Experiences in Managing the Performance
and Reliability of a Large-Scale Genomics
Cloud Platform

Michael Hao Tong, Robert L. Grossman, Haryadi S. Gunawi

.— Centerfor
11 - Translational
Data Science

University of Chicago

Introduction

* Bioinformatic pipelines (or workflows) are often long running and can
take days or weeks to complete.

* Bioinformatics is an interdisciplinary subject that develops and uses
algorithms, methods, software, and systems to help humans explore and
understand biological data.

* We share our technical experiences in investigating the performance of
long-running bioinformatics pipelines on the Genomic Data Commons

(GDCQ).
* The GDC processes cancer genomics data (several million core-hours of

data processing per month) and makes available the data to the public
(3.7 PB of data are available today).

I==, Centerfor
il Translational Data Science

CHICAGO

Outline

. Background

1. Bioinformatics Pipeline Platform

2. GDC and GPAS
ll. Workloads in GPAS
lll. Investigate the performance issues
V. Performance management

V. Conclusion and future challenges

I==, Centerfor
il Translational Data Science

CHICAGO

1.1 Abstract of Bioinformatics Pipeline
Platform

* Pipeline specification languages
(and execution engines)
* CWL (cwiltool)
* WDL (Cromwell)
* NextFlow (nextflow)
* efc.

User interface
(Web apps, command line, ...}

Pipeline execution engine

Pipeline specification
(CWL, WDL, NextFlow, ...)

* Pipeline execution model
* Simple parallelization

W (“embarrassingly parallel”)

* MapReduce
Execution environment “ ¢ SpCII’k
(HPC, SLURM, AWS, ...) o o
* Execution environment

* HPC cluster, distributed cluster, cloud

Execution model
(Spark, MapReduce, local

‘E® THE UNIVERSITY OF

® CHICAGO

I—=, Centerfor
thill Transiational Data Science

1.2 GDC and GPAS

* GDC (Genomic Data Commons) co-locates data, storage and
computing infrastructure and is designed to store and analyze cancer
genomics data and associated clinical and imaging data from NCI and
other projects. Data for a single sample is 10 - 100+ GB in size. The
total data volume stored is 7.2 PB, including both public and internal
data.

* GPAS (GDC Pipeline Automation System) is the analysis platform
supporting the GDC. It is built on a large on-premise cluster that
consists of bare-metal nodes and OpenStack/KVM managed VMs. It
uses CWLtool as the pipeline execution engine.

I==, Centerfor
:HI Translational Data Science

CHICAGO

Outline

. Background

ll. Workloads in GPAS

lll. Investigate the performance issues
V. Performance management

V. Conclusion and future challenges

I==, Centerfor
il Translational Data Science

CHICAGO

2. Bioinformatics pipelines

* A bioinformatics pipeline consists of

multiple tasks in which the outputs of £ s
one task are often the inputs of :
another task. : | taskl

: v

* GPAS uses a large variety of | task 2
bioinformatics tools (samtools, BWA, > \,
v

e-I-C.) in -I-he quSkS. E E e e ~
. : task 3 task 4 = sub-pipeline:
) The 1-00'5 are Wri-“-en by th”'d E + + i -
parties in various languages, e
ShoWing differ’ent performqnce ;IIIIIIIIIIIllllllllIIIIIIIIIIIIIIIIIIIIIIIIll:
characteristics in terms of |/O and Figure. Directed graph presentation of a pipeline
computation.

‘E® THE UNIVERSITY OF

& CHICAGO

I==, Centerfor
il Translational Data Science

2.1 Defining performance in the GPAS

Input Data Pipeline

Experimental Tools used in

Strategy a pipeline

Indicates

different Indicates genome Defines

data sources sequencing workloads and
methods data flow

‘E® THE UNIVERSITY OF

® CHICAGO

I==, Centerfor
il Translational Data Science

2.1 Defining performance in the GPAS

* Performance is only comparable within the same pipeline, experimental
strategy, and the same project.

* Performance is measured by

Job execution time

(processing rate: s/GB)

Input data size

I==, Centerfor
:HI Translational Data Science

CHICAGO

Outline

. Background
Il. Workloads in GPAS

lll. Investigate the performance issues
1. Tail performance
2. Investigation

V. Performance management

V. Conclusion and future challenges

I==, Centerfor
il Translational Data Science

CHICAGO

3.1 Tail performance

Variant-Filtration Pindel Pipeline

* Jobs running on bare metal
nodes have stable performance,

showing in the green line whichis
almost vertical. g
g

* Jobs running on VMs have worse
performance and exhibit a long
tail

‘E® THE UNIVERSITY OF

& CHICAGO

I==, Centerfor
il Translational Data Science

o
o

100
80

60 |
40 |
20 |

0

s

/
/

z

=T

full |

Long tail -

0 10 20 30 40 50

Seconds/GB

b)

