
Octo: INT8 Training with Loss-aware Compensation and 
Backward Quantization for Tiny On-device Learning

Qihua Zhou1, Song Guo1, Zhihao Qu2, Jingcai Guo1, Zhenda Xu1, 
Jiewei Zhang1, Tao Guo1, Boyuan Luo1, Jingren Zhou3

1The Hong Kong Polytechnic University, 2Hohai University, 3Alibaba Group



Rise of On-device Learning

2

Distributed ProcessingLarge Models

Send Request and 
Upload Data

Wait Execution and 
Fetch Results

In-cloud Learning:

On-device Learning:

Deploy on Devices

High Latency

Privacy Leakage

Lack Personalization

Huge Cost

Drawbacks:

Resource Saving

Adapt to Limited 
Resources

Personalized Training

Online Applicable

Advantages:

End-to-end 
Implementation

Tiny Models

Distributed ProcessingLarge Models

Send Request and 
Upload Data

Wait Execution and 
Fetch Results

In-cloud Learning:

On-device Learning:

Deploy on Devices

High Latency

Privacy Leakage

Lack Personalization

Huge Cost

Drawbacks:

Resource Saving

Adapt to Limited 
Resources

Personalized Training

Online Applicable

Advantages:

End-to-end 
Implementation

Tiny Models

Distributed ProcessingLarge Models

Send Request and 
Upload Data

Wait Execution and 
Fetch Results

In-cloud Learning:

On-device Learning:

Deploy on Devices

High Latency

Privacy Leakage

Lack Personalization

Huge Cost

Drawbacks:

Resource Saving

Adapt to Limited 
Resources

Personalized Training

Online Applicable

Advantages:

End-to-end 
Implementation

Tiny Models

Distributed ProcessingLarge Models

Send Request and 
Upload Data

Wait Execution and 
Fetch Results

In-cloud Learning:

On-device Learning:

Deploy on Devices

High Latency

Privacy Leakage

Lack Personalization

Huge Cost

Drawbacks:

Resource Saving

Adapt to Limited 
Resources

Personalized Training

Online Applicable

Advantages:

End-to-end 
Implementation

Tiny Models

Small-scale User Data

Backward Propagation 
Blocking

Limited Peak Processing 
Speed

Challenges

System Implementation 

Small-scale User Data

Backward Propagation 
Blocking

Limited Peak Processing 
Speed

Challenges

System Implementation 

Question: how to overcome the challenges of resource constraints?
Solution: enable quantization-aware training.



Common Compression Methods

3

(1) Low Rank Factorization

(2) Model Pruning

(3) Network Sparsification



Common Compression Methods

4

(1) Low Rank Factorization

(2) Model Pruning

(3) Network Sparsification

Inefficiency:
• Mainly designed for large-scale training tasks
• Cannot fundamentally save computational cost



The Workflow of DNN Training

5

What are the fundamental instructions dominating the computational cost?

Convolutional 
(CONV) Layers

Fully Connected (FC) 
Layers

Feature 
Maps Prediction

Loss
Function

Gradients of 
FCs

Gap from 
Ground Truth

Gradients of 
CONVs

Update Model 
Parameters 

Forward Pass 

Backward Pass

Input

Tensor Dot Product (e.g., FP: CONV, Affine, BP: Derivative) based on FP32 format



The Workflow of DNN Training

6

What are the fundamental instructions dominating the computational cost?

Convolutional 
(CONV) Layers

Fully Connected (FC) 
Layers

Feature 
Maps Prediction

Loss
Function

Gradients of 
FCs

Gap from 
Ground Truth

Gradients of 
CONVs

Update Model 
Parameters 

Forward Pass 

Backward Pass

Input

Tensor Dot Product (e.g., FP: CONV, Affine, BP: Derivative) based on FP32 format

How to bridge this gap?

Enable hardware-level quantization-aware 
training (QAT)



Bridge the Gap: Data Quantization

7

Represent a number via low bit width
è Example: from 32-bit floating-point (FP32) to 8-bit fixed-point numbers (INT8)

Core Operations: (1) Number Discretization and (2) Domain Transformation.

Formulation:
�

�

SG^ SOT

���� ���
Quantization Level: 2^8=256



Why We Need Quantization?

8

The Property of Quantization
• Quantization enables compression (for memory footprint) and acceleration (for

computation) in bit level
è enables on-device learning

• Quantization is more hardware friendly for both generic hardware (e.g., CPU/GPU)
and specific chips (e.g., FPGA)

è suitable for the edge environment

Target
• A good quantization algorithm needs to consider model characteristics, training

efficiency and hardware practicality



Potential Gains

9

Forward
Pass (ms)

Backward
Pass (ms)

Per-iteration
Time (ms)

Parameter
Memory (MB)

Model
Accuracy

FP32 95.85 140.03 240.06 18.51 97.6% 
INT8 54.57 67.66 126.41 9.42 95.2% 
Comparison 1.86× 2.07× 1.89× 1.96× −2.39% 

Validation Experiments: System performance using INT8 and FP32 training

Inspiration: can we achieve the same level of FP32 training performance with
only INT8 operations for common on-device learning applications (e.g., image
classification)?



What about Existing Quantization Methods?

