
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

FlatFS: Flatten Hierarchical File System
Namespace on Non-volatile Memories

Miao Cai, Key Laboratory of Water Big Data Technology of Ministry of Water Resources,
Hohai University; School of Computer and Information, Hohai University; State Key
Laboratory for Novel Software Technology, Nanjing University; Junru Shen, School
of Computer and Information, Hohai University; Bin Tang, School of Computer and

Information, Hohai University; Hao Huang, State Key Laboratory for Novel Software
Technology, Nanjing University; Baoliu Ye, State Key Laboratory for Novel Software

Technology, Nanjing University; Key Laboratory of Water Big Data Technology of Ministry of
Water Resources, Hohai University; School of Computer and Information, Hohai University

https://www.usenix.org/conference/atc22/presentation/cai

FlatFS: Flatten Hierarchical File System Namespace on Non-volatile Memories

Miao Cai†‡§, Junru Shen‡, Bin Tang†‡, Hao Huang§, Baoliu Ye§†‡

Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University †

School of Computer and Information, Hohai University ‡

State Key Laboratory for Novel Software Technology, Nanjing University§

Abstract
The conventional file system provides a hierarchical names-

pace by structuring it as a directory tree. Tree-based names-

pace structure leads to inefficient file path walk and expen-

sive namespace tree traversal, underutilizing ultra-low ac-

cess latency and good sequential performance provided by

non-volatile memory systems. This paper proposes FlatFS, a

NVM file system that features a flat namespace architecture

while provides a compatible hierarchical namespace view.

FlatFS incorporates three novel techniques: coordinated file

path walk model, range-optimized NVM-friendly Br tree, and

write-optimized compressed index key layout, to fully ex-

ploit flat namespace structure to improve file system names-

pace performance on high-performance NVMs. Evaluation

results demonstrate that FlatFS achieves significant perfor-

mance improvements for metadata-intensive benchmarks and

real-world applications compared to other file systems.

1 Introduction
Large, deep directory tree stresses file system namespace per-

formance. For example, Hive, a famous data warehousing

software system, uses a column-based partition technique to

provide efficient query for big database tables [39]. Every

column value represents a path component, and all columns

constitute a file path to index the data. Such a partition tech-

nique causes a large deep directory tree for a wide table,

making data query prohibitively expensive.

The recent advent of ultra-fast non-volatile memories rev-

olutionized file system design, shifting performance bottle-

necks from hardware I/O to the software stack. However,

the current file system namespace structure, which is de-

signed for slow storage devices, encounters severe perfor-

mance issues with high-performance non-volatile memory

systems [1, 20, 30, 36].

The file system provides a hierarchical namespace that

is structured as a directory tree [5, 37], as shown in Fig-

ure 1a. The virtual file system (VFS) unifies multiple volatile

namespace hierarchies to provide a single global namespace

view [40]. For any metadata system calls, the VFS first per-

forms a pathname lookup (i.e., path walk) by walking the

directory tree to find the associated directory entry (dentry),

and then performing metadata operations, e.g., changing file

permissions. Hierarchical namespace structure causes two

major performance problems: inefficient file path walk and

expensive namespace tree traversal.
First, current file path walk is slow and non-scalable. Re-

solving a path component involves costly dentry search and

other coupled system operations like security module enforce-

ment [10, 23, 24, 40]. Moreover, suppose a file path contains

n components, resolving the last component needs to locate

previous n−1 components. The total path walk task is linear

to the number of components in the file path. The path walk

efficiency has a slight performance impact on system calls for

slow storage devices since hardware I/O dominates. In con-

trast, for NVMs offering ultra-low access latency [17, 42, 46],

such high critical-path latency is unacceptable (see §2.1).

Second, traversing the namespace tree recursively is ex-

pensive with the hierarchical namespace structure. Entries

of different directories are physically scattered over the stor-

age device. It results in poor data access locality and indirect

memory addressing during tree traversal. Namespace tree

traversal is prevalent in common system usages such as find,

rm -r and ls -R. Moreover, commercial NVMs like Intel Op-

tane memory provide > 5GB/s memory bandwidth and prefer

sequential memory access behaviors [17, 46]. Unfortunately,

hierarchical namespace structure fails to utilize this important

system characteristic (see §2.2).

Research efforts have been devoted to addressing these

two problems. Tsai et al. [40] propose full-path caching to

reduce path walk latency in the VFS layer. Solaris also incor-

porates a similar path-to-vnode cache [23]. However, caching

is heavily dependent on file access locality. ByVFS [41] by-

passes the VFS directory tree and directly manipulates dentry

from the file system. As NVM devices deliver unbalanced

read/write performance, the dentry write performance is sub-

optimal. A file system level optimization is utilizing efficient

data structures (e.g., radix tree [44], hash table [15, 16], B+

USENIX Association 2022 USENIX Annual Technical Conference 899

tree [5, 34, 37], skip list [13]) or key-value stores (e.g., Lev-

elDB [2,32] and TokuDB [6,18]) to manage and index persis-

tent directory entries. Though these data structures offer good

indexing performance, the data locality problem is not well-

addressed. Moreover, all existing in-kernel file systems are de-

veloped underneath the VFS framework [14,18,26,31,44,48].

Therefore, pathname lookup performance in these file systems

is constrained by VFS path walk efficiency.

This paper revisits namespace structure for ultra-fast, byte-

addressable NVMs and proposes a novel file system named

FlatFS. FlatFS exhibits a flat namespace architecture but still

provides a compatible hierarchical namespace view. File meta-

data are directly indexed by their unique hierarchical paths.

Hierarchical paths are organized without any further structure.

The flat namespace structure brings two performance ad-

vantages for file system design for NVMs. First, file path

walk is fast and scalable as it only requires a single pathname

lookup to flat namespace irrespective of path length. It ef-

fectively shortens the path walk for metadata system calls.

Second, data locality is improved because contiguous direc-

tory entries in the namespace are also stored consecutively

on the storage device. It accelerates file system namespace

traversal and benefits directory range operations.

To exploit flat structure to improve namespace operation

performance on high-performance NVMs, FlatFS incorpo-

rates three core techniques. First, a coordinated path walk is

proposed to orchestrate two distinct path walk models in a

global unified VFS namespace §4.1. FlatFS achieves fast, scal-

able path walk by separating pathname lookup from other in-

tricate system operations, yet preserves the system semantics

as the conventional path walk model. Instead of reconstructing

the existing path walk module, coordinated path walk offers

a flexible and backward-compatible solution to integrate a

distinctive path walk model into the global namespace.

Second, a range-optimized NVM-friendly Br tree is devised

to manage variable-sized index keys §4.2. Br tree provides

efficient data-structure-level range operations (e.g., range in-
sert) in logarithmic time. It effectively remedies the directory

move shortcoming for the flat namespace, as well as facilitates

designing other fast directory range operations §4.3.

Third, a write-optimized compressed (WoC) index key de-

sign is proposed by leveraging NVM byte-addressability to

improve variable-sized key storage efficiency as well as re-

duce expensive small memory writes and data persistence

overheads in key management on NVM systems §4.4.

Finally, FlatFS achieves low-cost metadata crash-

consistency for the flat namespace §4.5. The WoC key design

effectively reduces the performance costs for data consistency

in index key insert and removal. For directory range

operations that involve complex tree structure manipulation,

FlatFS also simplifies namespace tree crash-safety design

based on an insight derived from Br tree structure primitives.

We evaluate FlatFS with extensive experiments using both

benchmarks and three applications (a version control system

Git, a parallel file indexer Psearchy [11], and a data warehouse

software Hive [39]) on Intel Optane DC Persistent Memory §5.

Evaluation results demonstrate that our flat namespace fully

unleashes the high-performance NVM system. FlatFS outper-

forms other file systems by a factor of 4.02× for micro- and

macro-benchmarks and improves metadata-intensive applica-

tion performance by up to 37.5%.

In summary, this paper makes the following contributions:

• We analyze two performance issues in hierarchical names-

pace structure with high-performance NVMs.

• We propose a metadata-optimized file system FlatFS with

three core techniques to flatten the hierarchical namespace

for fast, byte-addressable NVM systems.

• We conduct extensive experiments to demonstrate the per-

formance benefits of FlatFS to both metadata-intensive

benchmarks and applications.

2 Background and Motivation
This section takes Linux kernel as an example to describe

performance issues in the current file system namespace.

2.1 Inefficient File Path Walk
Costly component resolution. We conduct an experiment

to demonstrate path component resolution inefficiency. We

measure the execution latencies of six typical metadata system

calls (creat, open, stat, chmod, unlink, mkdir) in NOVA file

system on our testbed machine. Every system call operates

on a file in a six-depth directory. Figure 1b shows the system

call execution time and performance breakdown.

When the dentry cache (dcache) is hot, profiling results

show that an average 15.87% execution time is spent on the

dcache lookup. The dcache lookup includes filename hash-

ing and hash table lookup. Currently, there is only a central-

ized dcache in the VFS layer. Increasing dentries stresses the

dcache indexing performance. The permission checking takes

8.83% of the execution time on average. The path walk also

spends 11.65% execution time on other system operations

(denoted as Other Walk in Figure 1b), such as mount point

checking and reference counter updating. In summary, when

the dcache is hot, resolving a six-component file path occu-

pies 14.17%-67.19% execution time for five system calls. The

file operations take an average of 31.49% execution time.

