
Optimistic Concurrency Control
for Real-world Go Programs

Zhizhou (Chris) Zhang1, Milind Chabbi2,
Adam Welc2, and Timothy Sherwood1

1

University of California, Santa Barbara
Programming System Group, Uber Technologies

1

2

Golang and Concurrency

● Go is a modern programming language

o Has similarities with C

● Go is gaining popularity

● Go has concurrency at its core

○ Prefix “go” to any function call for concurrent execution

○ Concurrent function (goroutine): light-weight thread

● Go has 2 concurrency control models:

○ Shared memory (Mutex lock)

○ Message passing (Channel)
2

Mutex Lock à Pessimistic Concurrency Control

● Locks preemptively serialize goroutines

o Regardless of shared variable

● Lock-based serialization can be expensive:

○ 5~30% locking overhead in production code

func update() {
m.Lock()
count++
m.Unlock()

}

3

Do we need to be pessimistic when conflicts are rare?

Optimism with Transactional Memory

● Speculatively execute concurrent regions assuming no conflicting shared memory

accesses

● Abort and retry in case of memory conflict (at least one access is a write)

4

Well-suited for boosting performance of otherwise lock-protected critical sections
(a.k.a. transactional lock elision)

Hardware Transactional Memory (HTM)

● Architectural support for transactional memory

● Available in Intel, PowerPC, and Arm…

● Exploits cache coherence protocol to detect conflict in programmer specified code

regions

● Executes transactions in parallel speculatively

● Many previous studies show HTM is capable of lock elision

func update_HTM() {
tx.begin()
count++
tx.end()

}

5
Why not replace all locks in Go with HTM?

Challenges

● Limitations of HTM implementations

○ Limited capacity in a transactional region

○ Unfriendly instructions to HTM, e.g. syscall

● Therefore performance gain is NOT guaranteed

○ Performance can degrade

● Opportunity:

○ Average Golang developers are not concurrency experts

○ Many low-hanging fruits to optimize critical sections in Go programs
6

Our Solution: GOCC
● A framework to automatically generate HTM patch for Go code

7

Implementation Challenges of GOCC

● Automatically identifying lock-protected critical sections accurately and

efficiently

● Golang quirks:

○ defer

● Function calls in critical sections

● Nested locks

8

func update_defer() {
m.Lock()
defer m.Unlock()
if counter == nil {

return 0
}
return counter.Get()

}

GOCC Lock Identification

● Uses dominator-based analysis to identify lock/unlock pair

● Analyzes instructions protected by lock/unlock pair

o Eliminates lock/unlock pairs containing HTM unfriendly instructions

● Guarantees the correctness of the transformation

● More details please refer to the paper

9

b.Unlock()

a.Lock()

{m, n}

{m, p}
Dom

PDom

Critical
Section Re

gi
on

R

GOCC Runtime Contention Management

● Uses historic HTM success/failure of a critical section to guide future decisions

● Employs a light-weight hash-based perceptron design

● Incorporate several techniques from previous HTM studies to avoid performance

collapse

10

Evaluation

● Test on Intel i9-9900KF with RTM support, 8 cores/16 threads with SMT

● 32GB memory

● Golang version is 1.15.2

● Go lacks standard benchmark programs

● We choose Tally, which is widely used in industry

o Several other benchmarks based on their popularity from GitHub, i.e. concurrent set

11

Benchmark 1: Tally

● Significant (6x) speedup

● Scalable

● Negligible slowdown

12
-1
3.
75

-5
.0
0

-1
0.
48

-9
.8
1

-2
.7
8

-3
.6
9

21
7.
72

12
6.
00

10
4.
00

14
4.
68

-1
.1
2

10
.7
4

42
0.
92

22
8.
40

22
9.
41 28
3.
39

-0
.6
2

17
.6
5

66
0.
71

62
2.
00

-9
.9
1

26
7.
13

1.
00 18
.6
8

-100.00

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Histogram
Existing

Scope
Reporting

/size1

Scope
Reporting

/size10

sensitive (3) non
sensitive (21)

GeoMean

Im
pr

ov
em

en
t i

n
%

1 core
2 cores
4 cores
8 cores

Benchmark 2: Concurrent set

● Significant (10x) speedup

● Scalable

● Negligible slowdown

13
-3
.0
0

-6
.0
0

-2
.9
0

-4
.0
0

-1
0.
62

18
8.
42

10
8.
89

31
0.
06

-1
0.
97

41
6.
08

32
2.
35 46

4.
46

-1
0.
82

57
8.
30

-5
.0
0

10
24

.8
0

-200.00

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

Clear Exists Flatten Len

Im
pr

ov
em

en
t i

n
%

1 core 2 cores 4 cores 8 cores

Conclusions

● Go is concurrency-first language

o Suffers often due to lock-based serialization

● GOCC: speedup Go concurrent programs using HTM in place of lock

● Key idea: change some of the lock some time

● Generates scalable performance with minimum slowdown

● Source-to-source transformer at: https://github.com/uber-research/GOCC

14

Questions: zhizhouzhang@ucsb.edu

Thank you!
Any questions?

https://github.com/uber-research/GOCC
mailto:zhizhouzhang@ucsb.edu

