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ML/Data 
Scientist(s)

Users must select the right model-variant



Diverse application requirements

Example: Face Recognition

Latency
Social Media

Latency
Accuracy Cost

Navigation for 
visually impaired person

Face 
Recognition

Accuracy
Object 

Detection

3
The performance penalty can be up to 100x

Applications evolve over time
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Prediction task: 
“Face Recognition”

App Reqs: 
Target accuracy
Target latency
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Easy-to-use: Automatically and efficiently select a model and hardware

Cost Efficient: Share the hardware as well as models across users
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INFaaS provides a model-less API to inference queries that abstracts 
(a) Model Selection and (b) Resource Provisioning from users.

INFaaS is open-source!
https://stanford-mast.github.io/INFaaS/

INFerence-as-a-Service system

https://stanford-mast.github.io/INFaaS/
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Goals & Requirements Challenges

Ease-of-use:  Automatically 
select a model and hardware

Autoscaling: allocate just 
enough resources, meet SLOs, 
minimize cost

• Novice and expert users
• Diverse user requirements
• Large search space
• Decision overhead

• Query load and pattern changes
• Heterogeneous hardware & models
• Reacting too fast: oscillation; or too 

slow: SLO violation
• Scalability



INFaaS overview
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Front-end
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• Goal: need to map query requirements to models and resources
• Affects user API, metadata organization, model-variant 

selection, and autoscaling

• Challenge: needs to be intuitive



The model-less abstraction
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Registered model resnet50-tf-cpu

resnet50-caffe2-gpu

bert-pytorch-cpu



The model-less abstraction
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The model-less abstraction
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INFaaS overview
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tUsers register models 

uThe user submits a query using 
INFaaS’ user API
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INFaaS overview
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tUsers register models 
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INFaaS overview
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tUsers register models 

uThe user submits a query using 
INFaaS’ user API

vThe Controller selects a model-
variant, then selects a worker to 
process the query

wThe query proceeds to run on the 
variant’s target hardware platform

xUpon completion, the result is 
returned to the user
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Ease-of-use and cost efficiency
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INFaaS removes the system configuration burden and 
improves ease-of-use

-DenseNet-ResNet

-Inception-SqueezeNet
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Goals & Requirements Challenges

Ease-of-use:  Automatically 
select a model and hardware

Autoscaling: allocate just 
enough resources, meet SLOs, 
minimize cost

• Novice and expert users
• Diverse user requirements
• Large search space
• Decision overhead

• Query load and pattern changes
• Heterogeneous hardware & models
• Scalability



Existing systems
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• Static provisioning (TensorFlow Serving, Triton Inference Server) 
- based on peak load
• Meet SLOs but expensive
• Waste resources at low load



Existing systems
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• Static provisioning (TensorFlow Serving, Triton Inference Server) 
- based on peak load
• Meet SLOs but expensive
• Waste resources at low load

• Replica-only (Clipper, SageMaker, AI Platform) - replicate 
individual variants
• Lower costs but high start-up latency
• Fail to leverage heterogeneous resources / variants



INFaaS
Worker

Autoscaling
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3 types of scaling
• Model-horizontal scaling
• Model-vertical scaling

-> (Our contribution)
• VM-autoscaling

Division of responsibility



Autoscaling
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3 types of scaling
• Model-horizontal scaling
• Model-vertical scaling

-> (Our contribution)
• VM-autoscaling

Division of responsibility

INFaaS
Worker



Model-Autoscaler at each worker
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• Goal: Decide the type and number of model-variants to meet the load 
and requirements, while minimizing cost

• Formulate as an Integer Programming problem

minCost(action) = Hardware Cost + 𝜆 Loading Latency

{load, unload} variant instances



Model-Autoscaler at each worker
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• Goal: Decide the type and number of model-variants to meet the load 
and requirements, while minimizing cost

• Formulate as an Integer Programming problem

minCost(action) = Hardware Cost + 𝜆 Loading Latency

{load, unload} variant instances

Constraints:
(1) With the chosen scaling action, INFaaS supports the incoming query load.
(2) The newly-loaded instances satisfy applications’ SLOs.
(3) Do not exceed the total system resources.
(4) The number of running instances is non-negative.



Model-Autoscaler at each worker
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• Respond to changes in load and meet SLOs by: 1) model-horizontal 
scaling and 2) model-vertical scaling

Worker

Model-
Autoscaler

Σ-CPU

• Load (Reqs/sec)
• SLO violations



Model-Autoscaler at each worker
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• Respond to changes in load and meet SLOs by: 1) model-horizontal 
scaling and 2) model-vertical scaling

Worker

Model-
Autoscaler

Σ-CPU

• Load (Reqs/sec)
• SLO violations

Σ-CPU

Σ-CPU

Model-horizontal 
scaling (replication)



Model-Autoscaler at each worker
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• Respond to changes in load and meet SLOs by: 1) model-horizontal 
scaling and 2) model-vertical scaling

Worker

Model-
Autoscaler

Model-vertical 
scaling (upgrading)• Load (Reqs/sec)

• SLO violations

Σ-Inferentia
batch 1



Evaluation
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• Baselines:
• CLIPPER+ (Clipper, TIS and TFS): preloaded and persisted beefy variants
• CLIPPER+GPU and CLIPPER+CPU

• SM+ (InferLine, SageMaker, and AI Platform): model-horizontal scaling, 
replicated light-weight variants on/across worker
• SM+GPU and SM+CPU



Evaluation
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• We deployed INFaaS on AWS EC2
• GPU worker has 1 NVIDIA V100 GPU
• Inferentia worker has 1 AWS Inferentia accelerator
• Controller / CPU worker / client are CPU-only machines



How well does INFaaS scale with load?

31

Clipper+
CPU SM+

CPU Clipper+
GPU SM+

GPU INFaaS

0 20 40 60
Time (s)

0

10

20

30

Im
ag

es
/s

1 2 3 4 5
Strategy

0

20

40

N
or

m
co

st

21.6xlow load

high load

0 20 40 60
Time (s)

0
200
400
600
800

Im
ag

es
/s

1 2 3 4 5
Strategy

0
15
30
45
60

N
or

m
co

st
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How well does INFaaS scale with load?
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INFaaS reduced cost by 3x by leveraging CPU/Inferentia variant;

if limited to CPU/GPU variants, still 1.7x cheaper

3x

Fluctuating, spiky load



Putting it all together
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• Real workload: Twitter trace (diurnal pattern + spikes)

• Compared to CLIPPER+ and SM+:

• 1.1x,1.3x higher throughput versus CLIPPER+, SM+

• 1.6x, 2.5x fewer SLO violations compared to CLIPPER+, SM+

• 1.23x lower cost by leveraging CPU, GPU, Inferentia machines

INFaaS achieved high performance, better resource utilization, 
lower SLO violations, and reduced cost

175 model-variants



Conclusion
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https://stanford-mast.github.io/INFaaS/
Contact us:

{faromero,qianl15,neerajay,kozyraki}@stanford.edu
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https://stanford-mast.github.io/INFaaS/