On the other hand, when the dcache is cold, the underlying

file system has to search the missing dentry. Dentry lookup

of NOVA file system takes 69.26% of execution time for

cold dcache. The dentry miss penalty is high. Besides the

I/O transfer for the missing dentry, it also includes searching

the dentry in the storage device and inserting this dentry into

various VFS management data structures. Table 1 compares

the block reading and dentry lookup latencies on NVM and

SSD. Relatively slow SSD delivers long I/O latency, which

dominates the overall execution latency. However, the den-

try lookup time percentage increases around 20% when the

storage device shifts from SSD to NVM. It indicates that

900 2022 USENIX Annual Technical Conference USENIX Association

chmod
stat

VFSdentry

Ext4XFS

inode

fetch

missext4xfs

open

...

fetch

(a) File System Namespace (b) Execution Time Breakdown (c) Path Walk Scalability (d) Directory Read Performance

Figure 1: File System Namespace Structure in Linux and Performance Issues

Table 1: Comparing Block Read and Dentry Lookup Latency on

NVM and SSD
SSD: block
reading (%)

SSD: dentry
lookup (%)

NVM: block
reading (%)

NVM: dentry
lookup (%)

Ext4 58.74% 4.12% 27.11% 25.36%

XFS 60.98% 3.34% 29.45% 28.10%

the performance bottleneck transfers from the hardware I/O

latency to software path walk design with ultra-fast NVMs.

Non-scalable path walk. The current component-at-a-

time path walk design is non-scalable with the number of

path components. Such path walk design is widely adopted in

current operating systems as it is convenient to implement the

component resolution. Moreover, many other system function-

alities are implemented upon component resolution [10, 24].

They further increase the latency and exacerbate the path walk

scalability issue. In addition, it is difficult to decouple them

from the path walk.

We perform an experiment to understand the path walk

scalability problem. We measure the stat syscall latency with

different path component numbers on four NVM file sys-

tems. The VFS dcache is cold in the experiment. As shown

in Figure 1c, the stat execution latency of four file systems

increases dramatically as path length increases. The oper-

ation latency of the 50-component file path is nearly 14×
higher than the 1-component file path. The VFS invokes file

system-specific getattr to retrieve the file attributes. However,

getattr only takes 1.01% on average of four file systems for a

50-component path configuration (denoted as FS:other% in

Figure 1c). The rest of the execution time is spent on resolving

the lengthy file path.

Summary. Current slow, non-scalable file path walk design

has a large impact on metadata system call performance. This

is a common problem for all file systems running on different

devices like SSDs or HDDs. However, as commercial NVM

devices offer near-DRAM access latency, the major bottleneck

shifts from long hardware I/O to software path walk design,

motivating us to reduce such software latency.

2.2 Expensive Namespace Tree Traversal
Recent Intel Optane memory studies report that there is an

asymmetry between sequential and random access perfor-

mance [17, 28, 43, 46]. The performance gap between sequen-

tial and random memory bandwidth ranges from 2.3× to 3.5×.

Moreover, the memory access latency is also sensitive to se-

quential and random access patterns [17, 42, 46].

File systems directly persist their directory tree in the NVM

device. Traversing such a hierarchical namespace tree recur-

sively is expensive. The reason is twofold. First, as directories

logically form a tree structure, traversing the hierarchical

tree causes indirect memory accesses. Second, persistent tree

traversal introduces random memory access as dentries of dif-

ferent directories are distributed across the device. Previous

studies show that both these memory access behaviors are

suboptimal [17, 46]. Recursive tree traversal is an important

namespace operation and used by many real-world applica-

tions heavily (e.g., cp -r, git status). Moreover, as page cache

is removed from the NVM storage stack [26,31,44,48], direc-

tory reading operations are directly performed on the NVM

device. Existing persistent namespace tree traversal degrades

directory reading performance.

We perform an experiment to understand the performance

costs of hierarchical namespace tree traversal. We create two

sets of 1024 files. Files in the first set are stored under an

eleven-depth directory hierarchy. All files of the second set

are stored in a one-depth directory. We use ls -R to read these

two directories recursively. The first listing operation walks

a hierarchical namespace and the second listing operation

simulates sequential access in a flat namespace. Figure 1d

shows that sequential directory reading performs 4.08× better

than random directory reading. Traversing the hierarchical

directory tree occupies nearly 80% total execution time.

Summary. The hierarchical namespace structure leads to

low directory reading performance due to expensive tree

traversal. As the page cache is removed from the modern

NVM storage stack, directory reading operations access data

stored on NVM devices directly. How to architect the file sys-

tem namespace structure to exploit the device characteristic to

improve the namespace operation performance still remains

unsolved.

3 Overview
3.1 Design Goals
Through flattening the hierarchical namespace, we build a

high-performance, POSIX-compliant NVM file system. In

particular, we have four design goals.

• Short path walk. File path walk is essential for most of the

metadata system calls. FlatFS aims to reduce such software

latency to minimize performance impacts on system call

execution.

USENIX Association 2022 USENIX Annual Technical Conference 901

Br Tree Inode TableWoC Index KeyFlatFS

/tmp/data/x

Coordinated Path Walk Directory Tree

lookup

system call

2

...

coordination

inopath suffix1
inopath suffix2

CPU0

CPU1

CPU2

CPU3
inopath suffix4

pa
th

pr
ef

ix

inopath suffix3

file path

/src/dir/file join
split

path walk

pathnames 1
...

VFS

Syscall open(/mnt/flatfs/tmp/data/x , O_CREAT|O_RDWR, 0777)
chmod(/mnt/flatfs/src/dir/file ,O_IRUSR|O_IWUSR|O_IXUSR)

Figure 2: FlatFS System Architecture

• Optimizing range operation. As sequential accesses are

optimal in NVMs, FlatFS aims to re-structure namespace

architecture to fully exploit this system characteristic.

• Reducing persistence costs. FlatFS applies write-

optimization techniques to key layout design to reduce data

persistence costs in its index key management.

• Ensuring namespace crash-safety. FlatFS achieves

namespace crash-safety guarantees for conventional meta-

data syscalls and compound directory range operations.

3.2 FlatFS Architecture
FlatFS system architecture is presented in Figure 2. There is

no cached namespace in the VFS. The namespace operation

is directly performed on the device. There are four types of

files in FlatFS: regular file, directory, symbolic link, and hard

link. The file metadata is indexed by its full pathname relative

to the FlatFS mount point.

In the system call layer, FlatFS provides a compatible hier-

archical namespace view. Applications still use hierarchical

file paths to access files and directories in FlatFS namespace.

In the virtual file system layer, we design a coordinated

path walk (§4.1). The FlatFS namespace also appears in the

VFS namespace to preserve a global unified namespace view.

The coordinated path walk incorporates two distinct path walk

models. It cooperates with the VFS directory tree to perform

path walk across distinctive file system namespaces and dis-

patches requests to the corresponding file system instance.

In the file system layer, index keys are managed by a range-

optimized persistent Br tree (§4.2). All index keys are sorted

in an lexicographical order. Br tree is carefully designed with

NVM properties [46]. Besides, Br tree supports data structure

level range operations based on two proposed tree structure

primitives: join and split. It facilitates designing low-cost

directory range operations (e.g., rename) and simplifies their

implementation (§4.3).

In the key storage layer, the idiosyncratic NVM systems

pose severe challenges to index key management. Frequent

index key updates incur a large number of small random mem-

ory writes and cache line flushes, which is especially harmful

to system performance [46]. FlatFS adopts a write-optimized

compressed key layout to avoid most memory writes and

cache line flushes during key inserts and removes (§4.4).

Component ResolutionComponent-at-a-time Path Walk Model

End

pathname

Input:

pathname
analyzer

prefix permission
checker

path
dispatcher

End

case I

semantic path
component finder

Full-path-at-a-time Path Walk Model

case II

1 2 3 4 n-1 n

case III

pathname

Input: pathnames

: path walk model switch: resolution cursor

Figure 3: Two Path Walk Models

4 Design and Implementation
4.1 Coordinated File Path Walk
Coordinated file path walk applies two path walk models

to resolve a pathname. A path component could be in five

different forms: “.” (dot), “..” (dot-dot), normal file, directory,

and symbolic link (symlink). Figure 3 illustrates these two

path walk models. The component-at-a-time path walk model

resolves path component one by one while the full-path-at-a-

time path walk processes the whole pathname at a time. This

section describes how our path walk model correctly handle

different kinds of path components and permission checking

as well as coordination between these two models.

Pathname analyzer. The pathname analyzer generates a

canonical pathname without any dots and redundant slashes

by performing lexical processing on the file path. If FlatFS

adopts the Plan 9 lexical file pathname [29], the analyzer re-

solves a dot-dot component by removing the path component

before it. Otherwise, the dot-dot component is handled by the

semantic path component finder, which will be described later.