100

95
90 r

85
80

1 " 1]
Zzoomed
']
I

Bare rhetal
g YMs = =

0 10 20 30 40 50
Seconds/GB

3.2 Investigation
Long running VarScan2 experiments

* VarScan2: variant calling tool, Java

* In the test:
* VM with SSD storage restarts at the 25

beginning | | | | \
* Each VarScan2 task runs with 8 CPUs _ ﬁl \J |

* 5 VarScan2 tasks run in parallel for ~ A |
each experiment (a point in the graph) [T YL
* Between each experiment, VM idles e |

for 30s

* Prior to point B (~1.6 days of VM 1 ’ . . \
uptime), execution time for each 0 / 1 B 2 3 \ 5

N

fresh VM

-
()]

Execution time (hrs)

1 aging VM

experiment is short and stable. VM uptime (days)

* Beyond point B, experiments

become slower and slower VM in fresh state VM in aging state

(Fresh VM) (Aging VM)

‘E® THE UNIVERSITY OF

® CHICAGO

I—=, Centerfor
thill Transiational Data Science

3.2 Investigation

CPU vutilization monitoring
during sysbench fileio benchmark

* CPU slices (in unit of 10ms) since system
boot are recorded in /proc/stat

%

CPU utilization is calculated from /proc/stat User+Sys

UtilRaw =
~ cat /proc/stat

2600 859 53708 91313867 157 0 509 0 0 © UtilDrv (derived) — User + SyS X 100%
201 239 12695 9786048 83 O 259 0 0 O all

548 275 22836 12744462 8 O 165 0 0 O .

383 151 11314 9896924 29 0 39 0 0 © * These two are USUCI“)’ eqqulen’r
324 187 263 14307388 6 0 2 0

368 0 296 10568889 8 O 32 beCCIUSG IN vc:lue
315 7 230 10568142 8 0 16

all = slices_per,_second X t
246 0 211 12658392 9 0 12

0
0
0
0
210 0 5863 10783619 3 0 23 0 0 0 Usually 100

0
0
0
0]
0]

3
0
0]
0]

user,nice,system,idle,iowait,irq,softirq,steal,guest

;@& THE UNIVERSITY OF

® CHICAGO

I—=, Centerfor
thill Transiational Data Science

3.2 Investigation

CPU vutilization monitoring
during sysbench fileio benchmark

* Various experiments were
conducted but there is no
difference in benchmarking
results comparing FreshYM and
AgingVM except for fileio

Utilization (%)

* A gap is presented between
different calculations of CPU
utilization.

e Less times slices are used in the
VM

THE UNIVERSITY OF

CHICAGO

I—=, Centerfor
il Translational Data Science

100]
80 r

60 |
40

20
0

80
60
40 |
20

Aging VM
Utilization on Host
— 100
N\
/[\
; / \
o\ 0
0 153045607590
Time (s)

Utilization on VM

UtilRaw
UtilDrv
sys = = = -

(=-pgap \
0 15 36-45-66"75 90

Time (s)

CHICAGO

3.2 Investigation

CPU vutilization monitoring
during sysbench fileio benchmark
* System CPU is high on the host and

80
60
40 |
20

almost equal to overall CPU utilization, Aging VM
although it is | /O bound workload Utilization on Host
* CPU utilization on host is 82%, while & 128 | ’__'\ | 199
only 27% on the VM. The VM s 60| [/ \
hypervisor works intensively on the E 40 - / ‘\‘ l
host. 5 2/ N\ 0
* This VM is the only tenant on the 015 39 45607590
Time (s)

host.

I—=, Centerfor
thill Transiational Data Science

Utilization on VM

UtilRaw
UtilDrv
sys = = = -

.~ =pgap

4

0 15 30 45 60 75 90
Time (s)

3.2 Investigation

Read latencies in applications on aged VM

Benchmarking: read operation is
affected most in aged VM

Time per process spent in Read and Copy Page
(normalized to single process time)

A read roughly goes through 5 steps in

kernel: 120
100

* Step 1 Check page cache
/O

latency

e Step 2 Synchronized read

Normalized time
()]
o

* Step 3 Send asynchronized read

32 40

7 HN mm
* Step 4 Wait for page ’ . o "
Parallel job number

* Step 5 Copy page to

B Total read M Copy Page

I—=, Centerfor
thill Transiational Data Science

CHICAGO

3.3 Cause: Extended Page Table

* Extended Page Table (EPT) is an implementation of Second Level
Address Translation that manages memory address translations from

guest OS to host OS.

* A miss in EPT, similar to a page fault, is called an EPT violation, and it
will result in a VMEXxit (expensive event).

I==, Centerfor
:HI Translational Data Science

CHICAGO

3.3 Slowdown caused by EPT

EPT violations in the long running experiments

* 5 DNA alignment jobs using 30 CPUs running repeatedly on a fresh VM for more

than 10 days.

