
Boosting Full-Node Repair

in Erasure-Coded Storage

Shiyao Lin*, Guowen Gong*, Zhirong Shen*,

Patrick P. C. Lee #, and Jiwu Shu * ,^

* Xiamen University #The Chinese University of Hong Kong ^Tsinghua University

1

Presented at USENIX ATC’21

Introduction

Data volume is growing explosively

• Failures arise unexpectedly yet prevalently

• Fault tolerance is critical

Redundancy techniques

• Replication: directly keep multiple copies across different nodes

• Triple replication requires 3x of storage redundancy

• Erasure coding: introduce slightly computational operations

• Lower storage overhead with the same reliability guarantee

• Deployed in Google, Facebook, etc.

2

Erasure Coding

Divide a data file to k data chunks

Encode k chunks to another redundant m parity chunks

Distribute k+m chunks (forming a stripe) across k+m nodes

Tolerate any m nodes failures

3

file divide
A

B

C

D

encode

A

B

C

D

A+C

B+D

A+D

B+C+D

C

D
A+C

B+D
-

decode

=
A

B

(k, m) = (2, 2)

Erasure Coding

Drawback: substantial repair traffic

• Retrieve k chunks to repair a single failed chunk

Relieve the I/O amplification problem in repair

• Repair-efficient codes with reduced repair traffic (What to retrieve?)

• Locally Repairable Codes [ATC’12, PVLDB’13]

• Regenerating Codes [TIT’10, TIT’11]

• Efficient repair algorithms to parallelize the repair process (How to retrieve?)

• Partial-Parallel-Repair (PPR) [Eurosys’16]

• Repair pipelining (ECPipe) [ATC’17]

4

Repair-Efficient Codes

 Locally Repairable Codes (LRCs)

• Generate local parity chunks to facilitate repair at the expense of

additional storage cost

5

D1 D2 D3 D4 P5 P6

L1 L2

Group 1 Group 2

D1 D2

L1

Group 1

D1

Retrieve two chunks

for repair

(k, l, m) = (4, 2, 2)

Repair Algorithms

Single-chunk repair algorithm

• Accelerate the repair without reducing the repair traffic

• Introduce transmission dependency

6

Conventional Repair (CR) Partial-Parallel-Repair (PPR)

Repair time : 4 timeslots Repair time : 𝑙𝑜𝑔2 4 + 1 = 3 timeslots

T1: N3 → N2, N5 → N4

T2: N4 → N2

T3: N2 → N1

D2 D3 D4 P5

Switch

N5
N4 N3 N2 N1

D1

Congestion

D1

D4 P5

I2

❶
❶

❷
❸

Switch

D3 D2

I1

N5 N4 N3 N2 N1

Introduce transmission dependency:

D4 should wait for P5 for aggregation

Motivation

Limitation 1: Failing to utilize the full duplex transmission

7

(a) Unbalanced repair solutions (b) Balanced repair solutions

The repair time is determined by the most loaded node

N5 N4 N3 N2 N1

Upload 1 1 2 2

Downloa

d
0 4 0 2

Upload 1 1 2 2

Downloa

d
2 2 0 2

N5 N4 N3 N2 N1

Two chunks’ repair under the conventional repair (CR)

Motivation

Limitation 2: Failing to fully utilize the bandwidth at each timeslot

8

(a) Repair using four timeslots (b) Repair using three timeslots

Transmission scheduling affects bandwidth utilization

❶ ❶

❷
❷

N5 N4 N3 N2 N1

❸

C7

C2 C4 C3

C5 C6

❶ ❶

❸ ❷

❸
N5 N4 N3 N2 N1

C3

C7

C2 C4

❷
C5 C6

Two chunks’ repair under the partial-parallel-repair (PPR)

Our Contributions

9

RepairBoost: a framework to speed up the full-node repair

• Tech#1: Repair abstraction (for generality and flexibility)

• Tech#2: Repair traffic balancing (for load balancing)

• Tech#3: Transmission scheduling (for saturating bandwidth utilization)

A prototype RepairBoost integrated with HDFS

Tackle multiple node failures and facilitate the repair in

heterogeneous environments

Experiments on Amazon EC2

• Increase the repair throughput by 35.0-97.1%

Repair Abstraction

Formalize a single-chunk repair through a repair directed acyclic

graph (RDAG)

• Characterize the data routing over the network and the dependencies

among the requested chunks

• e.g., for RS(k, m), k+1 vertices

• v1, v2, ⋯ , vk : k nodes that retrieve chunks

• vk+1 : destination node for repairing the lost chunk

• Directed edges represent the data routing directions specified in repair

algorithms

10

V1 V3

V2 V4

V5

An RDAG of PPR

when k=4

① V3 is a child of V4

② V4 should collect all its children before

sending its data to its parent (i.e., V5)

Repair Abstraction

Repair process guided by RDAG

• The repair starts from the leaf vertices (without predecessor dependency)