After analyzing, FlatFS passes the canonical pathname to the

semantic path component finder.

Semantic path component finder. The pathname analyzer

can only handle non-semantic path components. The seman-

tic components (i.e., symbolic links and mount points) are

identified by the semantic path component finder using a key

indexing approach. Specifically, these two kinds of semantic

components have associated entries <path, ino> in the Br

tree. Besides that, there is another special finder entry with

the key path//xFE for each of these components in the Br

tree 1. The finder entry value denotes component type. Ac-

cording to Br tree lookup policy, if there is no equal entry

for the requested key, the first entry whose key is greater

than the requested key is returned. For example, if the file

path is /a/./b/link/c where link is a symlink, the asso-

ciated finder entry key is /a/b/link//xFE. The pathname

analyzer output is /a/b/link/c. Because /a/b/link//xFE
is the first key that is greater than /a/b/link/c, this finder
entry is returned during Br tree lookup.

Further, there is a remaining problem in finder design:

a symlink following a dot-dot component. Suppose a path

is a/symlink/.. in which symlink points to b/c, and the

symlink element is removed after pathname analyzing. In

1The ASCII character /xFF is reserved for shadow entry, see §4.3

902 2022 USENIX Annual Technical Conference USENIX Association

UID
16bit 16bit 3bit 13bit 16bit

owner other
group

GID 010 reserved depthPPC:

(a) Directory-depth based Prefix Permission Compression

UID 010 reservedGID 4
UID 010 reservedGID 2

UID 010 reservedGID 2

UID 010 reservedGID 2

/usr/src/dir

a/a/1

b/b/2

c/c/3
/usr/src/dir/a/a/1
/usr/src/dir/b/b/2
/usr/src/dir/c/c/3

Path-suffix
PPC

Path-prefix PPC

(b) File-path based Prefix Permission Compression

chmod 770 /usr/src/dir UID 010 reservedGID 2

UID 110 reservedGID 1

UID 010 reservedGID 1

UID 010 reservedGID 4
decompress

/usr/src

dir

a/usr/src/dir/a

(c) Path-prefix PPC Decompression

Figure 4: Two-dimensional Prefix Permission Compression

contrast, the component-at-a-time path walk will follow the

symlink and generate a resolution result a/b. One solution is

using the finder to check whether the current resolved path

contains a symlink whenever meeting a dot-dot component

during pathname analyzing. This approach degrades path

walk performance if there are many dot-dot components in

a file path. Another solution is using Plan 9 lexical file path-

name [29]. It has better performance but causes compatibility

issues. To address this dilemma, FlatFS lets users decide

which file path type during file system mount.

If there are no semantic components in a path, FlatFS di-

rectly uses the pathname to search the namespace Br tree to

find the associated file inode.

Prefix permission checker. When the user accesses a file,

the file system verifies whether the calling process has the

execute permission for each directory listed in the file path.

We call it prefix permission checking. FlatFS separates the

prefix permission checking from the pathname lookup and

adopts two-dimensional prefix permission compression to

reduce checking performance costs.

First, directories in a file path often have same permis-

sion fields [15]: UID, GID, execute permission bit. FlatFS

compresses these directory permission fields into a structure

called prefix permission compressor (PPC for abbreviation),

as shown in Figure 4a. The depth field denotes how many

levels of directories are compressed in this PPC. Second,

PPCs of those directories whose index keys are in the same

Br tree leaf node also can be compressed based on the file

path (depicted in Figure 4b). The permission fields of the

file path prefix are compressed into the path-prefix PPC. The

permission fields of the remaining file path are compressed

into the path-suffix PPC. File-path-based prefix permission

compression is helpful in batching PPC updates.

A directory permission change may cause PPC decompres-

sion. Figure 4c illustrates a path-prefix PPC is decompressed

into three PPCs caused by a chmod. Every new PPC records

compressed permission fields of a sub-file path. Moreover,

this decompression is propagated to PPC of all sub-directories

and associated files under /usr/src/dir directory. Fortu-

nately, the file-path-based compression reduces update costs.

If keys in a leaf node share a prefix /usr/src/dir, only the

path-prefix PPC in tree leaf node is updated. Further, as di-

rectory permission changing are rare operations reported in a

recent research paper [15], the PPC decompression incurs a

slight performance impact on realistic applications.

The PPC allows batching permission checking. When per-

forming a prefix permission checking, the task uses its cre-

dential to verify the UID and GID in both path-prefix and

corresponding path-suffix PPCs. Then, it compares the direc-

tory depth of the file path and total execution bits compressed

in path-prefix and path-suffix PPCs. If they are equal, file

access permission is granted. For a relative file path, FlatFS

extracts associated permission bits in path-prefix and path-

suffix PPCs according to the path to be checked, and then

performs permission checking.

The symlink and dot-dot components require careful con-

sideration to preserve the semantic. If a symlink points to

an absolute path, it may cause a namespace switch. FlatFS

performs prefix permission checking on file path parts which

belong to its namespace. Similarly, when adopting non-lexical

file paths, FlatFS also performs prefix permission checking

on path components before the dot-dot component. Overall,

current POSIX prefix permission checking specification is

more beneficial to the traditional path walk model.

Path dispatcher. Path components like dot-dot, symbolic

link, and mount point could cause namespace switches during

path walk. The path dispatcher performs a namespace switch

and sends the pathname to the path walk model. Although

the destination namespace may be hierarchical or flat (case

I & II in Figure 3), the switch procedure is the same, mainly

including mount point switch, pathname cursor adjustment,

and other environment setups. In addition, If a symlink points

to a relative file path (case III in Figure 3), the path dispatcher

generates a new file path by resolving the symbolic link and

restarts the whole path walk.

Coordination. A file path walk may involve different path

walk models. These different path walk models are coordi-

nated to resolve a pathname correctly. A path walk model can

be viewed as a black box. Feeding a pathname input, it gener-

ates the resolved pathname output. The key to coordination

is ensuring correct path walk model switch. Specifically, the

VFS uses a pair <mnt point,rootdir> to specify a mounted

file system. We also create one for FlatFS instance, which

is used to switch in or out its namespace. Furthermore, we

add a pathname cursor for each path walk model to indicate

the current resolved pathname position. This cursor feeds a

correct pathname input to the path walk model.

4.2 Range-optimized Index Tree
FlatFS uses a persistent range-optimized Br tree as its index-

ing data structure. The index keys of Br tree are full pathname

byte strings. Figure 7 shows the Br tree leaf node layout. The

tree node is aligned to 256 bytes, which is the optimal Optane

USENIX Association 2022 USENIX Annual Technical Conference 903

h1

h2

.
.

.
.

m k

2
Node Merge

1 Walk Down

(m+k)/2

max min

T2

T1

.
.

<

3 Subtree Insert

(m+k)/2

h1-h2

node1 node2

node0

Figure 5: Tree Join Example: T1�T2 = T

memory access granularity [46]. The keys in the Br tree nodes

are unsorted [12]. Two small pieces of metadata (a bitmap and

an offset array) are added into the leaf node. Br tree adopts

a hand-over-hand locking scheme with a top-down locking

order. Every tree node owns a readers-writer lock.

Directory range operations in flat namespace are more ex-

pensive than the hierarchical namespace tree [47]. Br tree

provides range operations at data structure level to overcome

this challenge. The range operations are realized based on two

novel tree structure primitives: join and split. We use symbol

� and ⊖ to denote tree join and split primitive, respectively.

Also, we define tree node fanout f and total tree items N. The

whole tree is locked during range operations.

Tree join. The � primitive concatenates two smaller trees

T1 and T2 and generates a larger tree T : T1 � T2 = T . The

maximum key in T1 must be smaller than the minimum key in

T2. Figure 5 illustrates an example of joining T1 and T2. These

two tree heights are h1 and h2 respectively, where h1 > h2.

The detailed tree join steps are described as follows. First, we

walk downside the T1 from top level to the level h1 −h2 by

always walking the rightmost tree node in each level (Step

1). Then, we concatenate these two trees by merging node1

and node2 (Step 2). The key numbers of these two nodes

are m and k. If m+k ≤ f , we only need to copy all keys and

children from node2 to node1. Otherwise, the key number of

two nodes is re-balanced as (m+k)/2. These associated keys

and children are moved from node2 to node1. Finally, a new

subtree tree2 is inserted into the parent node node0 (Step 3).

The time complexity of tree join � is O(∣h1−h2∣).
Tree split. The ⊖ primitive splits the tree T into two

smaller trees LTree and RTree for split point x: T ⊖ x =
{LTree,RTree}. The maximum key of LTree is less than x
and the minimum key value of RTree is greater than or equal

to x. Figure 6 depicts tree split steps with the split point 9.

At the root node level, we divide all keys in the node1

into two parts. The maximum key of the left part is smaller

than 9. The minimum key of the right part is greater than

or equal to 9. This key division also partitions the tree into

two subtrees L1 and R1. Then, we walk down to the node2

pointed by child C1. The key in node2 is in the range of

[5,20]. Similarly, keys in node2 also can be divided into two

parts. As a result, two subtrees L2 and R2 are generated. This

operation is repeated until reaching the leaf level. Finally,

.
9

.
.

