
Cangyuan Li 1,2, Ying Wang 1,2, Cheng Liu 1,2,
Shengwen Liang 1,2, Huawei Li 1,2,3, Xiaowei Li 1,2

GLIST: Towards In-Storage Graph Learning

1State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing

2University of Chinese Academy of Sciences, Beijing
3Peng Cheng Laboratory, Shenzhen

1/35

•Background and Motivation
•GLIST Design
•Evaluation
•Conclusion

Outline

2/35

Background of Graph Learning

Social Network Molecular structures Knowledge Graph Road Map

Graph Data is Everywhere !

Feature Vector:
Gender，Age, …

User

Relation

Classify Users Relationship
Prediction

Graph Learning

3/35

Background of GNN-based GL

Does Rick know Alice?

Graph learning approach:
• Stage 1: Embedding
• Stage 2: Prediction

?

Tom

Rick

Rebecca

Jerry

Alice

4/35

Obtain Embedding Vectors with GNN - 1

GNN inference

Sampled Edge:

• Sample
• Aggregate
• Combine

Tom

Rick

Rebecca

Jerry

Alice

Rick

Rebecca

Tom

Tom

Jerry

Alice

5/35

Obtain Embedding Vectors with GNN - 2

Aggregate Combine

Rick

Rebecca

Tom Tom

Jerry

Alice

Embedding
Vector for

Rick

Embedding
Vector for

Alice

6/35

Predicting Relationship

Rick and Alice may know each other !

Y=0.7

N=0.3

7/35

GNN-based GL Workload Characterization

SSD IO Time > 50%

• Graph learning workloads are bottlenecked by I/O

8/35

GNN-based GL Workload Characterization

SSD IO Time > 50%

• Graph learning workloads are bottlenecked by I/O

• Graph learning on GPGPU is limited by memory capacity

Challenges and Solutions

I/O bottleneck and memory constraints

High performance graph learning

Unstable data locality

10/35

Challenges and Solutions

Optimize data layout and schedule requests

I/O bottleneck and memory constraints

Move computation to storage

High performance graph learning

Use domain specific graph learning accelerator

Unstable data locality

11/35

Challenges and Solutions

Optimize data layout and schedule requests

I/O bottleneck and memory constraints

Move computation to storage

High performance graph learning

Use domain specific graph learning accelerator

Unstable data locality

GLIST: Graph Learning In-STorage
12/35

•Background and Motivation
•GLIST Design
• In-Storage Graph Learning Paradigm
•System Overview
•GLIST User Library
•GLIST Runtime
• In-Storage Graph Learning Accelerator

•Evaluation
•Conclusion

Outline

13/35

In-Storage Graph Learning Paradigm
Conventional GL Paradigm

14/35

In-Storage Graph Learning Paradigm
Conventional GL Paradigm

In-Storage GL Paradigm

15/35

System Overview

Flash Controllers

Graph Learning Applications

Data
Path

GLIST API

GLIST User Library
Request

Path

NVMe Driver

PCI-EGLIST HW Platform
ARM Processor

Request Scheduler

I/O Dispatcher

Page Cache GL Trans. Table

GLANVMe

GL-TL

Host

DRAM

FPGA

• GLIST User Library

The GLIST System

Nand Flash ArrayGLIST Runtime

16/35

System Overview

Flash Controllers

Graph Learning Applications

Data
Path

GLIST API

GLIST User Library
Request

Path

NVMe Driver

PCI-EGLIST HW Platform
ARM Processor

Request Scheduler

I/O Dispatcher

Page Cache GL Trans. Table

GLANVMe

GL-TL

Host

DRAM

FPGA

• GLIST User Library

The GLIST System

Nand Flash Array

GLIST Runtime

GLIST Runtime

17/35

System Overview

Flash Controllers

Graph Learning Applications

Data
Path

GLIST API

GLIST User Library
Request

Path

NVMe Driver

PCI-EGLIST HW Platform
ARM Processor

Request Scheduler

I/O Dispatcher

Page Cache GL Trans. Table

GLANVMe

GL-TL

Host

DRAM

FPGA

• GLIST User Library

The GLIST System

Nand Flash Array

GLIST Runtime

In-Storage Graph Learning
Accelerator

GLIST Runtime

18/35

GLIST User Library

AddEdge(…),
RemoveEdge(…),…

Graph Update

GraphRegister(…),
GraphUnregister(…),…

Graph Registration

ModelRegister(…),
ModelUnregister(…),…

Model Registration

GraphAnalysis(…),
GetAnalysisResult(…),…

Graph Analysis

• Application Interface
• Locality-Aware Optimization

Graph Learning Applications

Data
Path

Model
Registration

Graph Update

Graph
Registration

Graph
Analysis

GLIST User Library

Request
Path

NVMe Driver

GLIST HW Platform

User
Space

Kernel

PCI-E

HW

19/35

GLIST User Library – Graph Reorganization

Class of V5?

