
A Linux Kernel Implementation of
the Homa Transport Protocol

John Ousterhout

Stanford University

Linux Kernel Implementation of HomaSlide 2

Background

● Homa: new transport protocol for datacenters

▪ Behnam Montazeri’s PhD dissertation, SIGCOMM 2018

▪ Eliminates network congestion at downlinks

▪ Low tail latency especially for small messages, even under high load

▪ Great results with simulations, RAMCloud implementation

● Can Homa replace TCP in the datacenter?

● This work: production-quality Linux kernel implementation

▪ Reproduce earlier results

▪ Support real applications

July 16, 2021

Linux Kernel Implementation of HomaSlide 3

Takeaways

1. Results confirm those from Montazeri et al.

▪ Homa/Linux eliminates network congestion

▪ 7–83x lower tail latency than TCP or DCTCP

2. Software overheads are now the primary obstacle to networking

performance

▪ Load balancing hot-spots

▪ Load balancing cache contention

3. High-performance datacenter networking requires

▪ Moving transports to the NIC (no software implementation is

efficient enough)

▪ Moving beyond TCP

July 16, 2021

Linux Kernel Implementation of HomaSlide 4

Homa API

● Designed for RPC-style communication in datacenters

▪ Message-oriented

▪ Connectionless (but still reliable and flow-controlled)

▪ RPCs are independent: no ordering guarantees

● Connection-less API:
int homa_send(int sockfd, const void *request, size_t reqlen,

const struct sockaddr *dest_addr, socklen_t addrlen,

uint64_t *id);

int homa_reply(int sockfd, const void *response, size_t resplen,

const struct sockaddr *dest_addr, socklen_t addrlen,

uint64_t id);

int homa_recv(int sockfd, void *buf, size_t len, int flags,

struct sockaddr *src_addr, socklen_t addrlen,

uint64_t *id);

July 16, 2021

Linux Kernel Implementation of HomaSlide 5

Homa Protocol
● Goal: lowest possible latency

▪ Especially for short messages

▪ Especially at the tail

▪ Even under high network load

● SRPT (Shortest Remaining Processing Time first)

▪ Best latency for short messages

▪ Also benefits long messages! (run to completion)

▪ Implemented using in-network priority queues

● Receiver-driven congestion control

▪ First packets of message sent unilaterally (unscheduled)

▪ Later packets sent in response to grants from receiver (scheduled)

▪ Receiver determines packet priorities

● Packets need not be received in order

July 16, 2021

Linux Kernel Implementation of HomaSlide 6

Homa/Linux

● Dynamically loadable kernel module

● No kernel modifications required

▪ New system calls layered on ioctl

● Open source: git@github.com:PlatformLab/HomaModule.git

● Currently runs on Linux 5.4.80

● About 10,000 lines C code (heavily commented)

● At or close to production quality

July 16, 2021

mailto:git@github.com:PlatformLab/HomaModule.git

Homa Latency << TCP

July 16, 2021Linux Kernel Implementation of HomaSlide 7

40-node cluster, 80% network load

actual latency

Homa unloaded latency

19x @ P99

7.5x @ P50

Linux Kernel Implementation of HomaSlide 8

Homa Dominates: All Workloads, All Sizes
● Homa’s latency

improvement for short

messages:

● P99 for Homa is better

than P50 for TCP/DCTCP

almost everywhere

● Homa eliminates

congestion

Message Length (bytes)Message Length (bytes)

P50 P99

vs TCP 3.5–7.5x 19–72x

vs DCTCP 2.7–3.8x 7–83x

July 16, 2021

Linux Kernel Implementation of HomaSlide 9

Software Overheads

● Homa/Linux performance still 5–10x worse than hardware potential:

▪ Small-message P99:
Homa/Linux: 100 µs

Homa/RAMCLoud: 14 µs (user space, kernel bypass)

● Tail latency now caused by software overheads

● Load-balancing is problematic:

