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Background

 TCP protocol

 Transport-layer network protocol

 Carry over 85% network traffic

 Different implementations

 Kernel-level TCP stacks

 Linux, FreeBSD, NetBSD

 User-level TCP stacks

 mTCP, TLDK, F-Stack
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Background

 TCP stacks are complex and error-prone

 Rich functionalities: reliable transmission, congestion control

 Complex state model

 Various kinds of possible exceptions

 Common bugs in TCP stacks

 Memory bugs: null-pointer dereference, use after free

 Semantic bugs: RFC violation, bad handling of exceptional packet
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Bug study

 Study of TCP stack commits

 87% of bug-fixing commits are related to semantic bugs
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Time
FreeBSD mTCP TLDK

Memory Semantic Memory Semantic Memory Semantic

2017 2 26 2 6 1 11

2018 9 51 0 4 0 4

2019 9 65 1 3 2 5

Total 20 142 3 13 3 20



Example

 Semantic bug fix in FreeBSD TCP stack

 RFC 7323 violation
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FILE: FreeBSD/sys/netinet/tcp_syncache.c 

   int syncache_expand(...) {
           ......
+         /* RFC 7323 PAWS: If we have a timestamp on this segment and
+           * it is less than ts_recent, drop it.
+         if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS && 
+              TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
+                     SCH_UNLOCK(sch);
+                     if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
+                              log(LOG_DEBUG, ...);
+      free(s, M_TCPLOG);
+                     }
+                     return (-1);  /* Do not send RST */
+           }
             ......
   }



TCP stack features

 F1: two-dimensional inputs with dependencies

 Inputs: syscalls, packets

 Syscalls and packets have dependencies with each other

 F2: state model

 Basic model in RFC 793: 11 states and 20 state transitions

 Real-world TCP stacks have many states and state transitions

 F3: semantic rules

 Stipulate how syscalls and packets should be handled

 Explicit rules: defined in RFC documents

 Implicit rules: no explicit description in RFC documents
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Key Techniques

 F1: two-dimensional inputs with dependencies

 Dependency-based strategy to generate effective inputs

 F2: state model

 Transition-guided fuzzing approach to improve the coverage of 

states and state transitions

 F3: semantic rules

 Differential checker to detect semantic bugs
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Dependency-based strategy

 Input sequence mutation

 Item type: packet and syscall

 Select mutation type: deletion, addition, replacement and change

 Generate new items: consider dependencies with previous items
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Dependency-based strategy

 Dependency

 Refer to RFC documents and syscall-usage conventions

 Type: syscall-syscall, packet-packet, syscall-packet

 Examples

 Syscall-syscall: socket, bind, listen and accept are called in 

order when a connection is passive open

 Packet-packet: the order and control flags of three-way handshake 

and four-way handshake packets are never changed

 Syscall-packet: accept can be called only after the three-way 

handshake when a connection is passive open
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Transition-guided fuzzing approach

 Old coverage metric: code coverage

 Describe different states

 Neglect different state transitions
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Transition-guided fuzzing approach

 New coverage metric: Branch transition
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𝑩𝒓𝑻𝒓𝒂𝒏𝒏 =< 𝑩𝒓𝑪𝒐𝒗𝒏, 𝑩𝒓𝑪𝒐𝒗𝒏 − 𝑩𝒓𝑪𝒐𝒗𝒏−𝟏 >

𝑩𝒓𝑻𝒓𝒂𝒏𝒏 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑟𝑎𝑛𝑐ℎ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡_𝑖𝑡𝑒𝑚𝑛

𝑩𝒓𝑪𝒐𝒗𝒏 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑟𝑎𝑛𝑐ℎ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡_𝑖𝑡𝑒𝑚𝑛



Differential checker

 Basic idea

 Different TCP stacks obey identical semantic rules and produce 

identical or similar outputs for the same inputs

 Design

 Provide the same input sequences to different TCP stacks and 

compare their outputs
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Framework

 TCP-Fuzz

 Novel fuzzing framework for testing TCP stacks

 Integrate the three key techniques

 Detect memory and semantic bugs
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Deployment

 Server-client mode

Server: generate test cases and validate data

Client: run the tested TCP stack with third-party sanitizers
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Evaluation

 Experimental setup

 Three user-level and two kernel-level TCP stacks

 Each TCP stack is tested for 48 hours
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Type TCP stack Version LOC

User-level

TLDK v2.0 15K

F-Stack Commit 8d21adc 25K

mTCP Commit 0463aad 18K

Kernel-level
FreeBSD v12.1 171K

Linux v5.6 169K



Testing coverage and found bugs

 Branch transitions > branches

 8 memory bugs and 48 semantic bugs

 40 bugs have been confirmed

16

Stack
Testing coverage Found bugs

Branch Transition Memory/Semantic Confirmed/Fixed

TLDK 1.3K 329.4K 2/26 28/19

F-Stack 7.5K 46.8K 1/6 6/1

mTCP 1.2K 47.9K 5/9 0/0

FreeBSD - - 0/6 5/2

Linux - - 0/1 1/1

Total 10.0K 424.1K 8/48 40/23



Compared to state-of-the-art fuzzers

 Two classical and widely-used fuzzing approaches

 AFL-like: only generates packet sequences

 Syzkaller-like: only generates syscall sequences

 Three open sourced protocol fuzzing approaches

 Boofuzz: github.com/jtpereyda/boofuzz

 Fuzzotron: github.com/denandz/fuzzotron

 AFLNet: github.com/aflnet/aflnet [ICST’20]
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https://github.com/jtpereyda/boofuzz
https://github.com/denandz/fuzzotron
https://github.com/aflnet/aflnet


Compared to state-of-the-art fuzzers

 Testing coverage

 TCP-Fuzz covers more branch transitions than AFL-like and 

Syzkaller-like fuzzers
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Compared to state-of-the-art fuzzers

 Bug detection

 TCP-Fuzz finds more bugs than other fuzzers
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Conclusion

 TCP stacks are complex and error-prone

 TCP-Fuzz

 Dependency-based strategy to generate effective inputs

 Transition-guided fuzzing approach to improve the coverage of 

states and state transitions

 Differential checker to detect semantic bugs

 Find 56 real bugs in 5 widely-used TCP stacks

 Outperform state-of-the-art fuzzers
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