Max: A Multicore-Accelerated
File System for Flash Storage

Xiaojian Liao, Youyou Lu, Erci Xu, Jiwu Shu

Tsinghua University

Agenda

* Background

Background: Storage trend

[Modern storage hardware delivers higher write bandwidth.]

HDD SATA SSD NVMe SSD
Bandwidth ~80 MB/s ~500 MB/s ~5 GB/s

[Flash-based SSDs provide higher sequential write bandwidth.]

Year 2014 2020 2021
Product Intel DC P3700 Samsung 980pro Intel D5-P5316
(media) (MLC) (V-NAND MLC) (QLC)

Seq. bandwidth 1900 MB/s 5 GB/s 3.6 GB/s
Rand. bandwidth 600 MB/s 3.2 GB/s 31 MB/s

Seq. / Rand. 3.2 1.6 116

Background: Storage system

CPU CPU I100°/o
) 10%
System System
Software Software

PClI >
EXPRESS EXPRESS

b L
Classic SSDs 40%
HDD (array)

The CPU or system software become the bottlenecks. 4

Background: Storage system

CPU I CPUs
| 100% | |

System System

Software Software
gg,lmt v,) %4 .,

\ / \ / \ / \ /

SSDs SSDs

(array) 40% (array)

Employing multicore CPUs to the system software.

Motivation: Multicore scalability

= =
Ul o Ul

o

Throughput (KIOPS)

Workload: concurrent I/Os including create(), write(), fsync() and unlink().
ideal: partition the drive and the system software; run an independent F2FS
atop each partition.

Other Linux file systems: multiple CPU cores share a single drive partition.

SATA SSD 200 NVMe SSD
150
100 59X
50
0 & o009
1 4 9 18 27 36 45 54 63 72 1 4 9 18 27 36 45 54 63 72
of processes # of processes
SpanF$S -@-ideal -#-Ext4 -@-F2FS -@-XFS SpanFS -@-ideal -o-Ext4 -@-F2FS -@-XFS

Existing Linux file systems fail to scale for high
performance SSDs. 6

Motivation: Analysis

]]]]
core core core core
File system

O O O O

Multi-Queue Block Device

NVMe Controller

flash flash flash flash

Concurrent I/0Os and
multicore CPUs

File system becomes the
scalability bottleneck

Multicore-friendly
design of block layer
and device driver

High internal data
parallelism of the SSD

Motivation: Analysis

Use F2FS, an existing LFS designed for flash-
based SSD, as an example

1 1 3
Concurrency Control \-GJ 51% CPU cycles for

locking on write()

—) — 10~37% CPU cycles
In-Memor'y & &) CSCDE) for locking on

t d unlink
Data Structure FS metadata File metadata File data create() and unlink()

/ 45% CPU cycles for

SPOCC Allocation locking on fsync()

:CPU becomes the bottleneck; I/0O device is underutilized. 8

Agenda

« Desigh and Implementation

Max overview

[Key idea: sequential I/0O (log structure) + efficient CPU use (shar'ding)]
Application I/0s

Concurrency Control | B ER Ew Semaphore for CC

| | |
In-Memory SCDE SCDE SCDE File cell to scale the
Data Structure .) . access to IMDS
File cell File cell File cell

I 1 1

Space Allocation Mlog for concurrent
Mlog Mlog Miog SA and persistence

I 1 1 0

r____----————————————————-a Reader Pass-through

LFS's concurrency control

1. Operations and concurrency control of classic LFS

User operations (syscalls)

/\ LFS's internal operations

Read operations Write operations (checkpoint)

r |
~ . —_—
] . - -'~.
L] " —-—,
.N. P
-y =

-—, —_—
L) —-~
—y

-
a File-level reader-writer lock { | Global reader-writer lock H\’

_— -
e o o o o o - =

2. Concurrency control among write ops and a checkpoint
checkpoint

checkpoint requires an core O core 1 core N
exclusive-mode lock

Shared 2Shar'ed
counter counter

+
nN
>
)

11

LFS's concurrency control

1. Operations and concurrency control of classic LFS

User operations (syscalls)

/\ LFS's internal operations

Read operations Write operations (checkpoint)

r Ll
‘-\ - B R .
. - " o,
~ .
—~— 1’
R

-—, —_—
L) —-~
—y

-
a File-level reader-writer lock { | Global reader-writer lock B)

_— -
e o o o o o - =

2. Concurrency control among write ops and a checkpoint

write
write requires a core O core 1 core N
shared-mode lock
Expensive cache Shared | Shared
. +
coherence traffic counter counter

Reader Pass-through Semaphore

[Key idea: per-core counters + CPU scheduler’s free rides]

write write

core O core 1 core N
:_ __ |
i counter | +1 counter | +1 counter ﬁ
|

any write ops? checkpoint

<)

aggressive polling (hs) ﬂscheduler-assis‘red lazy wait (ms)

' check (us-scale, .
low latency but interfere consistent with high latency and

other cores (e.g., IPIs) SSDs’ latency) slows the checkpoint

13

Reader Pass-through Semaphore

The FS in kernel space frequently triggers CPU scheduler,
especially when a syscall is finished.