.

.
9

9

9

9. Right Tree Join

Left Tree Join

...

Walk Down

LTree

RTree

Lk Lk-1 L1

...

Rk-1 R1Rk

C1

C2

C3

node1

node2

node3

node4

L1 R1
1 3 5 20 23

5 7 17 19 20

R2

L2

9

9 9

Node Split

Figure 6: Tree Split Example: T ⊖9 = {LTree,RTree}

this tree split generates two small tree sets: {L1,L2, ...,Lk}
and {R1,R2, ...,Rk}. Then, we perform tree join operations on

all trees in each tree set in an ascending order of tree height.

For example, the LTree is generated by joining k subtrees:

L1�L2...�Lk. Finally, the tree T is split into two trees: LTree
and RTree. The time complexity of ⊖ operation is O(log f N+
Σ(hi−h j)) =O(log f N).

Range operation. Br tree provides four range operations:

range query, range slice, range insert, range update. The

range query operation workflow is the same as a textbook B+

tree. The range slice operation detaches a subtree t from the

original tree T with a given key range [kl ,kr]. The detailed

range slice steps formulate as follows:

T ⊖kl = {p,q}⇒ q⊖kr = {t,r}⇒ p� r = T ′ (1)

First, we split the tree T into two parts {p,q} for kl using

a ⊖ operation. All keys in tree q are greater than kl . Thus, the

tree q is split again with the key kr. Keys of tree t locate in the

range [kl ,kr]. Consequently, the tree t is the range slice result.

However, the original tree T structure is destroyed by two

split operations. We heal the tree T by using a � operation to

concatenate the p and r. The tree range slice operation is use-

ful in the directory remove and move operation because it can

remove a bunch of indexes for targeted files and directories

from the Br tree at a time.

The tree range insert operation inserts a small tree into

a large tree at a time. There are two cases for a tree range

insert. To insert a tree T2 into another tree T1, if all keys in

T2 are smaller than keys in T1, we can directly join these two

trees: T1�T2 = T ′1 . Otherwise, the tree range insert operation

formulates as follows:

T1⊖keymin = {T ′1 ,Tr}⇒ T ′1 �T2 = T ′′1 ⇒ T ′′1 �Tr = T ′′′1 (2)

The tree T1 is split into T ′1 and Tr with the minimum key

keymin of tree T2. The keys in T ′1 , T2, and Tr are in ascending

order: keyT ′
1
< keyT2

< keyTr . This range insert operation is

achieved by performing two join operations on three trees.

The tree range update modifies the index keys of a specific

range. A naive solution to range update is walking the tree

and updating all index keys in tree nodes. Our Br tree uses

the WoC key design to reduce the key update costs. The WoC

key fetches the common part of all index keys as a key prefix.

Therefore, the range update operation only modifies the key

prefix without updating these keys one by one.

904 2022 USENIX Annual Technical Conference USENIX Association

Leaf node caching. We design a leaf node cache to reduce

tree walk performance costs. Every CPU owns a volatile

in-DRAM node cache structured as a LRU list. The cache

entry stores the leaf node memory address instead of the real

leaf node. Hence, no data synchronization is required among

multiple CPU caches. The Br tree lookup consists of a fast

path and a slow path. The fast path traverses the LRU list,

locks and accesses these real leaf nodes, and searches for the

item with the requested key. If there is a hit, the slow path

that walks the whole tree can be avoided. The leaf node cache

is effective as namespace operations in the real world often

exhibit good locality. For example, creating files in a directory

needs to search the same directory file inode multiple times.

Every leaf node has a reference counter for safe memory

reclamation. Creating a node initializes the counter as one,

and the cache insertion increases the counter. Because the

cache is volatile, no crash safety is needed for counters. They

will be reset as one during remount. A cache entry may refer

to a removed tree node. The removed node with a non-zero

counter is kept in a persistent list for lazy reclamation. Ac-

cessing the removed node is safe since it contains no valid

keys due to the empty bitmap. This node will be recycled

when the associated cache entry is evicted.

4.3 Directory Range System Call
Besides rename, FlatFS designs three new system calls for

directory range operations.

Directory read. FlatFS offers a getdents_recur system

call. This system call lists all files and subdirectories in a

directory recursively (similar to ls -R). To support recursive

range query for a directory, FlatFS introduces two shadow

entries for each directory. Their filenames are the first and

last ASCII character. Keys of all entries in the directory are

delimited by these two shadow entry keys. To perform a

recursive directory reading, FlatFS uses the small shadow

entry key to lookup the tree to find the leaf node. Then, it

repeats this with the other large shadow entry key and fetches

a range of keys at a time. For non-recursive directory reading,

FlatFS uses a directory skip approach. When FlatFS meets the

first shadow entry of a subdirectory during directory scanning,

it skips entries in the subdirectory by performing a tree lookup

with the other shadow entry key.

Directory remove. FlatFS introduces a new system call

rmdir_recur, which is used to remove all files and subdirec-

tories in a directory at a time. In the data structure layer, we

use a range slice to obtain the subtree that contains entries

to be removed from the Br tree. Then, we perform a range

query to this subtree, find inodes of these files and directories,

remove files and directories at the file system layer. To further

reduce the rmdir_recur latency, we also delay freeing the

sliced subtree structure.

Directory copy. FlatFS provides a new system call

cpdir_recur(src, dst), which copies a directory recursively to

another directory. First, the subtree of src directory is sliced

and duplicated. The index key updates of the duplicated tree

are batched. Then, both sliced and duplicated subtrees are

inserted into the Br tree. Then, new metadata are created for

copied files and directories. We follow the default semantic

of cp -r for hard links, i.e., the linking becomes invalid. A

new inode is allocated for the copied hard link and its file

content is the same as the original linked file. Besides, FlatFS

also corrects the inode number of dot and dot-dot of every

directory, making them point to the newly created directory

and its parent directory. Another performance optimization

adopted by cpdir_recur is file data copy-on-write mechanism.

We only duplicate the file mapping of every copied file. The

last level pointers in the file mapping are set as copy-on-write.

Directory move. The directory rename mainly involves

data structure level operation. Similar to directory remove,

the subtree of the src directory is sliced. Then, all index keys

of the subtree are updated with the dst directory. Depicted in

Figure 7, every tree node contains an index key prefix. A key

update traverses the Br tree and iterates over every node. If

the src directory pathname is a substring of the key prefix in

this node, this key update just modifies the key prefix with

the dst directory pathname. Finally, the updated subtree is

inserted into the Br tree.

4.4 Write-optimized Compressed Key
FlatFS uses key compression to reduce storage consumption

and key batch update costs. Every variable-size index key is

divided into a prefix and a suffix. All index keys in the same

tree node share a prefix. However, key compression incurs

performance overheads due to prefix and suffix adjustments.

For example, inserting a key would shrink the prefix and

expand all suffixes, leading to many small data writes, which

causes expensive cache line flushes and write amplification.

Basic idea. We propose WoC key to address this challenge.

WoC key prefetches a number of characters during suffix

expansion. These data are cached in the suffix to avoid future

data movements. Moreover, we also record the prefix size

and the total size of each key. Suppose another key insert

event causes all suffixes to expand and suffix size increasing.

Fortunately, we only need to update the prefix size to represent

all suffix data and size changes.

Furthermore, removing a key may cause all suffixes to

shrink and the prefix to expand. There are no data movements

for suffix shrinking. We append data to the prefix and increase

the prefix size. There is no data prefetch optimization for

the prefix because a tree node only has one prefix, and its

adjustment cost is low. In contrast, every node entry owns a

suffix. Suffix changes lead to high memory write costs.

Detailed Design. Figure 7 shows the key suffix is parti-

tioned into inuse area and cache area. The key suffix addrs
stores suffix memory addresses. The inode number is stored

along with the suffix. The woc-length array contains a set of

eight-bytes woc-length structures. Every index key owns a suf-

fix and a woc-length structure. The total key size key_total_sz

USENIX Association 2022 USENIX Annual Technical Conference 905

offset array

key suffix addrs path-suffix PPC addrs woc-lengths

key_total_sz key_suff_sz
16 bit 16 bit

ino

(a) Br Tree Leaf Node Layout

(b) WoC Index Key Layout

32 bit

valid bitmap dirty bitmap

/ h o m e /

8 / yt x/ d a...
suffix cache area

...d a t

... /

Prefetch 32B

prefix_sz

suffix inuse area

3 l ei... f/d i r

key prefix addr path-prefix PPC

others
woc-length:

prefix_sz

other fields

key_suff_sz

key prefix

key suffix

prefix size

Figure 7: Br Tree Leaf Node and Index Key Layout

T0:

Prefetch 32B

b

a

c

T1:

T2:

T3: c
key prefix

: suffix inuse area: prefix area : suffix cache area

load [c]

load [b,c]

load [a]

c
key suffix

abc

bc

c b

b

a

a

b a

b a

abc
32B

Figure 8: Illustrative Examples of Suffix Prefetch and Caching

and the suffix size key_suff_sz are stored in the woc-length.

