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Service Reliability is Important
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Real-World Revenue Loss
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[Evolven: GAD COHEN]



Univariate Time Series (UTS) 
Anomaly Detection
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TimeMon.                 Tue.                 Wed.     Thur.                 Fri.

Value

Building anomaly detectors for 
a univariate time series 
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TimeMon.                 Tue.                 Wed.     Thur.                 Fri.

Value

Building anomaly detectors for 
a single time series 

Not feasible for thousands of 
monitoring time series 



Univariate Time Series (UTS)
Anomaly Detection
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TimeThur.                 Fri.

Value

Building anomaly detectors for 
a single time series 

Not feasible for thousands of 
monitoring time series 

May lead to alert storms [SEIP20]
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Multivariate Time Series (MTS)
Anomaly Detection
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Capture status of the overall
service system 

Intuitive & effective & efficient 
[KDD18, KDD19, KDD20, KDD21, AAAI19, AAAI21, NeurIPS20]



Multivariate Time Series (MTS) 
Anomaly Detection
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Capture status of the overall
service system 

Intuitive & effective & efficient

Deep learning based approaches
(LSTM, LSTM-VAE, ConvLSTM...)

[KDD18, KDD19, KDD20, KDD21, AAAI19, AAAI21, NeurIPS20]



Initialization Time

Software change (concept drift) -> Anomaly detection -> Initialize
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Deep Learning Based Approaches: 
Long Initialization Time
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Offline Training ⚠ Accumulating training data
⚠ Training process



Deep Learning Based Approaches: 
Long Initialization Time 

Approach S1 S2 S3 Avg.

MSCRED [AAAI19] 7 13 - 10

OmniAnomaly [KDD19] 17 15 17 16.3

LSTM-NDT [KDD18] 69 36 - 52.5

Donut* [WWW18] 102 110 99 103.6
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Inappropriate for newly deployed or updated systems 

Days!

* denotes UTS anomaly detector, which can be used for MTS by combining it with majority vote 



Incremental Retraining
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Training TestOriginal 

Incremental
Retraining 
[IMC15]

Time 

Training Test
Time 

TestTraining
Time 

TestTraining
Time 

Offline Online

(For a fair comparison)



Incremental Retraining Cannot Ensure 
Satisfactory Performance 
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Non-robustness and considerable training cost



Outline

The drawback of deep learning based approaches 
è Long initialization time

Our key idea of compressed sensing and its challenges

JumpStarter approach

Evaluation
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Key Idea: Compressed Sensing (CS)

• CS can reconstruct time series with low energy components.
• Anomalies are always high energy components.
• CS uses a fixed-length window to initialize.
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[wikipedia]

First attempt to use CS for multivariate time series anomaly detection 



Two Strawman Solutions Using CS
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Examples of CS-based anomaly detection when the MTS is reconstructed as 
a whole matrix (a) or as separate UTS (b)

(a) Inaccurate 
reconstruction leads 
to many false alarms

(b) Low efficiency,
cannot capture the 
complex relationships



Problem of Random Gaussian Sampling

• The sampled matrix: guarantee Restricted Isometry Property (RIP) 
[Information Theory 15] 
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Sampling from anomalies can degrade the detection performance
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for Online Service Systems 

Jump-Starting Multivariate Time Series 

JumpStarter

Anomaly Detection 

🚀



JumpStarter Overview
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JumpStarter Offline Processing
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Shape-Based Clustering 

• Strawman (a) cannot deal with different shapes of time series 
• Shape-based distance [sigmod15] + hierarchical clustering 
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Shape #1

Shape #2



Shape-Based Clustering 

• Strawman (a) cannot deal with different shapes of time series 
• Shape-based distance [sigmod15] + hierarchical clustering 
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An example of clustering the MTS into three clusters 



JumpStarter Online Processing
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Outlier-Resistant Sampling 

Domain-specific insights: 
• Anomalies are usually outliers in an observation window. 
• The value of time series has time locality.
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Outlier-Resistant Sampling
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Outlier-Resistant Sampling
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Outlier-Resistant Sampling
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JumpStarter Online Processing
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Compressed Sensing Reconstruction 
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• Multivariate time series:
• Compressed sensing reconstruction: , calculating   
• A is calculated as: , D is the transform of  
• B is the sampling result 

• Calculation: CVXPY (convex optimization tool) [JMLR16]

• Anomaly score: measuring the differences between     and 

• Choosing threshold: Extreme Value Theory (EVT) [KDD17]



JumpStarter Initialization Time: 20 mins

33

Online
Processing

For Each
Group

Concatenate
Groups

EVT
Threshold

Multivariate 
Time Series

Outlier-Resistant
Sampling

Offline
Processing

Sliding 
Window

Shape-Based 
Clustering

Anomalies Anomaly
Score

Compressed Sensing
Reconstruction

A learning-based approach has to explicitly learn the 
probability distribution of a multivariate time series 

Our JumpStarter: the reconstructed multivariate time 
series implicitly inherits the normal behavior 



Outline

The drawback of deep learning based approaches 
è Long initialization time

Our key idea of compressed sensing and its challenges
è Reconstruction & Sampling

JumpStarter approach
è Shape-Based Clustering & Outlier-Resistant Sampling

Evaluation
è Company A (28 service systems) & Company B (30 service systems)
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Evaluation: Accuracy
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Evaluation: Efficiency
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The initialization time (IT) and detection time (DT) comparison



Case Study 
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Conclusion

To adapt to frequent changes in online service systems, multivariate time 
series, anomaly detection should be robust and can be quickly initialized. 

JumpStarter adopts the Compressed Sensing technique  
• Reconstruction challenge è Shape-based clustering
• Sampling challenge è Outlier-resistant sampling

Evaluation
• Real-world online service systems of two Internet companies 
• Achieving an average F1 score of 94.1%, initialization time 20 minutes 
• https://github.com/NetManAIOps/JumpStarter
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