TCP-Fuzz: Detecting Memory and Semantic
Bugs in TCP Stacks with Fuzzing

Yong-Hao Zoul, Jia-Ju Bail, Jielong Zhou?, Jianfeng Tan?,
Chenggang Qin?, Shi-Min Hu?
1Tsinghua University, 2Ant Group

NI EEE] BT
/ ANT GROUP

¥4 Tsinghua University

Background

TCP protocol
Transport-layer network protocol
Carry over 85% network traffic

Different implementations

Kernel-level TCP stacks
o Linux, FreeBSD, NetBSD
User-level TCP stacks

o mTCP, TLDK, F-Stack

Background

TCP stacks are complex and error-prone
Rich functionalities: reliable transmission, congestion control
Complex state model
Various kinds of possible exceptions

Common bugs in TCP stacks
Memory bugs: null-pointer dereference, use after free
Semantic bugs: RFC violation, bad handling of exceptional packet

Bug study

Study of TCP stack commits
87% of bug-fixing commits are related to semantic bugs

_ FreeBSD mTCP TLDK
Time Memory Semantic Memory Semantic Memory Semantic
2017 2 26 2 6 1 11
2018 9 51 0 4 0 4
2019 9 65 1 3 2
Total 20 142 3 13 3 20

Example

Semantic bug fix in FreeBSD TCP stack
RFC 7323 violation

FILE: FreeBSD/sys/netinet/tcp_syncache.c

int syncache_expand(...) {
/*RFC 7323 PAWS: If we have a timestamp on this segment and
*itis less than ts_recent, drop it.
if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS &&
TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
SCH_UNLOCK(sch);
if ((s =tcp_log_addrs(inc, th, NULL, NULL))) {
log(LOG_DEBUG, ...);
free(s, M_TCPLOG);

return (-1); /* Do not send RST */

FFr+++F+F+FF++

TCP stack features

F1:. two-dimensional inputs with dependencies
Inputs: syscalls, packets
Syscalls and packets have dependencies with each other

F2. state model
Basic model in RFC 793: 11 states and 20 state transitions
Real-world TCP stacks have many states and state transitions
F3: semantic rules
Stipulate how syscalls and packets should be handled

Explicit rules: defined in RFC documents
Implicit rules: no explicit description in RFC documents

Key Technigues

o F1: two-dimensional inputs with dependencies
» Dependency-based strategy to generate effective inputs

o F2: state model

» Transition-guided fuzzing approach to improve the coverage of
states and state transitions

o F3: semantic rules
» Differential checker to detect semantic bugs

Dependency-based strategy

Input sequence mutation
ltem type: packet and syscall
Select mutation type: deletion, addition, replacement and change
Generate new items: consider dependencies with previous items

Previously handled items Item being Items to be handled
P A handled A
Item, Item, Item; Item, Items | eeeee Item,
\ / Item: syscall or packet
X Select mutation type

Handling order :>

Consider dependencies with previous items |
to generate new item

Dependency-based strategy

Dependency
Refer to RFC documents and syscall-usage conventions
Type: syscall-syscall, packet-packet, syscall-packet

Examples

Syscall-syscall: socket, bind, listen and accept are called in
order when a connection is passive open

Packet-packet: the order and control flags of three-way handshake
and four-way handshake packets are never changed

Syscall-packet: accept can be called only after the three-way
handshake when a connection is passive open

Transition-guided fuzzing approach

Old coverage metric: code coverage
Describe different states
Neglect different state transitions

Test case T1: Covered states: Test case T2: Covered states:
e $1,S2,S3 e $1,S2,S3
Covered state transitions: Covered state transitions:

$1->582, 52->53 S1->83, $3->52

Transition-guided fuzzing approach

New coverage metric: Branch transition

BrTran,, =< BrCov,,, BrCov,, — BrCov,,_1 >

BrTran,, is the branch transition of input_item,,
BrCov,, is the branch coverage of input_item,,

Input itemO:

Input item1:

