
Automated Model-less Inference Serving
Francisco Romero*, Qian Li*,

Neeraja J. Yadwadkar, and Christos Kozyrakis

1

User

Register
a model

Model
Repository

Today’s Inference Serving

Invoke a Model

User(s) Today’s
Inference Serving

Inference

Model Registration

-DenseNet-ResNet

-Inception-SqueezeNet

Select a model Framework

Hardware architecture

CPUs GPUs FPGAs ASICs

Optimizer

TVM

2

ML/Data
Scientist(s)

Users must select the right model-variant

Diverse application requirements

Example: Face Recognition

Latency
Social Media

Latency
Accuracy Cost

Navigation for
visually impaired person

Face
Recognition

Accuracy
Object

Detection

3
The performance penalty can be up to 100x

Applications evolve over time

Prediction task,
App Reqs

Model-less Inference serving

User(s) Model-less
Inference Serving

Inference

Today’s Inference serving

Invoke a Model

User(s) Today’s
Inference Serving

Inference

-DenseNet-ResNet

-Inception-SqueezeNet

Select a model Framework

Hardware architecture

CPUs GPUs FPGAs ASICs

Optimizer

TVM

4

Prediction task:
“Face Recognition”

App Reqs:
Target accuracy
Target latency

Prediction task,
App Reqs

Model-less Inference serving

User(s) Model-less
Inference Serving

Inference

Today’s Inference serving

Invoke a Model

User(s) Today’s
Inference Serving

Inference

5

Easy-to-use: Automatically and efficiently select a model and hardware

Cost Efficient: Share the hardware as well as models across users

6

INFaaS provides a model-less API to inference queries that abstracts
(a) Model Selection and (b) Resource Provisioning from users.

INFaaS is open-source!
https://stanford-mast.github.io/INFaaS/

INFerence-as-a-Service system

https://stanford-mast.github.io/INFaaS/

7

Goals & Requirements Challenges

Ease-of-use: Automatically
select a model and hardware

Autoscaling: allocate just
enough resources, meet SLOs,
minimize cost

• Novice and expert users
• Diverse user requirements
• Large search space
• Decision overhead

• Query load and pattern changes
• Heterogeneous hardware & models
• Reacting too fast: oscillation; or too

slow: SLO violation
• Scalability

INFaaS overview

8

INFaaS
Worker

INFaaS overview

9

tUsers register models

INFaaS
Worker

t

INFaaS overview

10

INFaaS
Worker

t

tUsers register models

uThe user submits a query using
INFaaS’ user API

u

Front-end

11

• Goal: need to map query requirements to models and resources
• Affects user API, metadata organization, model-variant

selection, and autoscaling

• Challenge: needs to be intuitive

The model-less abstraction

12

Registered model resnet50-tf-cpu

resnet50-caffe2-gpu

bert-pytorch-cpu

The model-less abstraction

13

Prediction task

resnet50-tf-cpu

resnet50-caffe2-gpu

bert-pytorch-cpu
Registered model

translation

face-detection

The model-less abstraction

14

Prediction task
translation

resnet50-tf-cpu

resnet50-caffe2-gpu

bert-pytorch-cpu

face-detection

L A

L

A

Latency target

Accuracy target

L A

Registered model

INFaaS overview

15

tUsers register models

uThe user submits a query using
INFaaS’ user API

vThe Controller selects a model-
variant, then selects a worker to
process the query

INFaaS
Worker

t

u v

INFaaS overview

16

tUsers register models

uThe user submits a query using
INFaaS’ user API

vThe Controller selects a model-
variant, then selects a worker to
process the query

wThe query proceeds to run on the
variant’s target hardware platform

INFaaS
Worker

t

u v w

INFaaS overview

17

tUsers register models

uThe user submits a query using
INFaaS’ user API

vThe Controller selects a model-
variant, then selects a worker to
process the query

wThe query proceeds to run on the
variant’s target hardware platform

xUpon completion, the result is
returned to the user

INFaaS
Worker

t

u v w

x

Ease-of-use and cost efficiency

18

INFaaS removes the system configuration burden and
improves ease-of-use

-DenseNet-ResNet

-Inception-SqueezeNet

Select a model Framework

Hardware architecture

CPUs GPUs FPGAs ASICs

Optimizer

TVM

19

Goals & Requirements Challenges

Ease-of-use: Automatically
select a model and hardware

Autoscaling: allocate just
enough resources, meet SLOs,
minimize cost

• Novice and expert users
• Diverse user requirements
• Large search space
• Decision overhead

• Query load and pattern changes
• Heterogeneous hardware & models
• Scalability

Existing systems

20

• Static provisioning (TensorFlow Serving, Triton Inference Server)
- based on peak load
• Meet SLOs but expensive
• Waste resources at low load

