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Background

Real-world workloads are diverse and mixed
• Value size varies in a large range
• Writes, reads, and scans are common

Log-structured merge (LSM) tree
• Transform random writes into sequential writes
• Support efficient reads and range scans
• Limitation: high write amplifications
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LSM-tree: Basics

3

…

…

…

Immutable
MemTable MemTable

Memory

Disk

· · · · · 

…

Sorted Group

L0

L1

Ln

SSTable

Store keys and values together
• Keys and values are fully sorted in each level
• Compaction across levels  high I/O amplifications



Relaxing Fully-Sorted Ordering
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Each level is not necessarily fully sorted by keys
• e.g., PebblesDB [SOSP’17], Dostoevsky [SIGMOD’18], etc.
• Support efficient writes, but sacrifice reads and scans
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KV Separation
Store keys and values separately

• e.g., WiscKey, HashKV, Titan, Bourbon, etc.
• Support efficient writes and reads, but have poor scan performance
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Trade-off Analysis
Are the optimizations suitable for all conditions?

• Relax fully-sorted ordering
• Efficient in small-to-medium values

• KV separation
• Suitable for large values
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Trade-offs between reads/writes and scans



Our Contributions

DiffKV, a KV store realizing balanced I/O performance via 
differentiated KV management
• Coordinate differentiated management of ordering for keys and values
• Manage values with partially-sorted ordering

Merge optimization techniques

Fine-grained KV separation
• Differentiate small, medium, and large KV pairs for mixed workloads

 Implementation atop PingCAP Titan[*] and extensive evaluation

7[*] https://github.com/tikv/titan
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Differentiated KV Management
Decouple keys and values during flushing

• vTree: a multiple-level tree; each level has multiple sorted groups 
• Each sorted group is a collection of vTables
• Values in a level are not fully sorted and have overlapped key ranges
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Differentiated KV Management
Compaction-triggered merge

• Involve values whose keys participate in compaction
• Be triggered when compaction happens in LSM-tree
• Reorganize all compaction-related values in one level, and then append

them to next level
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Overhead of updating LSM-
tree can be hidden!



O1: Lazy Merge
Problem: frequent merge operations

• Each compaction triggers a merge operation

 Idea:
• Values are delayed to merge until the target level is one of the last two 

levels

 Lazy merge significantly reduces number of merge operations
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O2: Scan-optimized Merge
Problem: too many sorted groups within one level

• Apply append-only merge policy

 Idea:
• Detect number of overlapping vTables after normal merge
• Add a tag to indicate participation in the next merge
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Carefully adjust the degree of 
ordering for values in vTree



Fine-grained KV Separation

KV separation is advantageous for large KV pairs, but has 
marginal benefits for small KV pairs

Selective approach:
• Small values: stored entirely in LSM-tree
• Medium values: stored in vTree
• Large values: stored in vLogs

Hotness-awareness
• Hot-cold separation scheme
• Greedy garbage collection
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Experiments

Testbed backed with a Samsung 860 EVO 480 GB SSD 

KV stores
• RocksDB, PebblesDB, Titan (no GC, background GC, foreground GC)
• DiffKV: built on Titan to reuse KV separation

Workloads
• Key size: 24 bytes 
• Value size: average 1KB (follow Pareto distribution)
(i) insert 10 GB KV pairs  (ii) update 300 GB KV pairs
(iii) read 10 GB KV pairs (iv) scan 10 GB KV pairs
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Microbenchmarks of DiffKV

 Compared to RocksDB and PebblesDB
• 2.7-3.8x inserts; 2.3-3.7x updates; 2.6-3.4x reads
• Comparable scan performance

 Compared to Titan
• 3.2x scans; up to 1.7x updates; 43.2% lower scan latency

 DiffKV has acceptable space usage
14
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Impact of Merge Optimizations

Coordinated merge design
• Reduce 60.7% of time cost of value management
• Slightly increase key compaction overhead
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Key compaction overheadValue GC/merge overhead



Conclusions

DiffKV: differentiated key-value storage management for 
balanced I/O performance

More evaluation results and analysis in paper

Source code: https://github.com/ustcadsl/diffkv
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Thanks for our attention!

For any questions, please feel free to contact

Prof. Yongkun Li@USTC

ykli@ustc.edu.cn

http://staff.ustc.edu.cn/~ykli/
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