Time write write checkpoint
core O core 1 core N

shared-]
mode lock B blocked!

- block other write ops
exclusive- I blocked! via a traditional
mode lock reader-writer lock.

no writer in the
file systems] critical section.
ops

CPU no writer in the critical section.
scheduler | 1

File Cell

[Key idea: partition and reorganize in-memory data structure

File cell group O
inode number % N =0

98B
4 KB
4 KB

aFile

cell

file 1 inode table

inode

file 1 data

o

File cell group N
inode number 7% N = N-1

write(), read(), stat(), fsync():

1. lock group/indexing in shared-mode
2. lock file cell of target file

3. file operations

15

File Cell

[Key idea: partition and reorganize in-memory data structure

File cell group O File cell group N

inode number % N =0 inode number % N = N-1

File creat(), unlink(), mkdir():
a cell 1. lock group/indexing in exclusive-mode

, 2. lock file cell of target files and directory
9 B |filelinode '|'C1b|ez> 3 flle ope,ﬂatlons
4 KB |inode
48 [file 1 data

16

Mlog

[Key idea: multiple logs, each serves for atomic file operations

g : » dispatch atomic file
write(filel) create(file2) opepraTions 1 a round-

\ \ robin fashion

» each mlog maintains its
internal consistency

mlog 1 mlog 2 mlog 3

How to keep consistency over multiple mlogs?

/\ inode I

write(filel) rename(filel,file 2) T

Use a global version
number to decide the
persistence ordering

mlog 1 mlog 2

17

Agenda

« Evaluation

18

Evaluation

4 Tntel Xeon Gold 6140 CPU, each with 18

CPU cores, totally 72 physical CPU cores
SSD Intel DC P3700 2 TB SSD
Compar'ed Linux vanilla kernel 4.19.11;
sys'rem ext4, XFS, F2FS [FAST15], SpanFS [ATC'15]
* Data and metadata scalability;
Workloads « Varmail and RocksDB;

 Upper bound evaluation against tmpfs:;

19

Data and metadata scalability

Parallel data intensive ops Parallel metadata intensive ops

150 Data Overwrite , Metadata Create
2 100
© 05
= 50
2
0 0 —o
1 4 9 18 27 36 45 b4 63 72 1 4 9 18 27 36 45 B4 63 7?2
of threads # of threads
-o-SpanFS --Max -e-F2FS -e-Ext4 -e-XFS -0-SpanFS -e-Max -e-F2FS -e-Ext4 --XFS

Max = 2.8 x SpanFS

Max-72threads = 56 x Max-1thread Max = 18.6 x F2FS 2

Application scalability

create, unlink and fsync intensive

Varmail
800
©600 —o—o—o
v
5400
V4 —O0—O—0—0—0—0
200 -~ ¢ o o

0 .__._.__.—0—0——0—0—"_'

1 4 9 18 27 36 45 b4 63 72
of threads

-8-SpanFS -e-Max -e-F2FS -e-Ext4 -e-XFS

Max = 2.9 x SpanF$S = 2.1 x F2FS

compaction intensive, value size = 8 KB

RocksDB overwrite

40
30
20

—=O—=0 o @ o .
10 /M

0

1 4 9 18 27 36 45 54 63 72
of threads

-o-SpanFS -e-Max o-F2FS -e-Ext4 --XFS

Max > SpanFS = 1.5x F2FS N

Upper bound evaluation

tmpfs: a simple wrapper of Linux VFS, a memory-based file system
Max-mem: disable fsync and page cache flushes to avoid duplicate on-disk copy
tested device: 20GB memory-backed RAMdisk

Data append write Metadata create
30 3

20 2

M ops/s

—
o O
O

1 4 9 18 27 36 45 54 63 72 1 4 9 18 27 36 45 54 63 72
of threads # of threads
-o-Max-mem tmpfs -o-Max-mem -e-tmpfs

The throughput of Max-mem comes close to tTmpfs 22

Conclusion

® Max: A Multicore-Accelerated File System for Flash Storage
» Reader Pass-throughput Semaphore to improve the concurrency control

> File cell to scale the accesses of in-memory data structures

» Mlog to parallel the persistence functions

® Performance evaluation
» Performs significantly better than existing Linux file systems

» Achieve near-optimal performance for some file operations (i.e., append

write and create).

Source code: https://github.com/thustorage/max 23

QA&A

Thank Youl

Max: A Multicore-Accelerated File System for Flash Storage
Xiaojian Liao, Youyou Lu, Erci Xu, Jiwu Shu

L Mty
:. W \E\\ " "'
H 2 "n N ’0 ° ° .
da %7 Ryt
i o G G ' 9 a Iver' I y
W &
i, ey~
%y =
) 4

liao-xj17@mails.tsinghua.edu.cn

24