• As the repair proceeds, iteratively remove edges and vertices from an RDAG

11

Leaf vertices

❶
V1 V2

V3 V4

V2 V4

V5

Update

❷

V4

V5

Update

V2 V4

❸

V5

Update

V4 V5

Finish

V1 V3

V2 V4

V5

V3 V1

V2
V4

Repair Traffic Balancing

Decompose RDAGs into vertices(with different upload and

download traffics) and map the vertices to storage nodes

• Ob#1: Retaining fault tolerance degree

• Ob#2: Balance the upload and download repair traffic

The vertices of RDAGs are classified and given different priorities

according to degree

• Intermediate vertices (𝑢 = 1 and 𝑑 > 0)

• Root vertex (𝑢 = 0 and 𝑑 > 0)

• Leaf vertices (𝑢 > 0 and 𝑑 = 0)

12

Repair Traffic Balancing

13

Vertex of an RDAG

Nodes with

surviving chunks

(10,15) (9, 23) (19,14) (17,20) (17,13) (17,20) Before mapping (uN, dN)

Example of mapping vertices of an RDAG to nodes

V1 V3

V2 V4

V5

V2 (1,1)
Decompose

V1 (1,0)

V3 (1,0)

V4 (1,2)

V5 (0,1)

❶

N5 N4 N3 N2 N1 N6

Map vertices

to nodes ❷

V1 V3 V2 V4 V5

N2

N3

N1

N5

N4

Data routing

among nodes

❸

Transmission Scheduling
 The bandwidth may not be utilized at each timeslot during the

repair (Limitation 2)

 Formulate as a maxflow problem

• 2n+2 vertices

• n senders: potentially send data for repair

• n receivers: potentially receive data at the same time

• Establish the connection between senders and receivers according to the RDAGs

14

N5 N4 N2 N1

N5 N4 N3 N2 N1

s

t

N3

Sender

Receiver

n = 5

Transmission Scheduling

Example of repairing two chunks among five surviving nodes

15

x Construct a new network

N2

N3

N1

N5

N4

N4

N3

N2

N1

N5

RDAG of

Chunk 1
RDAG of

Chunk 2

N5 N4 N2 N1

N5 N4 N3 N2 N1

s

t

N3

❶
Sender

Receiver N5 N4 N2 N1

N5 N4 N3 N2 N1

s

t

N3

Sender

Receiver

❷

N2

N3 N5

N4

N3 N1

N5

❸

RDAG of

Chunk 1

RDAG of

Chunk 2

N3

N5 N4 N3 N2 N1

s

t

N5 N4 N2 N1

Sender

Receiver

Implementation

RepairBoost serves as an independent middleware running atop

existing storage

• The coordinator manages the metadata of stripes

• The agents are standby to wait for the repair commands and perform the

repair operations cooperatively

16

Agent

Metadata Server

Coordinator

❶

❷

Node

Agent

Node

Agent

Node

Agent

Node

Read (Local)
Recv (Sour.)
Decode
Send (Dest.)
Write (Local)

Agent

❷ ❷

❶

Coordinator

Calculate (Solu.)
Interact (Agents)

Command Repair traffic

Evaluation Setup

Amazon EC2

• 17 m5.large machines (1 coordinator and 16 agents)

Default configurations

• Chunk size: 64MB, Packet size: 1MB

• RS(6, 3)

Single-chunk repair algorithms

• Conventional repair (CR)

• Partial-Parallel-Repair (PPR)

• Repair pipelining (ECPipe)

Baseline: random selection

 Metric: repair throughput (size of data repaired per time unit) 17

Performance Results

18

Baseline RepairBoost

0

50

100

150

200

CR PPR ECPipe

Repair Algorithm

T
h
p

t
(M

B
/s

)

0

100

200

300

CR PPR ECPipe

Repair Algorithm

T
h
p

t
(M

B
/s

)

0

100

200

300

400

CR

Repair Algorithm

T
h
p

t
(M

B
/s

)

(a) RS(6,3) (b) LRC(6,2,2) (c) Butterfly(4,2)

 Ob#1: Butterfly(4,2) reaches the highest repair throughput

• as it needs to fetch only half of the data

 Ob#2: RepairBoost can improve the repair throughput by an average of 60.4% for

different erasure codes

Breakdown Analysis

19

0

50

100

150

200

CR PPR ECPipe

Repair Algorithm

T
h
p

t
(M

B
/s

)

Baseline RTB TS RepairBoost

 Ob#1: The effectiveness of RTB and TS varies across different repair algorithms.

 Ob#2: RepairBoost achieves 45.7% and 19.8% higher repair throughput than RTB

and TS, respectively.

Multi-Node Repair

20

 Ob#1: RepairBoost improves the repair throughput by 39.5% (a single node

failure) and by 35.7% (triple node failures)

 Ob#2: The repair throughput of RepairBoost drops slightly when more nodes fail

• Fewer selected nodes can participate in the repair

Conclusion

21

RepairBoost, a scheduling framework that boosts the full-node

repair for various erasure codes and repair algorithms

• Employ graph abstraction for single-chunk repair

• Balance the upload and download repair traffic

• Schedule the transmission of chunks to saturate unoccupied bandwidths

Source code:

https://github.com/shenzr/repairboost-code

https://github.com/shenzr/repairboost-code
https://github.com/shenzr/repairboost-code
https://github.com/shenzr/repairboost-code
https://github.com/shenzr/repairboost-code

Thank You!

Q & A

22

