
MLEE: Effective Detection of Memory
Leaks on Early-Exit Paths in OS Kernels

Wenwen Wang

Memory leaks can cause serious system issues

Performance issues
➔ Increased system response time due to reduced memory resources

Reliability issues
➔ Unavoidable system reboots when leaked objects exhaust memory resources

Security issues
➔ Exploited to launch security attacks, e.g., CVE-2019-12379 and

CVE-2019-8980

2

Many memory leak detectors have been developed

❖ LLVM AddressSanitizer
● Compiler-based code instrumentation

❖ Valgrind Memcheck
● Binary instrumentation with the need of source code

❖ Linux Kernel Memory Leak Detector
● Dynamic garbage collection-based algorithm

❖ And many others

3

However, detecting leaks in OS kernels is still challenging

The Linux kernel memory leak detector is a dynamic detection tool
➢ Cannot cover kernel code that is not executed at runtime

Existing static detection techniques are mainly developed for user applications
➢ Cannot be directly applied to OS kernels, which are much more complicated,

e.g., 25 million source lines in Linux

4

Our focus: memory leaks on early-exit paths

Program paths designed to exit from kernel routines as early as possible

5

 1 /* mm/mempool.c */
 2 int mempool_resize(mempool_t *pool, int new_min_nr) {
 3 …
 4 spin_lock_irqsave(&pool->lock, flags);
 5 if (new_min_nr <= pool->min_nr) {
 6 spin_unlock_irqrestore(&pool->lock, flags);
 7 kfree(new_elements);
 8 return 0;
 9 }
10 …
11 return 0;
12 }

MLEE: detecting memory leaks on early-exit paths

Idea
★ Inconsistent presences of memory deallocations on different early-exit paths

and normal paths → potential memory leaks

Approach
★ Cross-checking presences of memory deallocations on different early-exit

paths and normal paths

6

How MLEE works?

7

LLVM IR

Identifying
Early-Exit Paths

Detecting
Missed

Deallocations

Analyzing
Missed

Deallocations

Reported
Memory Leaks

Kernel
Code

Challenge 1: how to identify early-exit paths?

Problem: the diverse semantics and usage scenarios of early-exit paths in OS
kernels make it difficult to precisely identify early-exit paths

Our solution:
❏ Identifying the unique program statements of an early-exit path

○ Early-exit branch: a particular conditional branch that leads to an
early-exit path

8

Challenge 2: how to analyze memory deallocations?

Problem: a missed memory deallocation may be not needed on a specific
early-exit path

Our solution:
❏ Creating effective static analyses to ensure that the freed object is live, valid

and not used on the early-exit path
❏ Heuristically inferring whether the missed memory deallocation is necessary

9

Experiments

MLEE is implemented as an LLVM tool with multiple analysis passes
● Based on LLVM 8.0.0

Applying MLEE to Linux (version 5.0) to detect memory leaks
● Compiling Linux to LLVM IR with the “allyes” option
● Detection time: around half an hour

10

Analysis results

11

Kernel routines with early-exit paths 121829

Kernel routines with memory deallocations 14540

Kernel routines with both early-exit paths and deallocations 7685

Early-exit branches with missed memory deallocations 126

120 new memory leaks are confirmed

❖ 87 (74.2%) have been fixed using our patches

❖ 16 (13.3%) have been fixed using others’ patches

❖ 15 (12.5%) have been confirmed and we are
working on the final patches

12

drivers/ 60%

sound/ 18%

fs/ 17%

others 5%

A memory leak found by MLEE

13

 1 /* drivers/net/ethernet/mellanox/mlx4/en_rx.c */
 2 int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv)
 3 {
 4 …
 5 err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, ...);
 6 if (err) {
 7 en_err(priv, "Failed to allocate RSS ...\n");
 8 goto rss_err; // rss_map->indir_qp is leaked
 9 } // on this early-exit path.
10 …
11 kfree(rss_map->indir_qp);
12 rss_map->indir_qp = NULL;
13 rss_err:
14 …
15 return err;
16 }

Limitations of MLEE

False negatives
➔ MLEE mainly focuses on memory leaks related to early-exit paths

False positives (18%)
➔ The memory object is deallocated by another kernel thread (8%)
➔ The memory object is deallocated in a callback routine (18%)
➔ Missed memory deallocations are not required (74%)

14

Summary

❖ Memory leaks in critical system software can cause serious system issues

❖ To detect memory leaks in OS kernels, we develop and implement MLEE
✓ MLEE focuses on memory leaks on early-exit paths, which are often

rarely tested in practice
✓ After applying MLEE to the Linux kernel, we found 120 memory leaks

and most of them have been fixed

❖ With more tools like MLEE, more memory leaks can be found and fixed

15