Existing systems

21

• Static provisioning (TensorFlow Serving, Triton Inference Server)
- based on peak load
• Meet SLOs but expensive
• Waste resources at low load

• Replica-only (Clipper, SageMaker, AI Platform) - replicate
individual variants
• Lower costs but high start-up latency
• Fail to leverage heterogeneous resources / variants

INFaaS
Worker

Autoscaling

22

3 types of scaling
• Model-horizontal scaling
• Model-vertical scaling

-> (Our contribution)
• VM-autoscaling

Division of responsibility

Autoscaling

23

3 types of scaling
• Model-horizontal scaling
• Model-vertical scaling

-> (Our contribution)
• VM-autoscaling

Division of responsibility

INFaaS
Worker

Model-Autoscaler at each worker

24

• Goal: Decide the type and number of model-variants to meet the load
and requirements, while minimizing cost

• Formulate as an Integer Programming problem

minCost(action) = Hardware Cost + 𝜆 Loading Latency

{load, unload} variant instances

Model-Autoscaler at each worker

25

• Goal: Decide the type and number of model-variants to meet the load
and requirements, while minimizing cost

• Formulate as an Integer Programming problem

minCost(action) = Hardware Cost + 𝜆 Loading Latency

{load, unload} variant instances

Constraints:
(1) With the chosen scaling action, INFaaS supports the incoming query load.
(2) The newly-loaded instances satisfy applications’ SLOs.
(3) Do not exceed the total system resources.
(4) The number of running instances is non-negative.

Model-Autoscaler at each worker

26

• Respond to changes in load and meet SLOs by: 1) model-horizontal
scaling and 2) model-vertical scaling

Worker

Model-
Autoscaler

Σ-CPU

• Load (Reqs/sec)
• SLO violations

Model-Autoscaler at each worker

27

• Respond to changes in load and meet SLOs by: 1) model-horizontal
scaling and 2) model-vertical scaling

Worker

Model-
Autoscaler

Σ-CPU

• Load (Reqs/sec)
• SLO violations

Σ-CPU

Σ-CPU

Model-horizontal
scaling (replication)

Model-Autoscaler at each worker

28

• Respond to changes in load and meet SLOs by: 1) model-horizontal
scaling and 2) model-vertical scaling

Worker

Model-
Autoscaler

Model-vertical
scaling (upgrading)• Load (Reqs/sec)

• SLO violations

Σ-Inferentia
batch 1

Evaluation

29

• Baselines:
• CLIPPER+ (Clipper, TIS and TFS): preloaded and persisted beefy variants
• CLIPPER+GPU and CLIPPER+CPU

• SM+ (InferLine, SageMaker, and AI Platform): model-horizontal scaling,
replicated light-weight variants on/across worker
• SM+GPU and SM+CPU

Evaluation

30

• We deployed INFaaS on AWS EC2
• GPU worker has 1 NVIDIA V100 GPU
• Inferentia worker has 1 AWS Inferentia accelerator
• Controller / CPU worker / client are CPU-only machines

How well does INFaaS scale with load?

31

Clipper+
CPU SM+

CPU Clipper+
GPU SM+

GPU INFaaS

0 20 40 60
Time (s)

0

10

20

30

Im
ag

es
/s

1 2 3 4 5
Strategy

0

20

40

N
or

m
co

st

21.6xlow load

high load

0 20 40 60
Time (s)

0
200
400
600
800

Im
ag

es
/s

1 2 3 4 5
Strategy

0
15
30
45
60

N
or

m
co

st
INFaaS achieved load while minimizing cost

How well does INFaaS scale with load?

32

Clipper+
CPU SM+

CPU Clipper+
GPU SM+

GPU INFaaS

0 100 200
Time (s)

0

50

100

Im
ag

es
/s

1 2 3 4 5
Strategy

0
40
80

120
160

N
or

m
co

st

INFaaS reduced cost by 3x by leveraging CPU/Inferentia variant;

if limited to CPU/GPU variants, still 1.7x cheaper

3x

Fluctuating, spiky load

Putting it all together

33

• Real workload: Twitter trace (diurnal pattern + spikes)

• Compared to CLIPPER+ and SM+:

• 1.1x,1.3x higher throughput versus CLIPPER+, SM+

• 1.6x, 2.5x fewer SLO violations compared to CLIPPER+, SM+

• 1.23x lower cost by leveraging CPU, GPU, Inferentia machines

INFaaS achieved high performance, better resource utilization,
lower SLO violations, and reduced cost

175 model-variants

Conclusion

34

https://stanford-mast.github.io/INFaaS/
Contact us:

{faromero,qianl15,neerajay,kozyraki}@stanford.edu

INFaaS
Worker

https://stanford-mast.github.io/INFaaS/

