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Background

 TCP protocol

 Transport-layer network protocol

 Carry over 85% network traffic

 Different implementations

 Kernel-level TCP stacks

 Linux, FreeBSD, NetBSD

 User-level TCP stacks

 mTCP, TLDK, F-Stack
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Background

 TCP stacks are complex and error-prone

 Rich functionalities: reliable transmission, congestion control

 Complex state model

 Various kinds of possible exceptions

 Common bugs in TCP stacks

 Memory bugs: null-pointer dereference, use after free

 Semantic bugs: RFC violation, bad handling of exceptional packet
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Bug study

 Study of TCP stack commits

 87% of bug-fixing commits are related to semantic bugs
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Time
FreeBSD mTCP TLDK

Memory Semantic Memory Semantic Memory Semantic

2017 2 26 2 6 1 11

2018 9 51 0 4 0 4

2019 9 65 1 3 2 5

Total 20 142 3 13 3 20



Example

 Semantic bug fix in FreeBSD TCP stack

 RFC 7323 violation
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FILE: FreeBSD/sys/netinet/tcp_syncache.c 

   int syncache_expand(...) {
           ......
+         /* RFC 7323 PAWS: If we have a timestamp on this segment and
+           * it is less than ts_recent, drop it.
+         if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS && 
+              TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
+                     SCH_UNLOCK(sch);
+                     if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
+                              log(LOG_DEBUG, ...);
+      free(s, M_TCPLOG);
+                     }
+                     return (-1);  /* Do not send RST */
+           }
             ......
   }



TCP stack features

 F1: two-dimensional inputs with dependencies

 Inputs: syscalls, packets

 Syscalls and packets have dependencies with each other

 F2: state model

 Basic model in RFC 793: 11 states and 20 state transitions

 Real-world TCP stacks have many states and state transitions

 F3: semantic rules

 Stipulate how syscalls and packets should be handled

 Explicit rules: defined in RFC documents

 Implicit rules: no explicit description in RFC documents
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Key Techniques

 F1: two-dimensional inputs with dependencies

 Dependency-based strategy to generate effective inputs

 F2: state model

 Transition-guided fuzzing approach to improve the coverage of 

states and state transitions

 F3: semantic rules

 Differential checker to detect semantic bugs
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Dependency-based strategy

 Input sequence mutation

 Item type: packet and syscall

 Select mutation type: deletion, addition, replacement and change

 Generate new items: consider dependencies with previous items
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Dependency-based strategy

 Dependency

 Refer to RFC documents and syscall-usage conventions

 Type: syscall-syscall, packet-packet, syscall-packet

 Examples

 Syscall-syscall: socket, bind, listen and accept are called in 

order when a connection is passive open

 Packet-packet: the order and control flags of three-way handshake 

and four-way handshake packets are never changed

 Syscall-packet: accept can be called only after the three-way 

handshake when a connection is passive open
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Transition-guided fuzzing approach

 Old coverage metric: code coverage

 Describe different states

 Neglect different state transitions

10



Transition-guided fuzzing approach

 New coverage metric: Branch transition
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𝑩𝒓𝑻𝒓𝒂𝒏𝒏 =< 𝑩𝒓𝑪𝒐𝒗𝒏, 𝑩𝒓𝑪𝒐𝒗𝒏 − 𝑩𝒓𝑪𝒐𝒗𝒏−𝟏 >

𝑩𝒓𝑻𝒓𝒂𝒏𝒏 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑟𝑎𝑛𝑐ℎ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡_𝑖𝑡𝑒𝑚𝑛

𝑩𝒓𝑪𝒐𝒗𝒏 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑟𝑎𝑛𝑐ℎ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡_𝑖𝑡𝑒𝑚𝑛



Differential checker

 Basic idea

 Different TCP stacks obey identical semantic rules and produce 

identical or similar outputs for the same inputs

 Design

 Provide the same input sequences to different TCP stacks and 

compare their outputs
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Framework

 TCP-Fuzz

 Novel fuzzing framework for testing TCP stacks

 Integrate the three key techniques

 Detect memory and semantic bugs
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Deployment

 Server-client mode

Server: generate test cases and validate data

Client: run the tested TCP stack with third-party sanitizers
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Evaluation

 Experimental setup

 Three user-level and two kernel-level TCP stacks

 Each TCP stack is tested for 48 hours
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Type TCP stack Version LOC

User-level

TLDK v2.0 15K

F-Stack Commit 8d21adc 25K

mTCP Commit 0463aad 18K

Kernel-level
FreeBSD v12.1 171K

Linux v5.6 169K



Testing coverage and found bugs

 Branch transitions > branches

 8 memory bugs and 48 semantic bugs

 40 bugs have been confirmed
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Stack
Testing coverage Found bugs

Branch Transition Memory/Semantic Confirmed/Fixed

TLDK 1.3K 329.4K 2/26 28/19

F-Stack 7.5K 46.8K 1/6 6/1

mTCP 1.2K 47.9K 5/9 0/0

FreeBSD - - 0/6 5/2

Linux - - 0/1 1/1

Total 10.0K 424.1K 8/48 40/23



Compared to state-of-the-art fuzzers

 Two classical and widely-used fuzzing approaches

 AFL-like: only generates packet sequences

 Syzkaller-like: only generates syscall sequences

 Three open sourced protocol fuzzing approaches

 Boofuzz: github.com/jtpereyda/boofuzz

 Fuzzotron: github.com/denandz/fuzzotron

 AFLNet: github.com/aflnet/aflnet [ICST’20]
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https://github.com/jtpereyda/boofuzz
https://github.com/denandz/fuzzotron
https://github.com/aflnet/aflnet


Compared to state-of-the-art fuzzers

 Testing coverage

 TCP-Fuzz covers more branch transitions than AFL-like and 

Syzkaller-like fuzzers
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Compared to state-of-the-art fuzzers

 Bug detection

 TCP-Fuzz finds more bugs than other fuzzers

19



Conclusion

 TCP stacks are complex and error-prone

 TCP-Fuzz

 Dependency-based strategy to generate effective inputs

 Transition-guided fuzzing approach to improve the coverage of 

states and state transitions

 Differential checker to detect semantic bugs

 Find 56 real bugs in 5 widely-used TCP stacks

 Outperform state-of-the-art fuzzers
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