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Rise of On-device Learning
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Question: how to overcome the challenges of resource constraints?
Solution: enable quantization-aware training.



Common Compression Methods
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Common Compression Methods

4

(1) Low Rank Factorization

(2) Model Pruning

(3) Network Sparsification

Inefficiency:
• Mainly designed for large-scale training tasks
• Cannot fundamentally save computational cost



The Workflow of DNN Training
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How to bridge this gap?

Enable hardware-level quantization-aware 
training (QAT)



Bridge the Gap: Data Quantization
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Represent a number via low bit width
è Example: from 32-bit floating-point (FP32) to 8-bit fixed-point numbers (INT8)

Core Operations: (1) Number Discretization and (2) Domain Transformation.

Formulation:
�

�

SG^ SOT

���� ���
Quantization Level: 2^8=256



Why We Need Quantization?
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The Property of Quantization
• Quantization enables compression (for memory footprint) and acceleration (for

computation) in bit level
è enables on-device learning

• Quantization is more hardware friendly for both generic hardware (e.g., CPU/GPU)
and specific chips (e.g., FPGA)

è suitable for the edge environment

Target
• A good quantization algorithm needs to consider model characteristics, training

efficiency and hardware practicality



Potential Gains
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Forward
Pass (ms)

Backward
Pass (ms)

Per-iteration
Time (ms)

Parameter
Memory (MB)

Model
Accuracy

FP32 95.85 140.03 240.06 18.51 97.6% 
INT8 54.57 67.66 126.41 9.42 95.2% 
Comparison 1.86× 2.07× 1.89× 1.96× −2.39% 

Validation Experiments: System performance using INT8 and FP32 training

Inspiration: can we achieve the same level of FP32 training performance with
only INT8 operations for common on-device learning applications (e.g., image
classification)?



What about Existing Quantization Methods?
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Limitations:

#1. Cannot apply to training process.

#2. Cannot support generic networks without specific structure design. 

#3. Cannot enable hardware-level INT8 acceleration in training phase. 

#4. Cannot make the gradient calibration fit on-device resource restrictions in backward pass. 

Workflow of the pertinent Fake QAT:

Target: enable hardware-level INT8 training directly on devices.

CONV Softmax

Input
Batch

Normalization ReLU FC1

Weight

Loss

Convolutional Layers

FC2

Fully Connected Layers

Fake Quantization Training:

Quantization Dequantization



Co-design of Network and Training Engine
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Challenges:

#1. How to fundamentally accelerate processing speed on devices?
è Uniform 8-bit quantization for CONV, Affines, Activations and Gradients.

#2. How to maintain model quality when using INT8 quantization-aware training? 
è Loss-aware Compensation (LAC): fill the error gap from quantized tensor arithmetic.
è Parameterized Range Clipping (PRC): bound the transformation domain of quantized 

gradients.

#3. How to alleviate system overhead, especially reducing memory footprint?
è Preserve all the parameters and intermediate derivatives in INT8 format with affine 
approximation.

#4. How to make the system ease-of-use and compatible with multiple platforms?
è Embed the hardware-level matrix instructions via C++ and Python hybrid 
implementation.



Our System: Octo
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Bound Compensation 
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Octo’s Training:

Asymmetric
Quantization

Operations:
scaling, zero_point, 

rounding
Gradients of:
gamma, beta
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Gradients of Dot Product:
X, W

Forward Pass

Backward Pass
Workflow of Octo’s Training:

Step #1 Quantization:

Step #2 Dot Product:
Step #3 Dequantization with Compensation:
Analysis of Error Gap:
Approximation via Affine Transformation:

Handle this approximation: Loss-aware Compensation



Loss-aware Compensation
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Compensation Layer: injected at the end of CONVs or FCs

Three Learnable Parameters:

Approximated Compensation Term

Scalar: scaling factor Tensor: compensation offset

Tensor: distribution expectation
Element Broadcasting

Bit-wise Shifting

L2-Regularization of Compensation Parameters:

Primary Cross-entropy Error: 
Measure difference between 
prediction y and ground truth t

L2-regularizer: 
reflect compensation performance 
based on ! and "



Backward Quantization
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Calculation of Derivative Flows 
for weights W and features X :

1

2

2

1

Foward Pass
Backward PassX

W

X·W Y

B

dot +

Gradient Recovery:

Parameterized Range Clipping:

�^)ROVVOTM ^)ROVVOTM



Evaluation Setup
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Platforms:
• HUAWEI Atlas 200 DK: Ascend 310 AI processor 
• NVIDIA Jetson Xavier DK: 6-core Carmel ARM® CPU
• 8 GB RAM, 51.2 GB/s bandwidth

Benchmarks
• Model: GoogleNet, AlexNet, VGG11 
• Dataset: CIFAR-10, Fashion MNIST
• Optimizer: Adam, Adagrad, RMSprop

Baselines
• FP32
• Fake QAT

HUAWEI Atlas 200 DK

NVIDIA Jetson Xavier DK



Convergence Results

16Octo preservers model accuracy as FP32 does while Fake QAT fails to converge



Ablation Study: Impact of LAC and PRC
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Image Processing Throughput
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Octo vs. FP32 Inference:
• 2.03× speedups on average

Meaningful to On-device Learning:
• Reduce inference latency
• Improve user experience

Images Counted Per Second:



Deep Insight of Feature Distribution
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Visualization of Intermediate Feature Distribution:

Maintain Model Accuracy: Octo’s compensation layers fills the error gap and
achieves similar distribution as FP32 does, while Fake QAT cannot.



System Overhead
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Computational Time Cost:

Quantization Overhead:
• Lower than 15%

Per-iteration Time vs. FP32:
• 1.73× average speedups



System Overhead
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Memory Footprint:

Average Memory vs. FP32:
• 21.19% reduction

Peak Memory vs. FP32:
• 3.37× reduction



Conclusion
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Octo: a lightweight INT8 training framework for on-device learning

• Hardware-level quantization, which accelerate both forward and backward stages.

• Loss-aware Compensation, which fills the error gap of quantized dot product via an 
approximated affine transformation.

• Parameterized Range Clipping, which maintains bit precision in gradient calculation 
and avoids offset impact of the zero point via symmetric clipping.

• Cross-platform prototype system, which is compatible with different operating 
systems and can be easily ported to embedded platforms.

• Octo holds higher training efficiency over state-of-the-art quantization training 
methods, while achieving adequate processing speedup (2.03×) and memory 
reduction (3.37×) over the full-precision training.



https://github.com/kimihe/Octo

Thank you!
csqzhou@comp.polyu.edu.hk

https://github.com/kimihe/Octo

