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Background: Storage trend

HDD SATA SSD NVMe SSD

Bandwidth ~80 MB/s ~500 MB/s ~5 GB/s

Modern storage hardware delivers higher write bandwidth.
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Year 2014 2020 2021

Product
(media)

Intel DC P3700 
(MLC)

Samsung 980pro
(V-NAND MLC)

Intel D5-P5316
(QLC)

Seq. bandwidth 1900 MB/s 5 GB/s 3.6 GB/s

Rand. bandwidth 600 MB/s 3.2 GB/s 31 MB/s

Seq. / Rand. 3.2 1.6 116

Flash-based SSDs provide higher sequential write bandwidth.



Background: Storage system
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The CPU or system software become the bottlenecks.



Background: Storage system
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Employing multicore CPUs to the system software.



Motivation: Multicore scalability
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• Workload: concurrent I/Os including create(), write(), fsync() and unlink().
• ideal: partition the drive and the system software; run an independent F2FS 

atop each partition.
• Other Linux file systems: multiple CPU cores share a single drive partition.

5X

Existing Linux file systems fail to scale for high 
performance SSDs.



Motivation: Analysis
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NVMe Controller

flash

Multi-Queue Block Device

Concurrent I/Os and 
multicore CPUscore core core core

flash flash flash

Multicore-friendly 
design of block layer 

and device driver

High internal data 
parallelism of the SSD

File system
File system becomes the 

scalability bottleneck



Motivation: Analysis
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Use F2FS, an existing LFS designed for flash-
based SSD, as an example

Concurrency Control

In-Memory 
Data Structure

FS metadata File metadata File data

Space Allocation

51% CPU cycles for 
locking on write() 

10~37% CPU cycles 
for locking on 
create() and unlink() 

45% CPU cycles for 
locking on fsync() 

CPU becomes the bottleneck; I/O device is underutilized.
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Max overview 
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Concurrency Control

In-Memory 
Data Structure

Space Allocation

File cell File cell File cell

Application I/Os

Reader Pass-through 
Semaphore for CC

File cell to scale the  
access to IMDS

Mlog for concurrent 
SA and persistence

Key idea: sequential I/O (log structure) + efficient CPU use (sharding)

Mlog Mlog Mlog



LFS’s concurrency control
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User operations (syscalls)

1. Operations and concurrency control of classic LFS

Read operations Write operations

File-level reader-writer lock

LFS’s internal operations 
(checkpoint)

Global reader-writer lock

2. Concurrency control among write ops and a checkpoint

checkpoint requires an 
exclusive-mode lock

core 0 core 1 core N…

Shared
counter

checkpoint

+2^32
Shared
counter

Shared
counter



LFS’s concurrency control
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User operations (syscalls)

1. Operations and concurrency control of classic LFS

Read operations Write operations

File-level reader-writer lock

LFS’s internal operations 
(checkpoint)

Global reader-writer lock

2. Concurrency control among write ops and a checkpoint

write requires a 
shared-mode lock

core 0 core 1 core N…

Shared
counter

write

+1
Shared
counter

Shared
counter

Expensive cache 
coherence traffic



Reader Pass-through Semaphore
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Key idea: per-core counters + CPU scheduler’s free rides 

core 0 core 1 core N…

counter counter counter

write write

+1 +1

checkpointany write ops?

aggressive polling (ns)

low latency but interfere 
other cores (e.g., IPIs)

lazy wait (ms)

high latency and 
slows the checkpoint 

scheduler-assisted
check (us-scale, 
consistent with 
SSDs’ latency)



Reader Pass-through Semaphore
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The FS in kernel space frequently triggers CPU scheduler, 
especially when a syscall is finished.

core 0 core 1 core N

write write

…

checkpointTime

shared-
mode lock

exclusive-
mode lock

file systems 
ops

CPU 
scheduler

blocked!

blocked!
block other write ops 
via a traditional 
reader-writer lock.

no writer in the 
critical section.

no writer in the critical section.



File Cell
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Key idea: partition and reorganize in-memory data structure

File cell group 0
inode number % N = 0

File cell group N
inode number % N = N-1

…

file 1 inode table9 B

4 KB inode

4 KB file 1 data

File 
cell

write(), read(), stat(), fsync(): 
1. lock group/indexing in shared-mode
2. lock file cell of target file
3. file operations



File Cell
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Key idea: partition and reorganize in-memory data structure

File cell group 0
inode number % N = 0

File cell group N
inode number % N = N-1

…

file 1 inode table9 B

4 KB inode

4 KB file 1 data

File 
cell

creat(), unlink(), mkdir(): 
1. lock group/indexing in exclusive-mode
2. lock file cell of target files and directory
3. file operations



Mlog
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Key idea: multiple logs, each serves for atomic file operations

mlog 1 mlog 2 mlog 3

write(file1) create(file2)
• dispatch atomic file 

operations in a round-
robin fashion

• each mlog maintains its 
internal consistency

How to keep consistency over multiple mlogs?

mlog 1 mlog 2

write(file1) rename(file1,file 2)

inode

Use a global version 
number to decide the 
persistence ordering
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Evaluation
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CPU 4 Intel Xeon Gold 6140 CPU, each with 18 
cores, totally 72 physical CPU cores

SSD Intel DC P3700 2 TB SSD

Compared 
system

Linux vanilla kernel 4.19.11;
ext4, XFS, F2FS [FAST’15], SpanFS [ATC’15]

Workloads

• Data and metadata scalability;
• Varmail and RocksDB;
• Upper bound evaluation against tmpfs;



Data and metadata scalability
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Parallel metadata intensive ops

Max-72threads = 56 x Max-1thread
Max = 2.8 x SpanFS
Max = 18.6 x F2FS



Application scalability
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create, unlink and fsync intensive

Max = 2.9 x SpanFS = 2.1 x F2FS Max > SpanFS = 1.5x F2FS
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RocksDB overwrite

SpanFS Max F2FS Ext4 XFS

compaction intensive, value size = 8 KB



Upper bound evaluation
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tmpfs: a simple wrapper of Linux VFS, a memory-based file system
Max-mem: disable fsync and page cache flushes to avoid duplicate on-disk copy
tested device: 20GB memory-backed RAMdisk

The throughput of Max-mem comes close to tmpfs



Conclusion
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⚫Max: A Multicore-Accelerated File System for Flash Storage

➢ Reader Pass-throughput Semaphore to improve the concurrency control

➢ File cell to scale the accesses of in-memory data structures

➢ Mlog to parallel the persistence functions

⚫ Performance evaluation

➢ Performs significantly better than existing Linux file systems

➢ Achieve near-optimal performance for some file operations (i.e., append 

write and create). 

Source code: https://github.com/thustorage/max



Q&A

24

Max: A Multicore-Accelerated File System for Flash Storage
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Thank You!