* We collect the number of VMExits that handles EPT violation observed over every

other 5 minutes.

a) Average EPT Violations Per 5min

4

X 1M
O = MW

=

-

0

3

6

10 Davs

THE UNIVERSIT)

Elapsed Days

o N B2 O

b) Job Execution Time

]

0

3 6 10Davs

The longer VM has been running, the higher the number of
EPT violations, and the longer execution time.

Ceriter 101

C H ICAG O | ﬂ" Translational Data Science

3.3 Slowdown caused by EPT

EPT violations in the long running experiments

* Address distance of subsequent

EPT violations, measures the level CDF for Subsequent EPT Violation

Address Distance

of memory fragmentation. 100 | H
* When the addresses of o 801 2
subsequent EPT violations are 2 g0l «
farther apart, the memory tends S 40 /" 0-dayold ——
O h 3-day old
to be more fragmented, and a5 6-day old
more EPT violations will occur. 0 10-day old - — -

0 50 100 150 200 250
Address Distance (GB)

I==, Centerfor
il Translational Data Science

CHICAGO

Outline

. Background
ll. Workloads in GPAS
lll. Investigate the performance issues

IV. Performance management
1. Performance monitoring

2. Degradation mitigation

V. Conclusion and future challenges

I==, Centerfor
il Translational Data Science

CHICAGO

4.1 Monitoring
Host-Level EPT Violation Monitoring

* Address distance of subsequent o
EPT violations, measures the level CDF for i%%sequ%]tFPT Violation
of memory fragmentation. ress LISiance

* When the addresses of 100 -
subsequent EPT violations are Qo 80 | g < —
farther apart, the memory tends & 60| /' obviovs i‘ifjr:;‘::f
to be more fragmented, and S 40 g 32 g:: day 3
more EPT violations will occur. O oo 6-da§ old

* Requires tracing on the host, no 0 F 10-day old - —
obvious impact is observed in 0 50 100 150 200 250
experiment. Address Distance (GB)

il Translational Data Science

THE UNIVERSITY OF | p—==- Center for
® CHICAGO

4.1 Monitoring
VM Level /proc/stat Monitoring

* Define vCPU Efficiency

vCPU Efficiency =

* vCPU Efficiency less than 100% means

that VM loses time slices from the host due

Allinvm

allin gost

_ allin VM
t X 100

X 100%

to intensive hypervisor activities.

‘E® THE UNIVERSITY OF

® CHICAGO

—- Centerfor

il

Translational Data Science

X 100%

* This method is simple with low
overhead

* But can only detect the slowdown
when slowdown occurs. It may be
misleading when a lot CPUs are idle

* Heavy workloads use 40 CPUs
* Light workloads use 8 CPUs

vCPU Efficiency(%) | Execution Time
Fresh VM Heavy 99 16.0 hrs
Aged VM Heav 83 39.0 hrs
Fresh VM Light 99 5.4 hrs
Aged VM Light 99 5.6 hrs

4.2 Mitigations

1. Defragmenting Memory

* Built-in defragmentation tool

* Defragmentation increases performance, decreases
VM back to the fresh state.

‘E® THE UNIVERSITY OF

& CHICAGO

EPT violations. However, it cannot make the

VM age Exec. Time (s) | EPT violations
0-day a87 630636
T-day 1073 140677142
7-day, defragmented 847 58607955

—- Centerfor

il

Translational Data Science

4.2 Mitigations

2. Using Public Cloud
* Amazon Web Services, Google Cloud

. Soecialized h . Tests | Min (hrs) | Max (hrs)
pe.cml 'z¢ yp.er.wso.r One on-prem VM 36 10 15.3

* Undisclosed optimizations Amazon Web Services 69 3.6 3.9

e Test Google Cloud Platform 98 5.7 6.0

* Repeatedly running DNA alignment workflow
* On-premise VM starts to slowdown since the 4™ day

* Conclusion
* Provide reliable performance
* Costs are generally higher.

* Limitation of our test: We use dedicated hosts. However, for other normal instances, performance may
be affected unknowingly because of many other factors such as multi-tenancy in the cloud.

‘E® THE UNIVERSITY OF

& CHICAGO

I==, Centerfor
il Translational Data Science

Conclusion and future challenges

1. To the best of our knowledge, we are the first to conduct a prolonged
performance evaluation of virtualization stack for jobs that are both
long running and memory intensive.

2. We hope the contributions of this paper can help other deployments
similar to ours and lead to new research activities (e.g., memory
aging tools).

3. GPAS runs many different heterogenous long-running workloads.
Developing hybrid scheduling algorithms that use both on-premise
clouds and public clouds presents some interesting research
challenges.

I==, Centerfor
il Translational Data Science

CHICAGO

Thank you!

I==, Centerfor
:HI Translational Data Science

CHICAGO

