
Experiences in Managing the Performance
and Reliability of a Large-Scale Genomics

Cloud Platform
Michael Hao Tong, Robert L. Grossman, Haryadi S. Gunawi

University of Chicago

Introduction

• Bioinformatic pipelines (or workflows) are often long running and can
take days or weeks to complete.

• Bioinformatics is an interdisciplinary subject that develops and uses
algorithms, methods, software, and systems to help humans explore and
understand biological data.

• We share our technical experiences in investigating the performance of
long-running bioinformatics pipelines on the Genomic Data Commons
(GDC).

• The GDC processes cancer genomics data (several million core-hours of
data processing per month) and makes available the data to the public
(3.7 PB of data are available today).

Outline

I. Background

1. Bioinformatics Pipeline Platform

2. GDC and GPAS

II. Workloads in GPAS

III. Investigate the performance issues

IV. Performance management

V. Conclusion and future challenges

1.1 Abstract of Bioinformatics Pipeline
Platform

• Pipeline specification languages
(and execution engines)
• CWL (cwltool)
• WDL (Cromwell)
• NextFlow (nextflow)
• etc.

• Pipeline execution model
• Simple parallelization

(“embarrassingly parallel”)
• MapReduce
• Spark

• Execution environment
• HPC cluster, distributed cluster, cloud

1.2 GDC and GPAS

• GDC (Genomic Data Commons) co-locates data, storage and
computing infrastructure and is designed to store and analyze cancer
genomics data and associated clinical and imaging data from NCI and
other projects. Data for a single sample is 10 - 100+ GB in size. The
total data volume stored is 7.2 PB, including both public and internal
data.

• GPAS (GDC Pipeline Automation System) is the analysis platform
supporting the GDC. It is built on a large on-premise cluster that
consists of bare-metal nodes and OpenStack/KVM managed VMs. It
uses CWLtool as the pipeline execution engine.

Outline

I. Background

II. Workloads in GPAS

III. Investigate the performance issues

IV. Performance management

V. Conclusion and future challenges

2. Bioinformatics pipelines

• A bioinformatics pipeline consists of
multiple tasks in which the outputs of
one task are often the inputs of
another task.

• GPAS uses a large variety of
bioinformatics tools (samtools, BWA,
etc.) in the tasks.

• The tools are written by third
parties in various languages,
showing different performance
characteristics in terms of I/O and
computation.

Figure. Directed graph presentation of a pipeline

2.1 Defining performance in the GPAS

Input Data Pipeline

Project Experimental

Strategy

Tools used in

a pipeline

Indicates

different

data sources

Indicates genome

sequencing

methods

Defines

workloads and

data flow

2.1 Defining performance in the GPAS

• Performance is only comparable within the same pipeline, experimental
strategy, and the same project.

• Performance is measured by

𝐽𝑜𝑏 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝐼𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒
(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑒: Τ𝑠 𝐺𝐵)

Outline

I. Background

II. Workloads in GPAS

III. Investigate the performance issues

1. Tail performance

2. Investigation

IV. Performance management

V. Conclusion and future challenges

3.1 Tail performance

Variant-Filtration Pindel Pipeline

• Jobs running on bare metal
nodes have stable performance,
showing in the green line which is
almost vertical.

• Jobs running on VMs have worse
performance and exhibit a long
tail

3.2 Investigation
Long running VarScan2 experiments

• VarScan2: variant calling tool, Java

• In the test:
• VM with SSD storage restarts at the

beginning
• Each VarScan2 task runs with 8 CPUs
• 5 VarScan2 tasks run in parallel for

each experiment (a point in the graph)
• Between each experiment, VM idles

for 30s

• Prior to point B (~1.6 days of VM
uptime), execution time for each
experiment is short and stable.

• Beyond point B, experiments
become slower and slower. VM in fresh state

(Fresh VM)

VM in aging state

(Aging VM)

3.2 Investigation
CPU utilization monitoring

during sysbench fileio benchmark

user,nice,system,idle,iowait,irq,softirq,steal,guest

• CPU slices (in unit of 10ms) since system
boot are recorded in /proc/stat

𝑼𝒕𝒊𝒍𝑹𝒂𝒘 =
𝑈𝑠𝑒𝑟+𝑆𝑦𝑠

𝑡
%

𝑼𝒕𝒊𝒍𝑫𝒓𝒗 (𝑑𝑒𝑟𝑖𝑣𝑒𝑑) =
𝑈𝑠𝑒𝑟 + 𝑆𝑦𝑠

𝑎𝑙𝑙
× 100%

• These two are usually equivalent
because in value

𝑎𝑙𝑙 = 𝑠𝑙𝑖𝑐𝑒𝑠_𝑝𝑒𝑟_𝑠𝑒𝑐𝑜𝑛𝑑 × 𝑡
Usually 100

CPU utilization is calculated from /proc/stat

3.2 Investigation
CPU utilization monitoring

during sysbench fileio benchmark

• Various experiments were
conducted but there is no
difference in benchmarking
results comparing FreshVM and
AgingVM except for fileio

• A gap is presented between
different calculations of CPU
utilization.