The key_suff_sz is the sum of suffix inuse and cache area size.

The inuse area size is key_total_sz− pre f ix_sz. If the cache

area size is smaller than the data to be appended, it indicates

the suffix cache is insufficient and requires another prefetch.

Figure 8 illustrates three examples of how to reduce data

movements with WoC key design. At time T1, one-byte data

a is moved to the suffix area. Instead of moving one char-

acter, we prefetch 32-bytes of data from the prefix memory

area to the suffix memory area. Then we modify prefix_sz
and key_suff_sz and persist these two fields. 32 bytes is the

optimal data prefetch granularity according to evaluation re-

sults. Prefetching 64-bytes data may introduce two cache line

movements if the first byte of prefetched data is not cache-

line aligned. On the other side, a smaller prefetch granularity

introduces more frequent data movements.

The prefetched data are stored in the cache area to avoid

future data movements. For instance, at time T2, two bytes

of data [b,c] are moved to the suffix area. Fortunately, these

two-bytes data are already stored in the suffix cache area. We

only need to update the prefix_sz field to indicate this key

suffix expansion. When the key suffix shrinks at time T3, the

associated data c is appended to the key prefix. There are also

no data movements for this suffix shrinking event.

The key batch update introduces two issues to WoC key

design: (1) if a key batch update modifies the key prefix, the

key_total_sz fields of all key suffixes should be updated; (2)

a key batch update may cause cached data in the suffix to

become stale due to key prefix change. To solve the first

problem, we introduce a Δpre f ix_size field, which denotes

the key size changes to all index keys in a tree node caused by

a batch update. Instead of updating all key_total_sz fields, the

key batch update modifies the Δpre f ix_size. The key suffix

inuse area size is key_total_sz− pre f ix_sz+Δpre f ix_size.

The second problem is addressed by introducing a dirty

suffix bitmap. The bitmap records those key suffixes whose

cached data become stale in the index key batch update. We

query the dirty bitmap before adjust the key suffix. If the

associated suffix cache area is dirty, we clean the suffix cache

area by reseting key_suff_sz as the suffix inuse area size.

4.5 Namespace Crash Consistency
Existing metadata system calls except for rename only in-

troduce tree point operation. The general workflow of these

system calls consists of three steps: (1) pathname lookup; (2)

inode manipulation; (3) tree point operation. Achieving crash

consistency for these system calls is similar. We take creat
system call as an example to describe the approach.

First, the newly allocated inode is logged at the file system

layer. Then, FlatFS inserts a new entry into Br tree. This entry

insert may be a simple leaf node insert or requires a node

split. In the worst case, a leaf node insert causes a key prefix

adjustment, a new key suffix write, a cascade of updates to

other key suffixes, and a valid bitmap update. Thanks to the

WoC key design, we only needs to log 18-bytes data (2-bytes

prefix size, 8-bytes prefix address, and 8-bytes valid bitmap).

Logging key prefix size and address ensures data consistency

for both key prefix and suffix. To be specific, all old suffix

sizes can be restored with logged old prefix size. Then we

reset key_suff_sz as key suffix inuse area size. The key prefix

is also restored using logged old prefix address. In addition,

if there is a node split for this entry insert, the valid bitmaps

of the split node and parent node are also logged.

Ensuring metadata consistency is challenging for directory

range operations as they introduce complicated tree structure

manipulation. We first explain how to ensure crash-safety for

Br tree range operations. Depicted in Figure 5, a tree join

involves three nodes: two merged nodes and a parent node.

The valid bitmaps of these nodes are logged. Ensuring crash

consistency for tree splits is more difficult. Supposing the

tree T height is h, the ⊖ operation splits h nodes at each tree

layer with split point x. The valid bitmap of h nodes is logged.

Next, two new trees L and R are generated by joining these

split trees in two sets separately. It seems difficult to recover

the tree state if a crash occurs during tree joins. A useful

property between � and ⊖ simplifies the crash-consistency

implementation, i.e., ⊖ is the reverse operation of �. The

original tree T can be recovered by joining L and R: L�R =
T . Thus, root node memory addresses of joined trees (i.e.,

{L1, ...,Lk} and {R1, ...,Rk}) are logged. During recovery, we

replay tree join operations with logged root node addresses

and re-generate the namespace tree T with L and R.

The tree range insert and range slice are implemented

based on tree join and split. We already guarantee crash-

906 2022 USENIX Annual Technical Conference USENIX Association

Figure 9: Path Walk Efficiency

safety for tree � and ⊖. Crash consistency of these two tree

operations is achieved based on an important insight. Even

the original namespace tree is temporarily decomposed into

many pieces due to split/join, however, it still can be rebuilt

by joining these subtrees during recovery. Finally, FlatFS also

logs these affected inodes for directory range operations.

5 Evaluation
Our testbed machine has two Intel Xeon Gold 5220R pro-

cessors. Each processor has 24 physical cores running at 2.2

GHz. Every physical core has a private 32 KB L1 cache and

a 1 MB L2 cache. All cores that resided on the same socket

also share a 35.75 MiB last level cache. The hyper-threading

is disabled. Each processor has two integrated memory con-

trollers. The machine has 192 GB (12×16 GB) DRAM, 1.5

TB (12×128GB) Intel Optane DC persistent memory, and a

512 GB Solid State Driver.

We implement FlatFS in Linux kernel 4.15 based on PMFS

file system [31]. FlatFS reuses PMFS data path and journal

mechanism. We compare FlatFS with four NVM file systems

(NOVA [44], PMFS [31], Ext4 [5] and XFS [37]), a full-path-

indexing file system BetrFS [47], a VFS dcache optimized

system (VFS-opt) [40]. BetrFS and VFS-opt work on Linux

3.11.10 and 3.14, respectively. These old kernels do not sup-

port Intel Optane memory. We use Linux brd module to create

a RAM disk for BetrFS and VFS-opt. The RAM disk uses

the fast DRAM to emulate block devices. The device perfor-

mance is better than the Optane memory. We also mount an

Ext4 file system on the RAM disk for VFS-opt.

5.1 Microbenchmark Performance
Path walk efficiency. We evaluate the path walk performance

with different kinds of path components. We stat a file whose

path comprises nine components in the Linux kernel 4.4

source code directory. When dcache is cold, file systems fetch

data from the device, which causes long latency. This prob-

lem is especially serious for BetrFS. BetrFS adopts a stacked

system architecture. A dentry missing event is handled by mul-

tiple software layers. Its path walk latency is 11.93× higher

than FlatFS. The sequential file access results in a hot dcache,

which greatly reduces path walk latency. Fortunately, FlatFS

also achieves low latency thanks to its node cache design. The

VFS-opt delivers the lowest latency (3μs) for its hash-based

full-path-indexing optimization.

VFS and FlatFS handle dot components lexically. Thus, the

(a) Path Walk Scalability (b) Path Walk Sensitivity

Figure 10: Path Walk Scalability and Sensitivity

Table 2: Path Sensitivity to Sequential and Random Access.

H: Br Tree Height; L: File Path Length; N: File Number

Setting H=3, N=104, L=20 H=4, N=105, L=20 H=5, N=106, L=20

System VFS FlatFS VFS FlatFS VFS FlatFS

Seq. 2.05μs 1.63μs 2.04μs 1.63μs 2.05μs 1.63μs

Rnd. 2.11μs 2.19μs 2.24μs 2.54μs 2.26μs 3.66μs

path walk latencies are similar to the cold dcache case. FlatFS

performs semantic path component checking for dot-dot and

symlink components, which incurs an extra namespace tree

query. Even so, FlatFS performs 1.87-28.52× better than oth-

ers for its non-caching namespace design. Finally, we mount

an Ext4 file system under each tested file system. The mount

operation causes a hot dcache for path walk. The performance

results are similar to the hot dcache case. Overall, for a nine-

component path, FlatFS outperforms other file systems sig-

nificantly for the cold dcache and delivers similar latencies

for the hot dcache.

Path walk scalability. We vary path component number

from 1 to 50 to evaluate path walk scalability using stat
syscall. As shown in Figure 10a, when the file path becomes

lengthy, the execution latencies of five file systems (i.e., Be-

trFS, XFS, Ext4, PMFS, NOVA) also increase significantly.

The FlatFS path walk latency (5.1μs) is stable against differ-

ent path lengths. The VFS-opt system achieves a low constant

path walk latency (3μs). We also measure the path walk scal-

ability of hot dcache. When the path component is less than

10, its latency is close to ours. However, its latency increases

5× (10.8μs) varying from 1- to 50- component.

Path walk sensitivity. We evaluate FlatFS path walk sen-

sitivity by changing four variables: Br tree height, Last-Level-

Cache (LLC), path component number, and access pattern.

We create four file sets of different sizes (103, 104, 105, 106)

with tree height H ranging from 2 to 5. We vary the path

length and measure the syscall latency. We make three obser-

vations from Figure 10b. First, hot LLC significantly boosts

FlatFS path walk performance. Second, path walk perfor-

mance is sensitive to tree height, especially for cold LLC.

