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Background of  Graph Learning

Social Network Molecular structures Knowledge Graph Road Map

Graph Data is Everywhere !
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Background of  GNN-based GL

Does Rick know Alice?

Graph learning approach:
• Stage 1: Embedding
• Stage 2: Prediction
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Obtain Embedding Vectors with GNN - 1

GNN inference

Sampled Edge:

• Sample
• Aggregate
• Combine
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Obtain Embedding Vectors with GNN - 2

Aggregate Combine
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Predicting Relationship

Rick and Alice may know each other !

Y=0.7

N=0.3
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GNN-based GL Workload Characterization

SSD IO Time > 50% 

• Graph learning workloads are bottlenecked by I/O
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GNN-based GL Workload Characterization

SSD IO Time > 50% 

• Graph learning workloads are bottlenecked by I/O

• Graph learning on GPGPU is limited by memory capacity



Challenges and Solutions

I/O bottleneck and memory constraints              

High performance graph learning

Unstable data locality
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Challenges and Solutions
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In-Storage Graph Learning Paradigm
Conventional GL Paradigm
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In-Storage Graph Learning Paradigm
Conventional GL Paradigm

In-Storage GL Paradigm
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System Overview
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GLIST User Library

AddEdge(…), 
RemoveEdge(…),…

Graph Update

GraphRegister(…), 
GraphUnregister(…),…

Graph Registration

ModelRegister(…), 
ModelUnregister(…),…

Model Registration

GraphAnalysis(…), 
GetAnalysisResult(…),…

Graph Analysis

• Application Interface
• Locality-Aware Optimization  
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GLIST User Library – Graph Reorganization

Class of  V5?

Read V5

Read V0

Read V4

Read V7

Read Page1
Read Page2

Sample V0, V4, V7 to 
analysis V5

Low BW Util !
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GLIST User Library – Graph Reorganization

Observation 1: Flash devices are operated at page level (16KB).
Observation 2: The size of  each single property vector is usually 
far less than 16KB.

Read V0
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Read V3

Read Page1
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V4 →V 1
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BW Util Improved!
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GLIST Runtime – Request Scheduling
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GLIST Runtime – Request Scheduling
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In-Storage Graph Learning Accelerator
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Experimental Setup

CPU DRAM SSD GPU

CPU 2 * Xoen E5 2690v3 64GB 1TB PCIe SSD -

V100 2 * Xoen E5 2690v3 64GB 1TB PCIe SSD NVIDIA 
V100

GLIST ARM Dual Cortex A9 1GB 1TB NAND flash -

Hardware

Tasks Models Datasets #Vertices #Edges(Per graph)

Node-Level Task GCN [2]
GS-Pool [3]

ogbn-products [6]
soc-LiveJournal1 [7, 8]
twitter [9]

2,449,029
4,847571
61,578,417

61,859,140
68,993,773
1,468,365,182

Edge-Level Task GS-Pool [3]
PinSage [4]

ogbn-papers100M [6]
ogbl-citation2 [6]
ogbl-wikikg2 [6]
SOC-Friendster [10]

111,059,956
2,927,963
2,500,604
65,608,366

1,615,685,872
30,561,187
17,137,181
1,806,067,135

Graph-Level Task GCN [2]
GIN [5]

ogbg-molpcba [6]
ogbg-code [6]
ogbg-ppa [6]

437,929
452,741
158,100

28.1
124.2
2,266.1

Benchmark

Software

Ubuntu 18.04,
DGL[1]
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Evaluation - GLIST Performance

GLIST performs 13x and 10x faster on average than CPU and GPU based GL system due to 
well exploited data locality and high-performance GL accelerator.
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Evaluation – GLIST Efficiency

GLIST reduces average energy consumption by 98.7% and 98.0%, respectively than CPU 
and GPU based GL systems, and is more efficient.
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Evaluation – GLIST Optimization

The optimized GLIST system benefits more from shorter property vector length and 
thankfully, few commonly used datasets have long feature vector [6,7,8,9,10]. 
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Evaluation – GLIST Optimizations

The request scheduling strategy greatly exploits temporal data locality exists among GL 
requests.
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• The GLIST design provides a guarantee for the high energy 
efficiency of  the graph learning task. 

• Proposed graph reorganization and request scheduling 
algorithm that greatly contribute to the performance and 
efficiency of  GLIST by exploiting data locality. 

• Built an FPGA-based prototype and performed various 
benchmarks on it.

Conclusion
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