
First Responder: Persistent Memory Simultaneously as
High Performance Buffer Cache and Storage

Hyunsub Song
Shean Kim J. Hyun Kim Ethan JH Park Sam H. Noh

USENIX ATC 2021
UNIST

(Ulsan National Institute of Science and Technology)

TABLE OF
CONTENTS

01 – INTRODUCTION & MOTIVATION

02 – FIRST RESPONDER

03 – EVALUATION

04 – CONCLUSION

2 / 32

TABLE OF
CONTENTS

01 – INTRODUCTION & MOTIVATION

02 – FIRST RESPONDER

03 – EVALUATION

04 – CONCLUSION

3 / 32

Persistent Memory (PM)

MemoryStorage

§ a
• Non-volatility
• Byte-level random access
• Fast access time (nanoseconds)

Persistent Memory Features

Persistent memory is evolving

4 / 32

Evolution of critical path

5 / 32

Evolution of critical path

PM (20~100ns)

6 / 32

Evolution of critical path

PM (20~100ns)

Since the medium is very fast,
the overhead of the critical path should be drastically reduced.

1. Multi-versioning mechanism
2. Long I/O stack
3. Management overhead

We need to rethink the critical path components that cause performance degradation.

7 / 32

Studies that consider PM as storage

▪ PM-dedicated file system and tiered PM file system

8 / 32

PM Targeted File Systems

§ Designed to reap PM performance

SOSP 2009 “BPFS (Better I/O Through Byte-Addressable, Persistent Memory)”
SC 2011 “SCMFS (SCMFS: A File System for Storage Class Memory)”
EuroSys 2014 “PMFS (System Software for Persistent Memory)”
EuroSys 2014 “Aerie (Aerie: Flexible File-System Interfaces to Storage-Class Memory)”
EuroSys 2016 “HiNFS (A High Performance File System for Non-Volatile Main Memory)”
SOSP 2017 “NOVA (NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File System)”
SOSP 2017 “Strata (Strata: A Cross Media File System)”
HotStorage 2019 “EvFS (EvFS: User-level, Event-driven File System for Non- volatile Memory)”
FAST 2019 “Orion (Orion: A Distributed File System for Non-Volatile Main Memory and RDMA-Capable Networks)”
FAST 2019 “Ziggurat (Ziggurat: A Tiered File System for Non- Volatile Main Memories and Disks)”
SOSP 2019 “ZoFS (Performance and Protection in the ZoFS User-space NVM File System)”
SOSP 2019 “SplitFS (SplitFS: Reducing Software Overhead in File Systems for Persistent Memory)”
FAST 2021 “KucoFS (Scalable Persistent Memory File System with Kernel-Userspace Collaboration)”
--
Linux kernel “DAX (Ext4-DAX, XFS-DAX)”

9 / 32

But…

§ PM only
• PM as end destination media
• Replace traditional storage?

− Exception: Strata and Ziggurat

§ Lengthy process to maturity
• E.g., Ext4…still in progress
• Wisdom with age

10 / 32

TABLE OF
CONTENTS

01 – INTRODUCTION & MOTIVATION

02 – FIRST RESPONDER

03 – EVALUATION

04 – CONCLUSION

11 / 32

- FR not only acts as a cache, but also as a storage using its persistent properties

First Responder (FR)

▪ PM-based cache-like layer

Storage

HDD (~10ms)

SAS SSD (~150us)

NVMe SSD (<100us)

Other
I/O Stacks

FR

Application

Intel OPTANE DC

File System

NOVA
Ext4-DAXStrata

Virtual
File System

Intel OPTANE DC

12 / 32

Goals

§ Keep legacy file system and storage media "as-is”

Storage

HDD (~10ms)

SAS SSD (~150us)

NVMe SSD (<100us)

Other
I/O Stacks

FR

Application

Intel OPTANE DC

File System

NOVA
Ext4-DAXStrata

Virtual
File System

Intel OPTANE DC

- FR is implemented in VFS layer
- Modified/added LoC

- ~2900 LoC for FR module
- ~70 LoC in VFS layer

- Any file system can be used
- Minor modifications to file system required

- ~30 LoC modified/added in Ext4 and Btrfs

- Any storage can be used

13 / 32

Goals

§ PM performance
• Lightweight static management

§ Ensure durability/consistency
• Static protocol naturally fulfills this

* Average latency for managing cache for various indexing and management policies

vs.Our static indexing 67ns

Hashing indexing 75ns

* Insert includes mechanism to find empty blocks

14 / 32

Design

§ Internal components of FR

• Chunk: Actual data is stored
• Tag: Some file’s information and the status of chunk are stored

− Key used for indexing: key mod Floor(N/2)
− Bits in Status flag: V (Valid), N (New)

f1 f0 fi fi+1 Underlying
storage device

fi fi fifi fi+1 fi+1

f0 f1f0 f1 f1 fi fi…

fi Stride

f0 Stride
Key0 Keyi

Keyi+1

Key1
Key (7) Time stamp (8)

Status flag (1) (bytes)
File size (8) Inode no. (8)

Chunk

Tag

Chunk

Tag

fi+1 Stride

f1

…
Slot

15 / 32

Sequencing is divided
in 2-way manner

Design

§ Layout of FR

• Static placement/replacement scheme in FR
− Every files have destined location within FR with no PM allocator
à Can result in higher miss rate and collision

16 / 32

f1 f0 fi fi+1 Underlying
storage device

fi fi fifi fi+1 fi+1

f0 f1f0 f1 f1 fi fi…

fi Stride

f0 Stride
Key0 Keyi

Keyi+1

Key1
Key (7) Time stamp (8)