Resolving a 50-component path in a 5-level Br tree takes

21.61μs, which is 1.64× longer than 1-level Br tree. Third,

path length has a slight impact on FlatFS path walk perfor-

mance. A 50-component path walk is 1.5× longer than 1-

component. In contrast, other file systems deliver 9.8×-16.3×
latency increment in Figure 10a.

USENIX Association 2022 USENIX Annual Technical Conference 907

Table 3: Directory Range Operation Latency (s)

Ext4 XFS NOVA PMFS BetrFS VFS-opt FlatFS
readdir 0.152 0.349 0.208 0.097 0.388 0.157 0.031

rmdir 0.61 1.262 1.131 0.548 3.680 0.736 0.190

cpdir 2.398 2.907 2.334 1.949 4.652 1.829 0.450

mvdir 0.004 0.004 0.004 0.004 0.019 0.004 0.007

Table 2 shows path walk latency of sequential and random

file access. The LLC and VFS dcache is warmed before ex-

periments. FlatFS outperforms VFS for sequential access in

three settings. The reason is batched operations in FlatFS path

walk. To confirm it, we use the perf tool to collect instruction

numbers during syscall execution in setting S3. The profiling

results report that VFS executes 1.43× more instructions than

FlatFS. Random access has a larger impact on FlatFS than

VFS. VFS gains much more benefits from its cached dentries

of the prefix path. Random access causes 3.24× more cache

misses for FlatFS than VFS. As the file size decreases, FlatFS

also achieves better performance for higher LLC hit radio.

Finally, sequential access outperforms random access due to

higher node cache hit radio.

Directory range operation. Table 3 shows four common

directory range operation performance. FlatFS uses four di-

rectory range system calls. For other file systems, we use

ls -R, rm -r, cp -r, and rename instead. All directory range

operations manipulate a Linux kernel 4.4 source code tree.

Reading a directory recursively is well-optimized in FlatFS.

FlatFS reduces directory read latency by up to 12.52× com-

pared to others. These file systems except BetrFS scatter

the dentries in data blocks across the storage device, which

greatly hurts the data locality. For directory removing, FlatFS

obtains performance gains from 2.88× to 19.37× relative to

other file systems. Since namespace traversal is fast in FlatFS,

it benefits directory remove as FlatFS only needs to perform

a simple scan to obtain the entries for de-allocation. Other

file systems require expensive tree traversal to retrieve target

inodes. Also, FlatFS delays freeing the directory subtree to

further reduce the latency.

FlatFS outperforms other file systems by 4.06×-10.34× for

directory copy. Because the directory copy is data I/O dom-

inated. The file data copy-on-write optimization in FlatFS

effectively avoid such performance costs. BetrFS is well-

optimized for HDDs. For ultra-fast NVMs, its stacked archi-

tecture is suboptimal. We find interactions between BetrFS

and the underlying storage device involve many software

layers, which causes high software latencies due to both addi-

tional and duplicated works. Directory move is the only range

operation provided by conventional file systems. Directory

move is cheap for the hierarchical namespace structure, which

only takes 4μs for moving a Linux directory tree. FlatFS also

achieves a low rename latency 7μs using tree-level range op-

eration and batching key update.

5.2 Macrobenchmark Performance
Filebench. We choose two application-level workloads: file-

server and varmail from Filebench [38]. We create a file set

(a) Fileserver (b) Varmail

Figure 11: Performance of Filebench Benchmark

with 100 thousand 4KB files for the fileserver. We stress

the namespace performance by setting the average directory

width as two. Figure 11a shows the fileserver throughput

varying thread number from 1 to 48. FlatFS achieves a 1.79

performance speedup over PMFS. FlatFS and PMFS share the

same file data path but differ in metadata management. When

thread number increases, PMFS suffers from poor scalability

due to its centralized inode table design. NOVA and FlatFS

address this issue with per-CPU inode table design. NOVA

performs worse than FlatFS for its low namespace insert/re-

move performance and fault tolerance costs [45]. NOVA uses

a Radix tree to manage entries in the directory. A create/unlink
inserts/removes the associated entry in the parent directory.

Because a directory only has two files, file creation/removal

incurs high tree management costs.

The centralized journal in Ext4 also causes severe scalabil-

ity issues [19,35]. VFS-opt requires Ext4 to create files, which

accounts for its low scalability. VFS-opt achieves 23% higher

throughput than Ext4 for its dcache optimization. Finally, Be-

trFS exhibits the lowest performance. Since the cache is hot

during execution, we explain it as NVM-unware Bε tree de-

sign. Bε tree adopts big internal (4MB) and leaf nodes (4-11

MB). Moreover, it uses an order maintenance tree (OMT)

to organize entries inside the leaf node. The entry insert or

remove is expensive because it introduces many entry move-

ments and OMT adjustment costs during file create and re-

move. In contrast, FlatFS reduces key management costs dur-

ing tree insert/remove with its write-optimized key design.

In varmail experiment, we create a file set that contains

50 thousand 64-byte files to simulate a large set of small

e-mails in the mailbox. We vary the meandirwidth parame-

ter from 2 to 16. It affects the directory depth of the tested

file set. When the directory depth increases, the path walk

time increases. Therefore, the throughput of all file systems

decreases. FlatFS obtains 14.10%-3.97× higher throughputs

than other file systems due to its fast path walk design. More-

over, varmail workload frequently creates and deletes files.

Besides fast path walk, FlatFS also gains performance benefits

from its high namespace insert/remove performance.

FxMark. We pick MWCM and MWUM benchmarks from

FxMark [25] to measure the file system multicore scalability.

Figure 12a and Figure 12b shows experimental results. We

draw three conclusions from these experiments. First, FlatFS

performs much better than other file systems in file creation

908 2022 USENIX Annual Technical Conference USENIX Association

(a) MWCM (b) MWUM

Figure 12: Scalability of FxMark Benchmark

and removal, which achieves a maximum 2× performance

speedup. Other file systems exhibit low namespace insert/re-

move performance due to inefficient dentry index structure

design. For instance, PMFS uses a linear array to organize

entries in a directory [31]. When there are a large number of

files, searching an entry in the linear array takes long time. We

even fail to run these two benchmarks on PMFS and BetrFS

due to their extremely low dentry search performance.

Second, the inode lock is the major scalability bottleneck

for file creation and removal. All in-kernel file systems includ-

ing FlatFS adopt the same inode locking scheme. Thus, their

performance trends with different thread numbers are similar.

However, FlatFS still outperforms others for its higher names-

pace performance. Third, NUMA impacts greatly affect file

system scalability. Both Figure 12a and Figure 12b show that

all file systems experience a degradation when there exists

remote memory node access beyond 24-threads.

5.3 Factor Analysis of Each Optimization
We analyze the performance benefits of three optimization

techniques in FlatFS.

(a) Node Cache (b) WoC Key

Figure 13: Performance Benefit of Node Cache and WoC Key

Node caching optimization. The node cache design

avoids tree traversal for entries in the same tree node. It is

especially useful for sequential file access. We create four

large directories containing 104, 105, 106, 107 files, respec-

tively. The corresponding Br tree height ranges from three

to six. We create a microbenchmark to access all files in the

directory. Figure 13a shows FlatFS achieves 2.01%-11.07%

performance improvements with node caching optimization.

In addition, when tree height increases, FlatFS obtains more

benefits from tree node caching.

Rename optimization. The rename operation is cheap and

fast in directory tree-based namespace. It takes 0.004s to

move a Linux-4.4 source code repository. We measure two

rename implementations in FlatFS. The slow rename imple-

mentation removes all associated entries in the flat namespace,

updates pathname keys, and then inserts all entries. Its latency

is ten times slower than conventional file systems. Fortunately,

FlatFS improves rename performance with tree range opera-

tion. Its optimized rename takes 0.007s.

WoC key design. We use a microbenchmark to measure

the performance benefits of WoC key design. The microbench-

mark creates a large number of files in a directory. File cre-

ation causes index key prefix and suffix adjustments, which

incurs high data persistence costs. Figure 13b demonstrates

that FlatFS+WoC delivers average 15.94% lower latency than

FlatFS without WoC key optimization. We also use IPMWatch

tool [9] to collect the number of writes received by the mem-

ory controller. Figure 13b shows WoC key design achieves a

nearly 2.64× write reduction.

5.4 Version Control System: Git
We demonstrate FlatFS performance benefits with git appli-

cation. We create a large deep directory tree containing ten

Apache Hadoop 2.10.1 source code repositories [3]. The aver-

age directory depth of all files is 17.71. We use two frequently

used git commands git status and git commit to evalu-

ate file system directory reading and path walk performance.

In the original git status implementation, it traverses the

directory tree of the target repository recursively, reads every

directory entry, validates its state, and puts it into the associ-

ated list according to its state (e.g., untracked). Figure 14a

shows that FlatFS outperforms others by up to 2.21×.

Besides, we also modify the git status implementation

using the getdents_recur syscall in Section 4.3 (denoted as

Git-opt+FlatFS in Figure 14a). The getdents_recur sys-

tem call performs a range query to the target directory and

sub-directories and returns all entries at a time. It greatly

improves git status performance by eliminating expen-

sive hierarchy tree traversal. The optimized git status only

takes 0.6s, which reduces the latency by 4.12× compared to

the unmodified git status command.