Branch coverage0

BR1

BR2

BR3

BR4

0

1

0

Branch coveragel

Subtractio

BR1

BR2

BR3

BR4

Branch transitionl

BR1

BR2

BR3

BR4

1

0

1

0

1

BRC1

BRC2

BRC3

BRC4

|
J

1

-1

Differential checker

Basic idea

Different TCP stacks obey identical semantic rules and produce
identical or similar outputs for the same inputs

Design

Provide the same input sequences to different TCP stacks and
compare their outputs

4>(TCP stack 1)—b Outputs 1 —l
Input . . .
TCP stack 2 Outputs 2 —»| Comparer —»| inconsistencies
sequences

A

TCP stack 3

(reference stack) Outputs 3

Framework
TCP-Fuzz

Novel fuzzing framework for testing TCP stacks
Integrate the three key techniques
Detect memory and semantic bugs

Source code of
TCP stacks

Code
analyzer

Fuzzing loop

Test -case Ru ntime
generator monltor

TCP-Fuzz

v

Bug
checkers
L 4

TCP stacks

Input Runtlme
sequences information

4

Deployment

Server-client mode
o Server: generate test cases and validate data
o Client: run the tested TCP stack with third-party sanitizers

TCP stack 1
‘////)' Client 1
TCP stack 2 Bug checker:
S < > Client 2 > differential checkeD

\ TCP stack 3

Client 3

Evaluation

Experimental setup

Three user-level and two kernel-level TCP stacks

Each TCP stack is tested for 48 hours

Type TCP stack Version LOC
TLDK v2.0 15K
User-level F-Stack Commit 8d21adc 25K
mTCP Commit 0463aad 18K
FreeBSD v12.1 171K

Kernel-level
Linux v5.6 169K

Testing coverage and found bugs

Branch transitions > branches
8 memory bugs and 48 semantic bugs
40 bugs have been confirmed

Stack Testing coverage Found bugs
Branch Transition Memory/Semantic Confirmed/Fixed
TLDK 1.3K 329.4K 2126 28/19
F-Stack 7.5K 46.8K 1/6 6/1
mTCP 1.2K 47.9K 5/9 0/0
FreeBSD - - 0/6 5/2
Linux - - 0/1 1/1
Total 10.0K 424.1K 8/48 40/23

Compared to state-of-the-art fuzzers

Two classical and widely-used fuzzing approaches
AFL-like: only generates packet sequences
Syzkaller-like: only generates syscall sequences

Three open sourced protocol fuzzing approaches
Boofuzz: github.com/jtpereyda/boofuzz

Fuzzotron: github.com/denandz/fuzzotron
AFLNet: github.com/aflnet/aflnet [ICST 20]

https://github.com/jtpereyda/boofuzz
https://github.com/denandz/fuzzotron
https://github.com/aflnet/aflnet

Compared to state-of-the-art fuzzers

Testing coverage

TCP-Fuzz covers more branch transitions than AFL-like and
Syzkaller-like fuzzers

2 400K -
5

2
= 300K |

s TCP-Fuzz
50K -
40K |
30K
20K

......
‘ejem p wm, e @p o e ¢,

8 16 24 32 40 48
Time (h)

(a) TLDK

------ AFL-like === = Syzkaller-like
50K
40K
K| 7 e
ok | e
................ 10K |
i g e — T
8 16 24 32 40 48 0 8 16 24 32 40 48
Time (h) Time (h)
(b) F-Stack (c) mTCP

Compared to state-of-the-art fuzzers

Bug detection
TCP-Fuzz finds more bugs than other fuzzers

30 28

% O Memory bug [Semantic bug
.
0 /ﬁ o 5;,;4% 1

TCP-Fuzz AFL-like Syzkaller-like Boofuzz Fuzzotron AFLNet

Conclusion

TCP stacks are complex and error-prone

TCP-Fuzz
Dependency-based strategy to generate effective inputs
Transition-guided fuzzing approach to improve the coverage of
states and state transitions
Differential checker to detect semantic bugs

Find 56 real bugs in 5 widely-used TCP stacks
Outperform state-of-the-art fuzzers

Thanks

Yong-Hao Zou
E-mail: zouyhl9@mails.tsinghua.edu.cn

TEZE] e
o ANT GROUP

Tsinghua University

