Automated Model-less Inference Serving

Francisco Romero^{*}, Qian Li^{*},

Neeraja J. Yadwadkar, and Christos Kozyrakis

Easy-to-use: Automatically and efficiently select a model and hardware

Cost Efficient: Share the hardware as well as models across users

INFaaS provides a model-less API to inference queries that abstracts (a) Model Selection and (b) Resource Provisioning from users.

INFaaS is open-source! <u>https://stanford-mast.github.io/INFaaS/</u>

Goals & Requirements

Challenges

Ease-of-use: Automatically select a model and hardware

- Novice and expert users
- Diverse user requirements
- Large search space
- Decision overhead

OUsers register models

OUsers register models

The user submits a query using INFaaS' user API

Front-end

- Goal: need to map query requirements to models and resources
 - Affects user API, metadata organization, model-variant selection, and autoscaling
- <u>Challenge</u>: needs to be intuitive

The model-less abstraction

The model-less abstraction

OUsers register models

The user submits a query using INFaaS' user API

The Controller selects a modelvariant, then selects a worker to process the query

OUsers register models

The user submits a query using INFaaS' user API

The Controller selects a modelvariant, then selects a worker to process the query

The query proceeds to run on the variant's target hardware platform

OUsers register models

The user submits a query using INFaaS' user API

The Controller selects a modelvariant, then selects a worker to process the query

[®]The query proceeds to run on the variant's target hardware platform

Output Upon completion, the result is returned to the user 17

Ease-of-use and cost efficiency

INFaaS removes the system configuration burden and improves ease-of-use

Goals & Requirements

Challenges

Ease-of-use: Automatically select a model and hardware

- Novice and expert users
- Diverse user requirements
- Large search space
- Decision overhead

Autoscaling: allocate just enough resources, meet SLOs, minimize cost

- Query load and pattern changes
- Heterogeneous hardware & models
- Scalability

Existing systems

- <u>Static provisioning</u> (TensorFlow Serving, Triton Inference Server)
 - based on peak load
 - Meet SLOs but expensive
 - Waste resources at low load

Existing systems

- <u>Static provisioning</u> (TensorFlow Serving, Triton Inference Server)
 - based on peak load
 - Meet SLOs but expensive
 - Waste resources at low load
- <u>Replica-only</u> (Clipper, SageMaker, Al Platform) replicate individual variants
 - Lower costs but high start-up latency
 - Fail to leverage heterogeneous resources / variants

Autoscaling

<u>3 types of scaling</u>

- Model-horizontal scaling
- Model-vertical scaling
 -> (Our contribution)
- VM-autoscaling

Division of responsibility

Autoscaling

<u>3 types of scaling</u>

- Model-horizontal scaling
- Model-vertical scaling
 -> (Our contribution)
- VM-autoscaling

Division of responsibility

- <u>Goal</u>: Decide the type and number of model-variants to meet the load and requirements, while minimizing cost
- Formulate as an Integer Programming problem

 $\min \text{Cost}(\text{action}) = \underset{\text{Hardware Cost}}{\text{Hardware Cost}} + \lambda \underset{\text{Loading Latency}}{\text{Load, unload}} \text{Variant instances}$

- <u>Goal</u>: Decide the type and number of model-variants to meet the load and requirements, while minimizing cost
- Formulate as an Integer Programming problem

min Cost(action) = Hardware Cost + λ Loading Latency

{load, unload} variant instances

Constraints:

- (1) With the chosen scaling action, INFaaS supports the incoming query load.
- (2) The newly-loaded instances satisfy applications' SLOs.
- (3) Do not exceed the total system resources.
- (4) The number of running instances is non-negative.

 Respond to changes in load and meet SLOs by: 1) model-horizontal scaling and 2) model-vertical scaling

 Respond to changes in load and meet SLOs by: 1) model-horizontal scaling and 2) model-vertical scaling

 Respond to changes in load and meet SLOs by: 1) model-horizontal scaling and 2) model-vertical scaling

Evaluation

- <u>Baselines</u>:
 - CLIPPER⁺ (Clipper, TIS and TFS): preloaded and persisted beefy variants
 - $CLIPPER^+_{GPU}$ and $CLIPPER^+_{CPU}$
 - SM⁺ (InferLine, SageMaker, and AI Platform): model-horizontal scaling, replicated *light-weight* variants on/across worker
 - SM^+_{GPU} and SM^+_{CPU}

Evaluation

- We deployed INFaaS on AWS EC2
 - GPU worker has 1 NVIDIA V100 GPU
 - Inferentia worker has 1 AWS Inferentia accelerator
 - Controller / CPU worker / client are CPU-only machines

INFaaS reduced cost by 3x by leveraging CPU/Inferentia variant; if limited to CPU/GPU variants, still 1.7x cheaper

Putting it all together

- Real workload: Twitter trace (diurnal pattern + spikes)
- $\frac{175}{P_{eak}} \frac{0.5}{mem} \frac{1.0}{(GB)} = 0 \frac{2}{100} \frac{4}{100} \frac{1}{100} \frac{1}{100}$

′5≷

- Compared to CLIPPER⁺ and SM⁺:
 - I.Ix, I.3x higher throughput versus CLIPPER⁺, SM⁺
 - I.6x, 2.5x fewer SLO violations compared to CLIPPER⁺, SM⁺
 - I.23x lower cost by leveraging CPU, GPU, Inferentia machines

INFaaS achieved high performance, better resource utilization, lower SLO violations, and reduced cost

Conclusion

