
Max: A Multicore-Accelerated
File System for Flash Storage

Xiaojian Liao, Youyou Lu, Erci Xu, Jiwu Shu

1

Tsinghua University

2

Agenda

• Background

• Motivation

• Design and Implementation

• Evaluation

• Conclusion

Background: Storage trend

HDD SATA SSD NVMe SSD

Bandwidth ~80 MB/s ~500 MB/s ~5 GB/s

Modern storage hardware delivers higher write bandwidth.

3

Year 2014 2020 2021

Product
(media)

Intel DC P3700
(MLC)

Samsung 980pro
(V-NAND MLC)

Intel D5-P5316
(QLC)

Seq. bandwidth 1900 MB/s 5 GB/s 3.6 GB/s

Rand. bandwidth 600 MB/s 3.2 GB/s 31 MB/s

Seq. / Rand. 3.2 1.6 116

Flash-based SSDs provide higher sequential write bandwidth.

Background: Storage system

CPU

System
Software

Classic
HDD

10%

100%

4

CPU

System
Software

SSDs
(array)

100%

40%

The CPU or system software become the bottlenecks.

Background: Storage system

5

CPU

System
Software

SSDs
(array)

100%

40%

CPUs

System
Software

SSDs
(array)

Employing multicore CPUs to the system software.

Motivation: Multicore scalability

6

0

5

10

15

1 4 9 18 27 36 45 54 63 72

T
h
ro

ug
h
pu

t
(K

I
O

PS
)

of processes

SATA SSD

SpanFS ideal Ext4 F2FS XFS

0

50

100

150

200

1 4 9 18 27 36 45 54 63 72

of processes

NVMe SSD

SpanFS ideal Ext4 F2FS XFS

• Workload: concurrent I/Os including create(), write(), fsync() and unlink().
• ideal: partition the drive and the system software; run an independent F2FS

atop each partition.
• Other Linux file systems: multiple CPU cores share a single drive partition.

5X

Existing Linux file systems fail to scale for high
performance SSDs.

Motivation: Analysis

7

NVMe Controller

flash

Multi-Queue Block Device

Concurrent I/Os and
multicore CPUscore core core core

flash flash flash

Multicore-friendly
design of block layer

and device driver

High internal data
parallelism of the SSD

File system
File system becomes the

scalability bottleneck

Motivation: Analysis

8

Use F2FS, an existing LFS designed for flash-
based SSD, as an example

Concurrency Control

In-Memory
Data Structure

FS metadata File metadata File data

Space Allocation

51% CPU cycles for
locking on write()

10~37% CPU cycles
for locking on
create() and unlink()

45% CPU cycles for
locking on fsync()

CPU becomes the bottleneck; I/O device is underutilized.

9

Agenda

• Background

• Motivation

• Design and Implementation

• Evaluation

• Conclusion

Max overview

10

Concurrency Control

In-Memory
Data Structure

Space Allocation

File cell File cell File cell

Application I/Os

Reader Pass-through
Semaphore for CC

File cell to scale the
access to IMDS

Mlog for concurrent
SA and persistence

Key idea: sequential I/O (log structure) + efficient CPU use (sharding)

Mlog Mlog Mlog

LFS’s concurrency control

11

User operations (syscalls)

1. Operations and concurrency control of classic LFS

Read operations Write operations

File-level reader-writer lock

LFS’s internal operations
(checkpoint)

Global reader-writer lock

2. Concurrency control among write ops and a checkpoint

checkpoint requires an
exclusive-mode lock

core 0 core 1 core N…

Shared
counter

checkpoint

+2^32
Shared
counter

Shared
counter

LFS’s concurrency control

12

User operations (syscalls)

1. Operations and concurrency control of classic LFS

Read operations Write operations

File-level reader-writer lock

LFS’s internal operations
(checkpoint)

Global reader-writer lock

2. Concurrency control among write ops and a checkpoint

write requires a
shared-mode lock

core 0 core 1 core N…

Shared
counter

write

+1
Shared
counter

Shared
counter

Expensive cache
coherence traffic

Reader Pass-through Semaphore

13

Key idea: per-core counters + CPU scheduler’s free rides

core 0 core 1 core N…

counter counter counter

write write

+1 +1

checkpointany write ops?

aggressive polling (ns)

low latency but interfere
other cores (e.g., IPIs)

lazy wait (ms)

high latency and
slows the checkpoint

scheduler-assisted
check (us-scale,
consistent with
SSDs’ latency)

Reader Pass-through Semaphore

14

The FS in kernel space frequently triggers CPU scheduler,
especially when a syscall is finished.

core 0 core 1 core N

write write

…

checkpointTime

shared-
mode lock

exclusive-
mode lock

file systems
ops

CPU
scheduler

blocked!

blocked!
block other write ops
via a traditional
reader-writer lock.

no writer in the
critical section.

no writer in the critical section.