10

Limitations:

#1. Cannot apply to training process.

#2. Cannot support generic networks without specific structure design. 

#3. Cannot enable hardware-level INT8 acceleration in training phase. 

#4. Cannot make the gradient calibration fit on-device resource restrictions in backward pass. 

Workflow of the pertinent Fake QAT:

Target: enable hardware-level INT8 training directly on devices.

CONV Softmax

Input
Batch

Normalization ReLU FC1

Weight

Loss

Convolutional Layers

FC2

Fully Connected Layers

Fake Quantization Training:

Quantization Dequantization



Co-design of Network and Training Engine

11

Challenges:

#1. How to fundamentally accelerate processing speed on devices?
è Uniform 8-bit quantization for CONV, Affines, Activations and Gradients.

#2. How to maintain model quality when using INT8 quantization-aware training? 
è Loss-aware Compensation (LAC): fill the error gap from quantized tensor arithmetic.
è Parameterized Range Clipping (PRC): bound the transformation domain of quantized 

gradients.

#3. How to alleviate system overhead, especially reducing memory footprint?
è Preserve all the parameters and intermediate derivatives in INT8 format with affine 
approximation.

#4. How to make the system ease-of-use and compatible with multiple platforms?
è Embed the hardware-level matrix instructions via C++ and Python hybrid 
implementation.



Our System: Octo

12

CONV Softmax

Input
Batch

Normalization ReLU FC1

Weight

Loss

Convolutional Layers

FC2

Fully Connected Layers

Dequantization with 
Loss-aware Compensation

Compensation 
L2-Regularizer 

Gradients of:
alpha, mu, offset

Bound Compensation 
Parameters

Octo’s Training:

Asymmetric
Quantization

Operations:
scaling, zero_point, 

rounding
Gradients of:
gamma, beta

Parameterized Range Clipping

Gradients of Dot Product:
X, W

Forward Pass

Backward Pass
Workflow of Octo’s Training:

Step #1 Quantization:

Step #2 Dot Product:
Step #3 Dequantization with Compensation:
Analysis of Error Gap:
Approximation via Affine Transformation:

Handle this approximation: Loss-aware Compensation



Loss-aware Compensation

13

Compensation Layer: injected at the end of CONVs or FCs

Three Learnable Parameters:

Approximated Compensation Term

Scalar: scaling factor Tensor: compensation offset

Tensor: distribution expectation
Element Broadcasting

Bit-wise Shifting

L2-Regularization of Compensation Parameters:

Primary Cross-entropy Error: 
Measure difference between 
prediction y and ground truth t

L2-regularizer: 
reflect compensation performance 
based on ! and "



Backward Quantization

14

Calculation of Derivative Flows 
for weights W and features X :

1

2

2

1

Foward Pass
Backward PassX

W

X·W Y

B

dot +

Gradient Recovery:

Parameterized Range Clipping:

�^)ROVVOTM ^)ROVVOTM



Evaluation Setup

15

Platforms:
• HUAWEI Atlas 200 DK: Ascend 310 AI processor 
• NVIDIA Jetson Xavier DK: 6-core Carmel ARM® CPU
• 8 GB RAM, 51.2 GB/s bandwidth

Benchmarks
• Model: GoogleNet, AlexNet, VGG11 
• Dataset: CIFAR-10, Fashion MNIST
• Optimizer: Adam, Adagrad, RMSprop

Baselines
• FP32
• Fake QAT

HUAWEI Atlas 200 DK

NVIDIA Jetson Xavier DK



Convergence Results

16Octo preservers model accuracy as FP32 does while Fake QAT fails to converge



Ablation Study: Impact of LAC and PRC

17



Image Processing Throughput

18

Octo vs. FP32 Inference:
• 2.03× speedups on average

Meaningful to On-device Learning:
• Reduce inference latency
• Improve user experience

Images Counted Per Second:



Deep Insight of Feature Distribution

19

Visualization of Intermediate Feature Distribution:

Maintain Model Accuracy: Octo’s compensation layers fills the error gap and
achieves similar distribution as FP32 does, while Fake QAT cannot.



System Overhead

20

Computational Time Cost:

Quantization Overhead:
• Lower than 15%

Per-iteration Time vs. FP32:
• 1.73× average speedups



System Overhead

21

Memory Footprint:

Average Memory vs. FP32:
• 21.19% reduction

Peak Memory vs. FP32:
• 3.37× reduction



Conclusion

22

Octo: a lightweight INT8 training framework for on-device learning

• Hardware-level quantization, which accelerate both forward and backward stages.

• Loss-aware Compensation, which fills the error gap of quantized dot product via an 
approximated affine transformation.

• Parameterized Range Clipping, which maintains bit precision in gradient calculation 
and avoids offset impact of the zero point via symmetric clipping.

• Cross-platform prototype system, which is compatible with different operating 
systems and can be easily ported to embedded platforms.

• Octo holds higher training efficiency over state-of-the-art quantization training 
methods, while achieving adequate processing speedup (2.03×) and memory 
reduction (3.37×) over the full-precision training.



https://github.com/kimihe/Octo

Thank you!
csqzhou@comp.polyu.edu.hk

https://github.com/kimihe/Octo

