ZeRO-Offload: Democratizing Billion-Scale Model Training

Jie Ren* Samyam Rajbhandari† Reza Yazdani Aminabadi† Olatunji Ruwase†
Shuangyan Yang* Minjia Zhang† Dong Li* Yuxiong He†

* University of California, Merced † Microsoft
The Size of Deep Learning Model is Increasing Quickly
Billon-Scale Model Training - Scale Out Large Model Training

- **Model parallelism** (Megatron-LM)
 - Partition the model states vertically across multiple GPUs.

- **Pipeline parallelism** (PipeDream, SOSP’19)
 - Partition the model states horizontally across layers.

- **ZeRO**: Zero Redundancy Optimizer (ZeRO, SC’20)
 - Split the training batch across multiple GPUs without model states duplication.
Billon-Scale Model Training - Scale Out Large Model Training

- Model parallelism (Megatron-LM)
 - Partition the model states vertically across multiple GPUs

- ZeRO: Zero Redundancy Optimizer (ZeRO, SC’19)
 - Split the training batch across multiple GPUs without model states duplication.

Require having enough GPU devices

Distributed GPU Cluster
Billon-Scale Model Training - Scale Up Large Model Training

- Heterogeneous DL training (SwapAdvisor, ASPLOS’20; Sentinel, HPCA’21; L2L)
 - Offload tensors from GPU memory to CPU memory when tensors are not used in computation.

 - Prefetch tensors from CPU memory to GPU memory before computation happens.
Billon-Scale Model Training - Scale Up Large Model Training

- Heterogeneous DL training (SwapAdvisor, ASPLOS'20; Sentinel, HPCA'21; L2L)
- Offload tensors from GPU memory to CPU memory when tensors are not used in computation.
- Load tensors from CPU memory to GPU memory before computation happens.
- Tensor swapping should overlap with computation as much as possible.

Only use CPU memory but not CPU computation

Designed for a single GPU
ZeRO-Offload: Democratizing Billion-Scale Model Training

Efficiency
- Enable 13B-parameter model training on a single NVIDIA V100 GPU at 40 TFLOPS.

Scalability
- Achieve near perfect linear speedup with multiple GPUs.

Usability
- Require no model refactoring.
Mixed Precision Training

Mixed precision training iteration for a layer.
Mixed Precision Training

Mixed precision training iteration for a layer.
Mixed Precision Training

Mixed precision training iteration for a layer.
Offload Strategy

• ZeRO-Offload partitions the dataflow graph with:

 i. Few computation on CPU

 ii. Minimization of communication volume

 iii. Maximization of memory saving while achieving minimum communication volume
Limiting CPU Computation

The dataflow of fully connected neural networks with M parameters.
Minimizing Communication Volume

The dataflow of fully connected neural networks with M parameters.
ZeRO-Offload Enables Large Model Training by Offloading Data and Compute to CPU

Offloading fp16 gradients and updating super node on CPU
Unique Optimal Offload Strategy

Memory saving for offload strategies that minimize communication volume compared to the baseline.
ZeRO-Offload training process on a single GPU.
ZeRO-Offload Single GPU Schedule

ZeRO-Offload training process on a single GPU.
ZeRO-Offload training process on a single GPU.
ZeRO-Offload Single GPU Schedule

ZeRO-Offload training process on a single GPU.
ZeRO-Offload Multi-GPUs Schedule

Partitioning based on ZeRO* before offloading

* ZeRO: Memory Optimizations Toward Training Trillion Parameter Models. SC’20
Optimized CPU Execution

• Highly parallelized CPU optimizer implementation

1) SIMD vector instruction for fully exploiting the hardware parallelism supported on CPU architectures.

2) Loop unrolling to increase instruction level parallelism.

3) OMP multithreading for effective utilization of multiple cores and threads on the CPU in parallel.
Optimized CPU Execution

• One-Step delayed parameter update
Optimized CPU Execution

- One-Step delayed parameter update