▪ Networks getting faster, CPUs aren’t

▪ Must distribute packet processing across many cores

● Move protocols to user space? Won’t help much

July 16, 2021

July 16, 2021Linux Kernel Implementation of HomaSlide 10

Load Balancing Causes Hot Spots

Driver IP Homa App 1Syscall Core A

Driver IP Homa App 2Syscall Core B

Driver IP Homa App 3Syscall Core C

Driver IP Homa App 4Syscall Core D

Long

Message

Short

Message

Hot spot: delays > 100µs

Primary source of tail latency in Homa/Linux

(batches)

2–3x Overhead for Load Balancing

July 16, 2021Linux Kernel Implementation of HomaSlide 11

Best-case: low load,

protocol processing

on one core

Reality: high load,

load balancing
3x!

Likely cause: cache interference

Move Transports to User Space?
● Small-message P50 RTT:

▪ Homa/Linux: 12.6–38 µs

▪ Homa/RAMCloud: 4.7 µs

▪ eRPC: 3.7 µs

● Small-message P99 RTT :

▪ Homa/Linux: 100 µs

▪ Homa/RAMCloud: 14 µs

● Small-message throughput

(M RPCs/sec/core)

▪ Homa/Linux: 0.1

▪ Homa/RAMCloud: 1.0

▪ Shenango: 1.0

▪ eRPC: 2.5

Most user-space transports unrealistic:

● Measured under ideal conditions

● No load balancing (or hand-partitioned)

● Unrealistic workloads: only short or

long messages

● No congestion control

● Assume no shared protocol state

between apps

Many Homa overheads are

inevitable

Linux Kernel Implementation of HomaSlide 12 July 16, 2021

Linux Kernel Implementation of HomaSlide 13

Homa/Linux vs. Snap

● Snap: Google’s user-space protocol implementation

▪ Production quality

● Snap < 2x better than Homa/Linux:

● Snap also suffers from load-balancing problems:

▪ Throughput per core drops by 3.5–7x

User-space protocols are not a long-term solution

Homa Snap

Base latency (polling) 15.1 µs 9 µs

Cores to drive 80 Gbps bidirectional 17 7–14

July 16, 2021

July 16, 2021Linux Kernel Implementation of HomaSlide 14

Transports in the NIC?

● All packet processing must move to the NIC

▪ CPUs deal only in messages

▪ NIC dispatches messages directly to applications via kernel bypass

● No existing approach is adequate:

▪ RDMA NICs: poor congestion control/load balancing, closed/proprietary

▪ Many-core “Smart NICs”: just software processing in a different place

▪ FPGA “Smart NICs”: too hard to program

▪ P4 pipelines: no long-term state

● Need a new NIC architecture

▪ Process packets at line rate

▪ Programmable to support many protocols and functions

▪ Interesting/difficult design challenge

July 16, 2021Linux Kernel Implementation of HomaSlide 15

TCP: Wrong for Datacenters In Every Way

● Connection oriented
▪ High time/space overheads (datacenter apps have 1000’s of connections)

● Stream oriented
▪ Awkward for RPCs (transport doesn’t know message boundaries)

▪ Head-of-line blocking

● Fair sharing of bandwidth
▪ Increases latency, especially for short messages

● Sender-driven congestion control
▪ Requires buffer occupancy to detect congestion

▪ Buffer occupancy → high latency

● Requires in-order packet delivery
▪ Cripples load balancing

Linux Kernel Implementation of HomaSlide 16

Conclusion

● Homa/Linux confirms earlier results:

▪ Tail latency 10x better than TCP/DCTCP

▪ Network congestion eliminated

● Limitation going forward: software overheads

▪ Especially related to load balancing

● Need radical changes in transport protocols:

▪ Move transport protocols to new NIC architectures

▪ Replace TCP

● Interested in users for Homa/Linux!

July 16, 2021

July 16, 2021Linux Kernel Implementation of HomaSlide 17

Contact: ouster@cs.stanford.edu