File Cell

15

Key idea: partition and reorganize in-memory data structure

File cell group 0
inode number % N = 0

File cell group N
inode number % N = N-1

…

file 1 inode table9 B

4 KB inode

4 KB file 1 data

File
cell

write(), read(), stat(), fsync():
1. lock group/indexing in shared-mode
2. lock file cell of target file
3. file operations

File Cell

16

Key idea: partition and reorganize in-memory data structure

File cell group 0
inode number % N = 0

File cell group N
inode number % N = N-1

…

file 1 inode table9 B

4 KB inode

4 KB file 1 data

File
cell

creat(), unlink(), mkdir():
1. lock group/indexing in exclusive-mode
2. lock file cell of target files and directory
3. file operations

Mlog

17

Key idea: multiple logs, each serves for atomic file operations

mlog 1 mlog 2 mlog 3

write(file1) create(file2)
• dispatch atomic file

operations in a round-
robin fashion

• each mlog maintains its
internal consistency

How to keep consistency over multiple mlogs?

mlog 1 mlog 2

write(file1) rename(file1,file 2)

inode

Use a global version
number to decide the
persistence ordering

18

Agenda

• Background

• Motivation

• Design and Implementation

• Evaluation

• Conclusion

Evaluation

19

CPU 4 Intel Xeon Gold 6140 CPU, each with 18
cores, totally 72 physical CPU cores

SSD Intel DC P3700 2 TB SSD

Compared
system

Linux vanilla kernel 4.19.11;
ext4, XFS, F2FS [FAST’15], SpanFS [ATC’15]

Workloads

• Data and metadata scalability;
• Varmail and RocksDB;
• Upper bound evaluation against tmpfs;

Data and metadata scalability

20

0

50

100

150

1 4 9 18 27 36 45 54 63 72

M
 o

p
s/

s

of threads

Data Overwrite

SpanFS Max F2FS Ext4 XFS

Parallel data intensive ops

0

0.5

1

1 4 9 18 27 36 45 54 63 72
of threads

Metadata Create

SpanFS Max F2FS Ext4 XFS

Parallel metadata intensive ops

Max-72threads = 56 x Max-1thread
Max = 2.8 x SpanFS
Max = 18.6 x F2FS

Application scalability

21

create, unlink and fsync intensive

Max = 2.9 x SpanFS = 2.1 x F2FS Max > SpanFS = 1.5x F2FS

0

200

400

600

800

1 4 9 18 27 36 45 54 63 72

K
 o

ps
/s

of threads

Varmail

SpanFS Max F2FS Ext4 XFS

0

10

20

30

40

1 4 9 18 27 36 45 54 63 72
of threads

RocksDB overwrite

SpanFS Max F2FS Ext4 XFS

compaction intensive, value size = 8 KB

Upper bound evaluation

22

0

10

20

30

1 4 9 18 27 36 45 54 63 72

M
 o

ps
/s

of threads

Data append write

Max-mem tmpfs

0

1

2

3

1 4 9 18 27 36 45 54 63 72

of threads

Metadata create

Max-mem tmpfs

tmpfs: a simple wrapper of Linux VFS, a memory-based file system
Max-mem: disable fsync and page cache flushes to avoid duplicate on-disk copy
tested device: 20GB memory-backed RAMdisk

The throughput of Max-mem comes close to tmpfs

Conclusion

23

⚫Max: A Multicore-Accelerated File System for Flash Storage

➢ Reader Pass-throughput Semaphore to improve the concurrency control

➢ File cell to scale the accesses of in-memory data structures

➢ Mlog to parallel the persistence functions

⚫ Performance evaluation

➢ Performs significantly better than existing Linux file systems

➢ Achieve near-optimal performance for some file operations (i.e., append

write and create).

Source code: https://github.com/thustorage/max

Q&A

24

Max: A Multicore-Accelerated File System for Flash Storage

Xiaojian Liao, Youyou Lu, Erci Xu, Jiwu Shu

Tsinghua University

liao-xj17@mails.tsinghua.edu.cn

Thank You!

