Octo: INT8 Training with Loss-aware Compensation and Backward Quantization for Tiny On-device Learning

Qihua Zhou¹, Song Guo¹, Zhihao Qu², Jingcai Guo¹, Zhenda Xu¹, Jiewei Zhang¹, Tao Guo¹, Boyuan Luo¹, Jingren Zhou³

¹The Hong Kong Polytechnic University, ²Hohai University, ³Alibaba Group

Rise of On-device Learning

Question: how to overcome the challenges of resource constraints? **Solution:** enable quantization-aware training.

Common Compression Methods

(1) Low Rank Factorization

(2) Model Pruning

Common Compression Methods

(1) Low Rank Factorization

Inefficiency:

- Mainly designed for large-scale training tasks
- Cannot fundamentally save computational cost

The Workflow of DNN Training

The Workflow of DNN Training

Bridge the Gap: Data Quantization

Represent a number via low bit width

→ Example: from 32-bit floating-point (FP32) to 8-bit fixed-point numbers (INT8)

Core Operations: (1) Number Discretization and (2) Domain Transformation.

Why We Need Quantization?

The Property of Quantization

- Quantization enables compression (for memory footprint) and acceleration (for computation) in bit level
- → enables on-device learning
- Quantization is more hardware friendly for both generic hardware (e.g., CPU/GPU) and specific chips (e.g., FPGA)
- → suitable for the edge environment

Target

 A good quantization algorithm needs to consider model characteristics, training efficiency and hardware practicality

Potential Gains

Validation Experiments: System performance using INT8 and FP32 training

	Forward Pass (ms)	Backward Pass (ms)	Per-iteration Time (ms)	Parameter Memory (MB)	Model Accuracy
FP32	95.85	140.03	240.06	18.51	97.6%
INT8	54.57	67.66	126.41	9.42	95.2%
Comparison	1.86 $ imes$	2.07×	1.89 $ imes$	1.96 $ imes$	-2.39%

Inspiration: can we achieve the same level of FP32 training performance with only INT8 operations for common on-device learning applications (e.g., image classification)?

What about Existing Quantization Methods?

Limitations:

- #1. Cannot apply to training process.
- #2. Cannot support generic networks without specific structure design.
- #3. Cannot enable hardware-level INT8 acceleration in training phase.
- #4. Cannot make the gradient calibration fit on-device resource restrictions in backward pass.

Workflow of the pertinent Fake QAT:

Target: enable hardware-level INT8 training directly on devices.

Co-design of Network and Training Engine

Challenges:

- #1. How to fundamentally accelerate processing speed on devices?
- → Uniform 8-bit quantization for CONV, Affines, Activations and Gradients.
- #2. How to maintain model quality when using INT8 quantization-aware training?
- → Loss-aware Compensation (LAC): fill the error gap from quantized tensor arithmetic.
- → Parameterized Range Clipping (PRC): bound the transformation domain of quantized gradients.
- #3. How to alleviate system overhead, especially reducing memory footprint?
 → Preserve all the parameters and intermediate derivatives in INT8 format with affine approximation.
- #4. How to make the system **ease-of-use** and compatible with multiple platforms?
- ➔ Embed the hardware-level matrix instructions via C++ and Python hybrid implementation.

Our System: Octo

Handle this approximation: Loss-aware Compensation

Loss-aware Compensation

Compensation Layer: injected at the end of CONVs or FCs

L2-Regularization of Compensation Parameters:

Backward Quantization

Calculation of Derivative Flows for weights *W* and features *X* :

Gradient Recovery:

$$\begin{array}{ll} \displaystyle \frac{\partial L}{\partial X_f} & = & \det(\frac{\partial L}{\partial Y_q}, W_q^\top) \cdot (s_y s_w), \\ \displaystyle \frac{\partial L}{\partial W_f} & = & \det(X_q^\top, \frac{\partial L}{\partial Y_q}) \cdot (s_x s_y), \end{array}$$

Evaluation Setup

Platforms:

- HUAWEI Atlas 200 DK: Ascend 310 AI processor
- NVIDIA Jetson Xavier DK: 6-core Carmel ARM® CPU
- 8 GB RAM, 51.2 GB/s bandwidth

Benchmarks

- Model: GoogleNet, AlexNet, VGG11
- Dataset: CIFAR-10, Fashion MNIST
- Optimizer: Adam, Adagrad, RMSprop

Baselines

- FP32
- Fake QAT

HUAWEI Atlas 200 DK

NVIDIA Jetson Xavier DK

Convergence Results

Octo preservers model accuracy as FP32 does while Fake QAT fails to converge

Ablation Study: Impact of LAC and PRC

	Configuration	Acc. (%)	Gap over FP32 (%)
Fashion MNIST	FP32	97.1	0
	INT8	13	-84.1
	INT8 + LAC	90.4	-6.7
	INT8 + PRC	14.8	-82.3
	INT8 + LAC + PRC	93.6	-3.5
	FP32	93.5	0
CIFAR-10	INT8	11	-82.5
CIFAR-IU	INT8 + LAC	85.2	-8.3
	INT8 + PRC	12.1	-81.4
	INT8 + LAC + PRC	86.7	-6.8

Image Processing Throughput

Images Counted Per Second:

Deep Insight of Feature Distribution

Visualization of Intermediate Feature Distribution:

Maintain Model Accuracy: Octo's compensation layers fills the error gap and achieves similar distribution as FP32 does, while Fake QAT cannot.

System Overhead

Computational Time Cost:

Quantization Overhead:

• Lower than 15%

Per-iteration Time vs. FP32:

```
• 1.73 \times average speedups
```

System Overhead

Memory Footprint:

Conclusion

Octo: a lightweight INT8 training framework for on-device learning

- Hardware-level quantization, which accelerate both forward and backward stages.
- Loss-aware Compensation, which fills the error gap of quantized dot product via an approximated affine transformation.
- **Parameterized Range Clipping**, which maintains bit precision in gradient calculation and avoids offset impact of the zero point via symmetric clipping.
- **Cross-platform prototype system**, which is compatible with different operating systems and can be easily ported to embedded platforms.
- Octo holds higher training efficiency over state-of-the-art quantization training methods, while achieving adequate processing speedup (2.03 ×) and memory reduction (3.37 ×) over the full-precision training.

Thank you!

csqzhou@comp.polyu.edu.hk

https://github.com/kimihe/Octo