The git commit first uses lstat to check the file existence,

then it opens every file and reads its content using a mmap
system call. The massive number of lstat and open syscall in

git commit greatly stresses the path walk efficiency. The ex-

perimental results show that FlatFS reduces the git commit
latency by 13.79%-37.50% compared to others.

(a) Git (b) Psearchy

Figure 14: Git and Psearchy Evaluation Results

USENIX Association 2022 USENIX Annual Technical Conference 909

5.5 File Indexer: Psearchy
Psearchy is a parallel version of searchy [11]. The Psearchy

creates multiple worker threads. Each thread processes a num-

ber of files. Specifically, the thread opens every file, reads file

content, records word positions in a local hash table, sorts

word positions, and persists results in a Berkeley DB file. We

set the local hash table size 16 MB. We also create a dataset

using the taxonomy of known animals from the Catalogue

of Life website [4]. The dataset directory hierarchy is gener-

ated according to the hierarchy of biological classification. It

contains 276,616 files and directories. Because the file size

is small, the psearchy performance is largely dependent on

file open performance. Figure 14b shows that applications

throughput increases as the thread number increases. Among

them, FlatFS always achieves the highest throughputs. How-

ever, scalability issues caused by the glibc qsort function and

VFS inode hash table lock prevent throughput improvements

as thread number increases.

Table 4: Total and stat Syscall Execution Time of Hive

Ext4 XFS NOVA PMFS BetrFS VFS-opt FlatFS
Total 8.44s 8.71s 8.55s 8.50s 8.39s 8.34s 8.28s
Stat 1.46s 1.40s 1.52s 1.34s - - 1.18s
μs/Call 3.07 2.94 3.20 2.81 - - 2.50

Gain 18.4% 15.1% 21.8% 11.0% - -

5.6 Data Warehousing System: Hive
Apache Hive is a data warehousing system that uses database

table partition to improve data query performance [39]. We

use TPC-H benchmark [8] to create a database table for eval-

uation. Then we use table partition technique to generate a

dataset containing 74,090 files and directories. We create a

Hive SQL benchmark to perform queries to all files. The ma-

jor performance bottleneck of Hive is the Java virtual machine.

Therefore, Table 4 shows FlatFS slightly outperforms other

file systems in total execution time.

During Hive execution, We find that stat is the most fre-

quently invoked metadata syscall. To measure the perfor-

mance benefits of our namespace design, we uses the strace
tool [7] to collect the stat syscall execution time. We fail to

profile BetrFS and VFS-opt due to unknown bugs. Table 4

reports that FlatFS achieves 16.58% better performance than

others in stat syscall for its optimized file path walk.

6 Related Works
File Metadata Indexing Optimization. TableFS [32] and

BetrFS [18] share similar idea that utilize existing key-value

stores (LevelDB and TokuDB) to improve metadata index-

ing performance. TableFS [32] aggregates file metadata in

a LevelDB table indexed by a combination of parent direc-

tory inode number and filename string. BetrFS utilizes the

TokuDB to optimize both metadata and data block indexing

performance with their full-path indexing schema [18]. These

two file systems achieve good performance running on hard

disks. However, they introduce new software layers into the

existing storage stack. Our experimental results show that

such stacked system architecture is inefficient for file systems

built for fast NVMs. FlatFS exhibits a non-caching system

architecture to avoid data copy costs for ultra-fast NVMs.

File Path Walk Optimization. ByVFS [41] bypasses the

VFS layer during path component resolution and directly

fetches dentries from the device. Tsai et al. [40] propose

two techniques to improve file path walk performance in the

VFS layer. First, they reduce the pathname lookup latency

using full-path indexing via an in-memory hash table. Second,

they reduce the dcache hit latency by caching the permis-

sion results of file paths. DLFS [21] re-organizes the on-disk

metadata and proposes a hashing-based metadata indexing

solution to improve pathname lookup performance. Directory

range operations (e.g., rename) are expensive in their system.

FlatFS incorporates a full-path-at-a-time path walk model to

accelerate pathname lookup performance.

Namespace Structure Optimization. ReconFS [22] de-

couples the file system namespace as a volatile and a per-

sistent directory tree. It improves system performance and

device endurance by reducing metadata writes to flash mem-

ory. Partition is an efficient solution to improve namespace

scalability. IndexFS [33] proposes a scalable directory service

based on GIGA+ [27] to dynamically partition a large direc-

tory tree across multiple nodes in the distributed environment.

SpanFS [19] is a scalable local file system that distributes

the global namespace into multiple disjoint domains to avoid

contention caused by centralized namespace management.

FlatFS exploits the flat namespace structure to optimize the

namespace lookup and reading operation performance.

7 Conclusion
This paper demonstrates a novel NVM file system FlatFS.

FlatFS exploits flat namespace architecture to improve meta-

data operation performance by proposing three techniques:

a coordinated path walk, a range-optimized Br tree, and a

write-optimized index key layout. Extensive experiments

demonstrate the performance benefits of FlatFS to metadata-

intensive benchmarks and applications. FlatFS is open source

at https://github.com/miaogecm/FlatFS.git.

Acknowledgments
We thank the reviewers for their helpful feedback. We es-

pecially thank our shepherd Haris Volos for the careful,

thorough reading of our paper and valuable suggestions to

improve this paper substantially. This paper is supported

by Fundamental Research Funds for the Central Universi-

ties (No. B220202073, B210201053), National Natural Sci-

ence Foundation of China (No. 61832005, 61872171), CCF-

Huawei Innovation Research Plan (No. CCF2021-admin-270-

202101), Natural Science Foundation of Jiangsu Province

(No. BK20190058), Future Network Scientific Research Fund

Project (No. FNSRFP-2021-ZD-7), Jiangsu Planned Projects

for Postdoctoral Research Funds (No. 2021K635C). Baoliu

Ye is the corresponding author.

910 2022 USENIX Annual Technical Conference USENIX Association

References

[1] Intel 3D XPoint. https://newsroom.intel.com/n
ews-releases/intel-and-micron-produce-brea
kthrough-memory-technology/, 2015.

[2] Google LevelDB. https://github.com/google/le
veldb, 2018.

[3] Apache Hadoop Downloads. https://hadoop.apach
e.org/releases.html, 2021.

[4] Catalogue of Life. https://www.catalogueoflife.
org/data/download, 2021.

[5] Ext4 Disk Layout. https://ext4.wiki.kernel.org
/index.php/, 2021.

[6] Percona TokuDB. https://www.percona.com/soft
ware/mysql-database/percona-tokudb, 2021.

[7] Strace: Trace System Calls and Signals. https://ma
n7.org/linux/man-pages/man1/strace.1.html,

2021.

[8] TPC-H. http://www.tpc.org/tpch/, 2021.

[9] Intel Persistent Memory Watch. https://github.com
/intel/intel-pmwatch, 2022.

[10] Daniel P. Bovet and Marco Cesati. Understand the Linux
Kernel. O’Reilly Media, 2006.

[11] Silas Boyd-Wickizer, Austin T. Clements, Yandong

Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Tap-

pan Morris, and Nickolai Zeldovich. An Analysis of

Linux Scalability to Many Cores. In USENIX Sympo-
sium on Operating Systems Design and Implementation,

pages 1–16, 2010.

[12] Shimin Chen and Qin Jin. Persistent B+-Trees in Non-

Volatile Main Memory. Proceeding of VLDB Endow-
ment, 8(7):786–797, 2015.

[13] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C.

Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Jiwu

Shu. Scalable Persistent Memory File System with

Kernel-Userspace Collaboration. In USENIX Confer-
ence on File and Storage Technologies, pages 81–95,

2021.

[14] Jeremy Condit, Edmund B. Nightingale, Christopher

Frost, Engin Ipek, Benjamin C. Lee, Doug Burger, and

Derrick Coetzee. Better I/O through Byte-addressable,

Persistent Memory. In ACM Symposium on Operating
Systems Principles, pages 133–146, 2009.

[15] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and

Haibo Chen. Performance and Protection in the ZoFS

User-space NVM File System. In ACM Symposium on
Operating Systems Principles, pages 478–493, 2019.

[16] Mingkai Dong and Haibo Chen. Soft Updates Made

Simple and Fast on Non-volatile Memory. In USENIX
Annual Technical Conference, pages 719–731, 2017.

[17] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. Un-

derstanding the Idiosyncrasies of Real Persistent Mem-

ory. Proceeding of VLDB Endowment, 14(4):626–639,

2020.

[18] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-

tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant

Pandey, Phaneendra Reddy, Leif Walsh, Michael A. Ben-

der, Martin Farach-Colton, Rob Johnson, Bradley C.

Kuszmaul, and Donald E. Porter. BetrFS: A Right-

Optimized Write-Optimized File System. In USENIX
Conference on File and Storage Technologies, pages

301–315, 2015.