Status flag (1) (bytes)
File size (8) Inode no. (8)

Chunk

Tag

Chunk

Tag

fi+1 Stride

f1

…
Slot

Design

§ Remedies

• Sufficient large FR (>> working set)
• Stride: To eliminate invasion in chunk as much as possible

− Files are positioned apart from each other by stride
• Periodic Flush: To reduce penalty (for clean chunk, there is no penalty for collision)

− Data is written to chunk, is flushed in the background

f1 f0 fi fi+1 Underlying
storage device

fi fi fifi fi+1 fi+1 fi+2 fi+2 fi+2

f0 f1f0 f1 f1 fi fi…

fi Stride

f0 Stride
Key0 Keyi

Keyi+1

Key1

…

Key (7) Time stamp (8)

Status flag (1) (bytes)
File size (8) Inode no. (8)

Chunk

Tag

Chunk

Tag

fi+1 Stride

f1

…
Slot

Keyi+2

fi+2 Stride
fi+1

17 / 32

*Collision occurs when data from files invades
each other’s chunk beyond the stride value

Data consistency protocol

§ Steps taken based on initial condition of slots when write is requested

18 / 32

TABLE OF
CONTENTS

01 – INTRODUCTION & MOTIVATION

02 – FIRST RESPONDER

03 – EVALUATION

04 – CONCLUSION

19 / 32

Performance evaluation

§ System configuration

§ Description of experimental comparison

Notation Description Configuration

PM DRAM Backing storage

FR-X FR applied to Ext4 (X is period value, e.g., 10ms) 128GB 1TB (SSD)

Ext4 Traditional block-based file system 128GB 1TB (SSD)

DM-WC DM-Writecache applied to Ext4 128GB 128GB 1TB (SSD)

DAX PM-aware file system developed based on Ext4 128GB (PM)

NOVA PM-aware file system 128GB (PM)

(128GB)

20 / 32

Standard workloads

§ Benchmarks

• Filebench
− Fileserver: write-intensive workload without fsync() calls
− Varmail and OLTP: have considerable number of fsync() calls

• YCSB (record selection for -D is Latest, while all others are Zipfian)
− Application: RocksDB
− -A, -F: write-intensive workloads
− -C: read-only workload
− -B, -D, -E: read-intensive workloads

21 / 32

Standard workloads

§ Overall performance

Absolute
performance
number

Observations
- [Filebench] For Varmail and OLTP, FR is roughly 94x and 8x better than Ext4 and roughly 4.5x and 1.5x better than DM-WC

FR performance is slightly lower than NOVA, while DAX suffers for Varmail
- [YCSB] FR, NOVA, and DAX show similar performance

Ext4 and DM-WC perform worst for YCSB-A, -B, and -C

22 / 32

Standard workloads

§ Overall performance

Absolute
performance
number

Observations
- [Filebench] For Varmail and OLTP, FR is roughly 94x and 8x better than Ext4 and roughly 4.5x and 1.5x better than DM-WC

FR performance is slightly lower than NOVA, while DAX suffers for Varmail
- [YCSB] FR, NOVA, and DAX show similar performance

Ext4 and DM-WC perform worst for YCSB-A, -B, and -C

23 / 32

Standard workloads

§ Overall performance

Absolute
performance
number

Observations
- [Filebench] For Varmail and OLTP, FR is roughly 94x and 8x better than Ext4 and roughly 4.5x and 1.5x better than DM-WC

FR performance is slightly lower than NOVA, while DAX suffers for Varmail
- [YCSB] FR, NOVA, and DAX show similar performance

Ext4 and DM-WC perform worst for YCSB-A, -B, and -C

24 / 32

Effect of PM size

§ Performance results for PM size of 2xGB, where x is value of points in x-axis
• Normalized to the performance of FR when x = 7 (128GB)

25 / 32

Other interesting results

§ Tail latency § Compensating for extra PM

§ FR applied to Btrfs
§ With different storage devices

26 / 32

Dynamic workload

§ Limitations of standard workloads
• Standard workloads do not capture

the dynamics of real-world workloads
− In terms of pattern

− Standard workloads: Working set does not change with time
− Real-world workloads: Working set grows and shrinks as time evolves

− In terms of operation generation
− Standard workloads: No change in the access intensities of working set over time
− Real-world workloads: Access intensities are also vary with time

à Need for dynamic workload that is more representative of real-world workloads

Working set of standard workload (Fileserver)

Read Write

Fi
le

 ID
 a

nd
 O

ffs
et

Times (sec)

27 / 32

Dynamic workload

§ We devise synthetic workloads using I/O testing tool FIO

Configuration: Total IO size is 575GB
- FIO-6: 6 files, 50GB working set
- FIO-12: 12 files, 100GB working set

(b) Working set (FIO-12)
(a) Characteristics of 21 files used to
generate synthetic workload (FIO)

28 / 32

Dynamic workload

§ Performance results

Observations
- FR provides more than 9x higher aggregate throughput and ended over 3x faster than Ext4
- FR is providing immediately durable in-order semantics
- For NOVA and DAX, cannot run as dataset is larger than PM size

29 / 32

TABLE OF
CONTENTS

01 – INTRODUCTION & MOTIVATION

02 – FIRST RESPONDER

03 – EVALUATION

04 – CONCLUSION

30 / 32

§ First Responder (FR)
• PM-based cache-like layer
• Keep legacy file system and storage media "as-is”
• PM performance

− Respond quickly with in-order file system semantics
− Hide traditional I/O stack overhead

• Ensure durability/consistency
− Protocol implemented with static management

Conclusion

31 / 32

Thank you!!!

hssong1987@unist.ac.kr

32 / 32

