
Differentiated Key-Value Storage Management
for Balanced I/O Performance

Yongkun Li1, Zhen Liu1, Patrick P. C. Lee2, Jiayu Wu1, Yinlong Xu1,3

Yi Wu4, Liu Tang4, Qi Liu4, Qiu Cui4
1University of Science and Technology of China 2The Chinese University of Hong Kong

3Anhui Province Key Laboratory of High Performance Computing, USTC 4PingCAP

USENIX ATC 2021

1

Background

Real-world workloads are diverse and mixed
• Value size varies in a large range
• Writes, reads, and scans are common

Log-structured merge (LSM) tree
• Transform random writes into sequential writes
• Support efficient reads and range scans
• Limitation: high write amplifications

2

LSM-tree: Basics

3

…

…

…

Immutable
MemTable MemTable

Memory

Disk

· · · · ·

…

Sorted Group

L0

L1

Ln

SSTable

Store keys and values together
• Keys and values are fully sorted in each level
• Compaction across levels high I/O amplifications

Relaxing Fully-Sorted Ordering

4

Each level is not necessarily fully sorted by keys
• e.g., PebblesDB [SOSP’17], Dostoevsky [SIGMOD’18], etc.
• Support efficient writes, but sacrifice reads and scans

..

· · · · · ·

…

…… …

… …

Guard

L0

L1

Ln

Sorted GroupSSTable

Immutable
MemTable MemTable

Memory

Disk

Fragmented LSM-
tree in PebblesDB

KV Separation
Store keys and values separately

• e.g., WiscKey, HashKV, Titan, Bourbon, etc.
• Support efficient writes and reads, but have poor scan performance

5

Immutable
MemTable MemTable

Memory

Disk

…

…

…

· · · · ·
…

values

Append-
only log

…

KV separation

L0

Ln

L1

Sorted GroupSSTable

<key,v_loc>
WiscKey

Trade-off Analysis
Are the optimizations suitable for all conditions?

• Relax fully-sorted ordering
• Efficient in small-to-medium values

• KV separation
• Suitable for large values

6

Trade-offs between reads/writes and scans

Our Contributions

DiffKV, a KV store realizing balanced I/O performance via
differentiated KV management
• Coordinate differentiated management of ordering for keys and values
• Manage values with partially-sorted ordering

Merge optimization techniques

Fine-grained KV separation
• Differentiate small, medium, and large KV pairs for mixed workloads

 Implementation atop PingCAP Titan[*] and extensive evaluation

7[*] https://github.com/tikv/titan

……

Differentiated KV Management
Decouple keys and values during flushing

• vTree: a multiple-level tree; each level has multiple sorted groups
• Each sorted group is a collection of vTables
• Values in a level are not fully sorted and have overlapped key ranges

8

…

Memory

Disk

MemTable

Li SSTable SSTable

<Key, Value>
<Value> <key>

Manage the order of values!

vTable vTable Partially sorted
in each levelvLi

Differentiated KV Management
Compaction-triggered merge

• Involve values whose keys participate in compaction
• Be triggered when compaction happens in LSM-tree
• Reorganize all compaction-related values in one level, and then append

them to next level

9

Overhead of updating LSM-
tree can be hidden!

O1: Lazy Merge
Problem: frequent merge operations

• Each compaction triggers a merge operation

 Idea:
• Values are delayed to merge until the target level is one of the last two

levels

 Lazy merge significantly reduces number of merge operations
10

O2: Scan-optimized Merge
Problem: too many sorted groups within one level

• Apply append-only merge policy

 Idea:
• Detect number of overlapping vTables after normal merge
• Add a tag to indicate participation in the next merge

11

Carefully adjust the degree of
ordering for values in vTree

Fine-grained KV Separation

KV separation is advantageous for large KV pairs, but has
marginal benefits for small KV pairs

Selective approach:
• Small values: stored entirely in LSM-tree
• Medium values: stored in vTree
• Large values: stored in vLogs

Hotness-awareness
• Hot-cold separation scheme
• Greedy garbage collection

12

Experiments

Testbed backed with a Samsung 860 EVO 480 GB SSD

KV stores
• RocksDB, PebblesDB, Titan (no GC, background GC, foreground GC)
• DiffKV: built on Titan to reuse KV separation

Workloads
• Key size: 24 bytes
• Value size: average 1KB (follow Pareto distribution)
(i) insert 10 GB KV pairs (ii) update 300 GB KV pairs
(iii) read 10 GB KV pairs (iv) scan 10 GB KV pairs

13

Microbenchmarks of DiffKV

 Compared to RocksDB and PebblesDB
• 2.7-3.8x inserts; 2.3-3.7x updates; 2.6-3.4x reads
• Comparable scan performance

 Compared to Titan
• 3.2x scans; up to 1.7x updates; 43.2% lower scan latency

 DiffKV has acceptable space usage
14

Throughput Average latency Space usage

Impact of Merge Optimizations

Coordinated merge design
• Reduce 60.7% of time cost of value management
• Slightly increase key compaction overhead

15

Key compaction overheadValue GC/merge overhead

Conclusions

DiffKV: differentiated key-value storage management for
balanced I/O performance

More evaluation results and analysis in paper

Source code: https://github.com/ustcadsl/diffkv

16

Thanks for our attention!

For any questions, please feel free to contact

Prof. Yongkun Li@USTC

ykli@ustc.edu.cn

http://staff.ustc.edu.cn/~ykli/

17

	Differentiated Key-Value Storage Management �for Balanced I/O Performance
	Background
	LSM-tree: Basics
	Relaxing Fully-Sorted Ordering
	KV Separation
	Trade-off Analysis
	Our Contributions
	Differentiated KV Management
	Differentiated KV Management
	O1: Lazy Merge
	O2: Scan-optimized Merge
	Fine-grained KV Separation
	Experiments
	Microbenchmarks of DiffKV
	Impact of Merge Optimizations
	Conclusions
	Thanks for our attention!