[19] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu,

Lian Du, Shuai Ma, and Jinpeng Huai. SpanFS: A Scal-

able File System on Fast Storage Devices. In USENIX
Annual Technical Conference, pages 249–261, 2015.

[20] Takayuki Kawahara. Scalable Spin-Transfer Torque

RAM Technology for Normally-Off Computing. IEEE
Design & Test of Computers, 28(1):52–63, 2011.

[21] Paul Hermann Lensing, Toni Cortes, and André

Brinkmann. Direct Lookup and Hash-based Metadata

Placement for Local File Systems. In International Sys-
tems and Storage Conference, pages 1–11, 2013.

[22] Youyou Lu, Jiwu Shu, and Wei Wang. ReconFS: a Re-

constructable File System on Flash Storage. In USENIX
conference on File and Storage Technologies, pages 75–

88, 2014.

[23] Jim Mauro and Richard McDougall. Solaris Internals:
Core Kernel Components, volume 1. Prentice Hall Pro-

fessional, 2001.

[24] Marshall Kirk McKusick, George V Neville-Neil, and

Robert NM Watson. The Design and Implementation
of the FreeBSD Operating System. Pearson Education,

2015.

[25] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and

Taesoo Kim. Understanding Manycore Scalability of

File Systems. In USENIX Annual Technical Conference,

pages 71–85, 2016.

[26] Jiaxin Ou, Jiwu Shu, and Youyou Lu. A High Perfor-

mance File System for Non-Volatile Main Memory. In

USENIX Association 2022 USENIX Annual Technical Conference 911

European Conference on Computer Systems, pages 1–

16, 2016.

[27] Swapnil Patil and Garth A. Gibson. Scale and Concur-

rency of GIGA+: File System Directories with Millions

of Files. In USENIX Conference on File and Storage
Technologies, pages 177–190, 2011.

[28] Ivy Bo Peng, Maya B. Gokhale, and Eric W. Green.

System Evaluation of the Intel Optane Byte-addressable

NVM. In International Symposium on Memory Systems,

pages 304–315, 2019.

[29] Rob Pike. Lexical File Names in Plan 9, or, Getting Dot-

Dot Right. In USENIX Annual Technical Conference,

pages 85–92, 2000.

[30] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and

Jude A. Rivers. Scalable High Performance Main Mem-

ory System using Phase-Change Memory Technology.

In International Symposium on Computer Architecture,

pages 24–33, 2009.

[31] Dulloor Subramanya Rao, Sanjay Kumar, Anil S.

Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh

Sankaran, and Jeff Jackson. System Software for Per-

sistent Memory. In European Conference on Computer
Systems, pages 1–15, 2014.

[32] Kai Ren and Garth A. Gibson. TABLEFS: Enhanc-

ing Metadata Efficiency in the Local File System. In

USENIX Annual Technical Conference, pages 145–156,

2013.

[33] Kai Ren, Qing Zheng, Swapnil Patil, and Garth A. Gib-

son. IndexFS: Scaling File System Metadata Perfor-

mance with Stateless Caching and Bulk Insertion. In

International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 237–

248, 2014.

[34] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:

The Linux B-Tree Filesystem. ACM Transactions on
Storage, 9(3):1–32, 2013.

[35] Yongseok Son, Sunggon Kim, Heon Y. Yeom, and

Hyuck Han. High-Performance Transaction Process-

ing in Journaling File Systems. In USENIX Conference
on File and Storage Technologies, pages 227–240, 2018.

[36] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart,

and R Stanley Williams. The Missing Memristor Found.

Nature, 453(7191):80, 2008.

[37] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Ander-

son, Mike Nishimoto, and Geoff Peck. Scalability in

the XFS File System. In USENIX Annual Technical
Conference, pages 1–14, 1996.

[38] Vasily Tarasov, Erez Zadok, and Spencer Shepler.

Filebench: A Flexible Framework for File System

Benchmarking. Usenix Magazine, 41(1), 2016.

[39] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng

Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete

Wyckoff, and Raghotham Murthy. Hive - A Warehous-

ing Solution Over a Map-Reduce Framework. Proceed-
ing of VLDB Endowment, 2(2):1626–1629, 2009.

[40] Chia-che Tsai, Yang Zhan, Jayashree Reddy, Yizheng

Jiao, Tao Zhang, and Donald E. Porter. How to Get

More Value from Your File System Directory Cache.

In ACM Symposium on Operating Systems Principles,

pages 441–456, 2015.

[41] Ying Wang, Dejun Jiang, and Jin Xiong. Caching or

Not: Rethinking Virtual File System for Non-Volatile

Main Memory. In USENIX Workshop on Hot Topics in
Storage and File Systems, 2018.

[42] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michai-

lidis, Steven Swanson, and Jishen Zhao. Characteriz-

ing and Modeling Non-Volatile Memory Systems. In

International Symposium on Microarchitecture, pages

496–508, 2020.

[43] Michèle Weiland, Holger Brunst, Tiago Quintino, Nick

Johnson, Olivier Iffrig, Simon D. Smart, Christian

Herold, Antonino Bonanni, Adrian Jackson, and Mark

Parsons. An Early Evaluation of Intel’s Optane DC

Persistent Memory Module and its Impact on High-

Performance Scientific Applications. In International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–19, 2019.

[44] Jian Xu and Steven Swanson. NOVA: A Log-structured

File System for Hybrid Volatile/Non-volatile Main

Memories. In USENIX Conference on File and Storage
Technologies, pages 323–338, 2016.

[45] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha

Gangadharaiah, Amit Borase, Tamires Silva, Steven

Swanson, and Andy Rudoff. NOVA-fortis: a Fault-

tolerant Non-Volatile Main Memory File System. In

ACM Symposium on Operating Systems Principles,

pages 478–496, 2017.

[46] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph

Izraelevitz, and Steven Swanson. An Empirical Guide to

the Behavior and Use of Scalable Persistent Memory. In

USENIX Conference on File and Storage Technologies,

pages 169–182, 2020.

[47] Yang Zhan, Alexander Conway, Yizheng Jiao, Eric

Knorr, Michael A. Bender, Martin Farach-Colton,

William Jannen, Rob Johnson, Donald E. Porter, and

912 2022 USENIX Annual Technical Conference USENIX Association

Jun Yuan. The Full Path to Full-Path Indexing. In

USENIX Conference on File and Storage Technologies,

pages 123–138, 2018.

[48] Shengan Zheng, Morteza Hoseinzadeh, and Steven

Swanson. Ziggurat: a Tiered File System for Non-

Volatile Main Memories and Disks. In USENIX Confer-
ence on File and Storage Technologies, pages 207–219,

2019.

USENIX Association 2022 USENIX Annual Technical Conference 913

Artifact Appendix

A.1 Abstract
We provide FlatFS artifact description in this section. FlatFS

is a metadata-optimized NVM file system that features a flat

namespace. This section describes (1) how to build FlatFS on

NVM systems §A.2; (2) how to reproduce the main experi-

mental results of our paper §A.3.

A.2 How to Build FlatFS
This section describes software requirements for FlatFS and

how to build FlatFS.

• OS version: Ubuntu 18.04 or Ubuntu 14.04.6

• Kernel version: Linux 4.15.0

1. Download FlatFS

$ git clone https://github.com/miaogecm/FlatFS.git

This repository contains FlatFS source code which locates

in linux-4.15/fs/flatfs and a modified virtual file sys-

tem that supports coordinated path walk.

2. Compile and Install FlatFS

$ make localmodconfig
$ make menuconfig

Modify the Linux kernel configuration file, and make sure

these two configurations are enabled:

File systems/DAX support
File systems/FlatFS

and disable these four configurations:

Security options/AppArmor support
Security options/Yama support
Security options/TOMOYO Linux support
Security options/Security hooks for pathname based

access control

Compile the kernel

$ make -j

Install the new kernel:

$ make install
$ make modules_install
$ update-grub

Reboot the system:

$ reboot

3. Mount FlatFS

FlatFS can be mounted on a real or an emulated NVM

device. Create a mount directory and mount FlatFS:

$ mkdir /mnt/flatfs
$ mount -t flatfs -o init /dev/pmem0 /mnt/flatfs

4. Umount FlatFS

$ umount /mnt/flatfs

A.3 Experiment Reproducibility
We provide a number of helpful scripts to reproduce the main

experimental results automatically. Specifically, readers could

reproduce Figure 9, Figure 10a, Figure 10b, Figure 11a, Fig-

ure 11b, Figure 14a, Figure 14b, Table 2, Table 3, and Table 4.

Reproducing an experiment takes three steps except for the

Hive experiment.

Step 1. Clean old data:

$./clean

If you are reproducing Table 4, generate data for the exper-

iment first:

$ export TBL_PATH=~/hive/table
$./mktable

Step 2. Collect data for each tested file system, where

FS=ext4,xfs,pmfs,nova,flatfs,betrfs,vfs_opt. The

generated data is saved in a .data file in the current directory.

$./run $FS

Step 3. Draw the figure with collected data:

$./plot.py

More details can be found in evaluation/README.md in

the repository.

914 2022 USENIX Annual Technical Conference USENIX Association

