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Background: Serverless Computing 
DAG & Data Passing

• FaaS are becoming increasingly popular for complex workflows: Video 
Analytics, ML pipelines, Genomics

• Cloud provider performs administrative tasks (Scaling, Scheduling, 
Maintenance)

• Applications are represented as a series of stateless functions that pass 
data among themselves (a DAG)

• Since function’s placement is hidden from users, direct communication 
between the functions is infeasible
– Direct communication also requires both sending and receiving functions to 

execute simultaneously,  FaaS frameworks usually provide no such guarantees 

• State-of-practice: Use a remote storage (e.g., AWS S3)
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Workflow Example: Video Analytics DAG

Consisting of 3 stages: 

1. Split-Video: Takes a video clip as an input 
(loaded from S3/Blob Storage), and 
generates smaller video chunks of the same 
length (10 sec)

2. Extract-Frame: Takes a video chunk as input 
and extracts a representative frame from 
that chunk

3. Classify-Frame: Performs object classification 
for extracted frame and writes the 
classification results to Storage
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Any application DAG can be represented as 
a state machine in AWS Step Function



VM-1 VM-2
• The state-of-practice technique to communicate between λ′s is to use a Remote Storage (e.g., S3) 

– Step Functions supports passing direct JSON payloads of very small sizes (≤ 256KB)

• Pros:
– Allows for flexible scheduling:  Poses no limitation on where the λ′s execute 

• Cons:
– Increased latency: Data needs to be transferred over the network twice, to and from the remote storage

Serverless Data-Passing Challenges 

λ𝟏 λ"
File

Remote Storage (S3)

File

4



SONIC’s Data-Passing Alternatives

Local StorageLocal StorageLocal Storage
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Data-passing performance trade-off

Fanout =
1,3, and 12
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Direct-Passing vs Remote Storage
Ø With higher network bandwidth, the crossover point between Direct-

passing and Remote-passing shifts to higher fanout values
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OUR SOLUTION: SONIC
Hybrid Data-Passing Approach

• SONIC jointly optimizes the lambda placement for every function, and data-
passing method for every edge in the DAG

• First, we profile the DAG and monitor the following metrics:
– Memory footprint for every function
– Execution time for every function
– Input/output file size for every function
– Fanout degree in every stage

• These parameters vary w.r.t. the DAG’s input size 
– For example, analyzing a 1 min video vs. 30 min video

• We use these parameters to identify the best data-passing method and the 
corresponding lambda placement for each pair of dependent stages in the DAG
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SONIC’S API: Data-passing Abstraction

1. SONIC abstracts the selection of data passing methods from application developers

2. Functions write intermediate data to files using a standard file API(read and write), 
like writing to local storage

3. All λs within a job share a file namespace 

4. If an application DAG has an edge λ, → λ- , SONIC ensures that all of λ- ’s input files 
are present in its local storage before it starts execution.

5. Therefore, λ!reads its input files from the same path as the one that λ,wrote the 
files to. 
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Greedy Data-Passing Decisions: Pitfalls
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1. If we select “VM-Passing” between Split
and Extract, all the extracted frames will 
reside on the same VM

2. This will cause passing between Extract
and Classify to be either:

1. VM-Passing: sacrifices parallelism as we 
cannot fit all Classify invocations in the 
same VM

2. Direct or Remote: Bounded by the single 
VM’s bandwidth and slow

3. Alternatively, we could have selected a 
non-optimal decision between Split and 
Extract to minimize the end-to-end latency

4. Specifically, using Direct-passing spreads 
the extracted frames on several VMs, 
allowing VM-passing to Classify without 
sacrificing parallelism
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SONIC: Design Overview
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Evaluation: Baselines

• OpenLambda [HotCloud’16] + S3: OpenLambda framework deployed on EC2 with S3 
as its remote storage. A new VM is created to host each λ in the DAG. 

• OpenLambda [HotCloud’16] + Pocket [OSDI’18]: We use Pocket’s default storage tier 
(DRAM) with r5.large instance types.

• SAND [ATC’18]: Leverages data locality by allocating all lambda functions on a single 
host with rich resources.

• AWS-λ: The commercial FaaS platform using two different remote storage systems: S3 
and ElastiCache-Redis.

• Oracle-SONIC: This is SONIC with fully accurate estimation of DAG parameters and no 
data-passing latency (mimicking local running of all functions). 
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Evaluation: E2E Latency and Cost
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Content Sensitivity
• Our approach uses the job’s input size only to predict the DAG 

execution parameters.

• This allows generalizing without performing any application-specific 
processing.

• In some applications, the execution parameters are also dependent 
on the input content.
– For example, the intermediate chunk sizes (in MB) in our video analytics 

application will vary based on the video’s bitrate (video quality).

• We want to evaluate how sensitive is SONIC to this content sensitivity
– For example, what is the performance of SONIC executing with test videos 

different from training?
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Content Sensitivity (Cont.)
• First, we collect 60 YouTube videos from each of the following 

categories (News, Entertainment, Nature, Sports, and Cartoon)

• We compare SAND and OpenLambda+S3 to the following variants 
of SONIC:
– Same Category: Test videos are from the same category as the 

training videos (Sports)
– All Categories: Training videos are sampled from all categories, 

including the testing video category
– Unseen Category: All training videos are from News category 

(has a 25% lower bitrate than the Sports category on average)
– Zero Error: our approach executing with perfect knowledge of 

the exact execution parameters
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Evaluation: Content Sensitivity
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Evaluation: Scalability
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Conclusion

1. Data passing among serverless functions in an application is challenging
2. We studied 3 different data-passing options between serverless functions 

and showed that no single method prevails under all conditions (input sizes, 
network bandwidth, etc.)

3. We present SONIC a dynamic and hybrid approach to select the best global 
data passing method and lambda placement serverless workflows

4. Our solution outperforms all baselines in terms of Cost-normalized latency 
without sacrificing the raw latency 
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Ongoing Work
1. How to handle content-dependence in application DAGs
2. How to handle dynamic control flows 
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