚𝑎𝑝_𝑐𝑜𝑙 ,∗
𝑟6 : 𝑟1

#13: zip queries merge fields in different
streams.

Special 
Semantic 

Constraints 
(1)

#14: An intent should not end with a map
query.

Dependency

#14 as an	example:
𝑖𝑓 ∃ 𝑟1 𝑜𝑛 𝑛1, ∃ 𝑟6 𝑜𝑛 𝑛6, 𝑛1 → 𝑛6
𝑛1 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 ,∗
𝑟1 : 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 → 𝑚𝑎𝑝
𝑛6 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟6 : 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 → 𝑓𝑖𝑙𝑡𝑒𝑟 | 𝑔𝑟𝑜𝑢𝑝𝑏𝑦 | 𝑧𝑖𝑝

Sonata

Special 
Semantic 

Constraints 
(2)

#1: An intent should not end with a map
query.

Dependency

#1 as an	example:
𝑖𝑓 ∃ 𝑟1 𝑜𝑛 𝑛1, ∃ 𝑟6 𝑜𝑛 𝑛6, 𝑛1 ← 𝑛6
𝑛1 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 ,∗
𝑟1 : 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 → 𝑚𝑎𝑝
𝑛6 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 ,∗
𝑟6 : 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 → 𝑓𝑖𝑙𝑡𝑒𝑟 𝑟𝑒𝑑𝑢𝑐𝑒 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

#2: reduce queries should follow map queries.

Poise

Banned 
Variable 

Redefinition
(2)

#1: Each list has a name, which cannot be
repeatedly defined.

Exclusion Similar	to	the	banned	variable	redefinition	of	Marple.
#2: Each monitor function has a name, which
cannot be repeatedly defined.

Necessary
Variable

Definition
(2)

#3: Each monitor function references a list,
which should be defined.

Dependency Similar	to	the	necessary	variable	variable	definition	of	Marple.
#4: A statement may reference a monitor
function, which should be defined.
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