• Less times slices are used in the
VM

Aging VM

3.2 Investigation
CPU utilization monitoring

during sysbench fileio benchmark

• System CPU is high on the host and
almost equal to overall CPU utilization,
although it is I/O bound workload

• CPU utilization on host is 82%, while
only 27% on the VM. The VM
hypervisor works intensively on the
host.

• This VM is the only tenant on the
host.

Aging VM

3.2 Investigation
Read latencies in applications on aged VM

A read roughly goes through 5 steps in
kernel:

• Step 1 Check page cache

• Step 2 Synchronized read

• Step 3 Send asynchronized read

• Step 4 Wait for page

• Step 5 Copy page to user

Benchmarking: read operation is

affected most in aged VM

I/O

latency

Time per process spent in Read and Copy Page
(normalized to single process time)

Step 5 Copy page to userMemory

Ops

3.3 Cause: Extended Page Table

• Extended Page Table (EPT) is an implementation of Second Level
Address Translation that manages memory address translations from
guest OS to host OS.

• A miss in EPT, similar to a page fault, is called an EPT violation, and it
will result in a VMExit (expensive event).

3.3 Slowdown caused by EPT
EPT violations in the long running experiments

• 5 DNA alignment jobs using 30 CPUs running repeatedly on a fresh VM for more
than 10 days.

• We collect the number of VMExits that handles EPT violation observed over every
other 5 minutes.

The longer VM has been running, the higher the number of

EPT violations, and the longer execution time.

• Address distance of subsequent
EPT violations, measures the level
of memory fragmentation.

• When the addresses of
subsequent EPT violations are
farther apart, the memory tends
to be more fragmented, and
more EPT violations will occur.

3.3 Slowdown caused by EPT
EPT violations in the long running experiments

Outline

I. Background

II. Workloads in GPAS

III. Investigate the performance issues

IV. Performance management

1. Performance monitoring

2. Degradation mitigation

V. Conclusion and future challenges

4.1 Monitoring
Host-Level EPT Violation Monitoring

• Address distance of subsequent
EPT violations, measures the level
of memory fragmentation.

• When the addresses of
subsequent EPT violations are
farther apart, the memory tends
to be more fragmented, and
more EPT violations will occur.

• Requires tracing on the host, no
obvious impact is observed in
experiment.

Obvious difference

starts to show up at

day 3

4.1 Monitoring
VM Level /proc/stat Monitoring

• Define 𝒗𝑪𝑷𝑼 𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚

𝑣𝐶𝑃𝑈 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑎𝑙𝑙𝑖𝑛 𝑉𝑀

𝑎𝑙𝑙𝑖𝑛 𝐻𝑜𝑠𝑡
× 100%

=
𝑎𝑙𝑙𝑖𝑛 𝑉𝑀

𝑡 × 100
× 100%

• 𝑣𝐶𝑃𝑈 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 less than 100% means
that VM loses time slices from the host due
to intensive hypervisor activities.

• This method is simple with low
overhead

• But can only detect the slowdown
when slowdown occurs. It may be
misleading when a lot CPUs are idle

• Heavy workloads use 40 CPUs

• Light workloads use 8 CPUs

4.2 Mitigations
1. Defragmenting Memory

• Built-in defragmentation tool

• Defragmentation increases performance, decreases EPT violations. However, it cannot make the
VM back to the fresh state.

4.2 Mitigations
2. Using Public Cloud

• Amazon Web Services, Google Cloud

• Specialized hypervisor

• Undisclosed optimizations

• Test

• Repeatedly running DNA alignment workflow

• On-premise VM starts to slowdown since the 4th day

• Conclusion

• Provide reliable performance

• Costs are generally higher.

• Limitation of our test: We use dedicated hosts. However, for other normal instances, performance may
be affected unknowingly because of many other factors such as multi-tenancy in the cloud.

Conclusion and future challenges

1. To the best of our knowledge, we are the first to conduct a prolonged
performance evaluation of virtualization stack for jobs that are both
long running and memory intensive.

2. We hope the contributions of this paper can help other deployments
similar to ours and lead to new research activities (e.g., memory
aging tools).

3. GPAS runs many different heterogenous long-running workloads.
Developing hybrid scheduling algorithms that use both on-premise
clouds and public clouds presents some interesting research
challenges.

Thank you!