Read V5

Read V0

Read V4

Read V7

Read Page1
Read Page2

Sample V0, V4, V7 to
analysis V5

Low BW Util !

V0 V1

V2 V3

V4 V5

V6 V7

Page 1

Page 2

Block 0

20/35

GLIST User Library – Graph Reorganization

Observation 1: Flash devices are operated at page level (16KB).
Observation 2: The size of each single property vector is usually
far less than 16KB.

Read V0

Read V1

Read V2

Read V3

Read Page1

V0 V1

V2 V3

V4 →V 1

V0 → V 2

V7 → V 3

V5 → V 0

V4 V5

V6 V7

Page 1

Page 2

Block 0

BW Util Improved!

21/35

System Overview

Flash Controllers

Graph Learning Applications

Data
Path

GLIST API

GLIST User Library
Request

Path

NVMe Driver

PCI-EGLIST HW Platform
ARM Processor

Request Scheduler

I/O Dispatcher

Page Cache GL Trans. Table

GLANVMe

GL-TL

Host

DRAM

FPGA

• GLIST User Library

The GLIST System

Nand Flash Array

GLIST Runtime

In-Storage Graph Learning
Accelerator

GLIST Runtime

22/35

GLIST Runtime – Request Scheduling

Read V1

Read V2

Read V3

Read V4

Read V5

Read V1

Read V2

Read V3

Read Page1
Read Page2
Read Page1V0 V1

Request 1: Analysis V1 {V1, V2, V3}
Request 2: Analysis V4 {V4, V5}
Request 3: Analysis V3 {V1, V2, V3}

V2 V3

V4 V5

V6 V7

Page 1

Page 2

Block 0

23/35

GLIST Runtime – Request Scheduling

Read V1

Read V2

Read V3

Read V4

Read V5

Read V1

Read V2

Read V3

Read Page1
Read Page2
Read Page1V0 V1

Request 1: Analysis V1 {V1, V2, V3}
Request 2: Analysis V4 {V4, V5}
Request 3: Analysis V3 {V1, V2, V3}

V2 V3

V4 V5

V6 V7

Page 1

Page 2

Block 0

Read V1

Read V2

Read V3

Read V4

Read V5

Read Page1
Read Page2

Request 1
Request 3
Request 2

Schedule

BW Util Improved!
24/35

System Overview

Flash Controllers

Graph Learning Applications

Data
Path

GLIST API

GLIST User Library
Request

Path

NVMe Driver

PCI-EGLIST HW Platform
ARM Processor

Request Scheduler

I/O Dispatcher

Page Cache GL Trans. Table

GLANVMe

GL-TL

Host

DRAM

FPGA

• GLIST User Library

The GLIST System

Nand Flash Array

GLIST Runtime

In-Storage Graph Learning
Accelerator

GLIST Runtime

25/35

In-Storage Graph Learning Accelerator

DRAM

NVMe

ARM
Processor

Input
Buffers

Sampler
Unit

Output
Buffer

Nand Flash Array

Flash Controller

PE PE PE

PE PE PE

PE PE PE

… …

…

…

…

…

Sample

Combine
PEA
GLA

Aggregate

26/35

•Background and Motivation
•GLIST Design
•Evaluation
•Conclusion

Outline

27/35

Experimental Setup

CPU DRAM SSD GPU

CPU 2 * Xoen E5 2690v3 64GB 1TB PCIe SSD -

V100 2 * Xoen E5 2690v3 64GB 1TB PCIe SSD NVIDIA
V100

GLIST ARM Dual Cortex A9 1GB 1TB NAND flash -

Hardware

Tasks Models Datasets #Vertices #Edges(Per graph)

Node-Level Task GCN [2]
GS-Pool [3]

ogbn-products [6]
soc-LiveJournal1 [7, 8]
twitter [9]

2,449,029
4,847571
61,578,417

61,859,140
68,993,773
1,468,365,182

Edge-Level Task GS-Pool [3]
PinSage [4]

ogbn-papers100M [6]
ogbl-citation2 [6]
ogbl-wikikg2 [6]
SOC-Friendster [10]

111,059,956
2,927,963
2,500,604
65,608,366

1,615,685,872
30,561,187
17,137,181
1,806,067,135

Graph-Level Task GCN [2]
GIN [5]

ogbg-molpcba [6]
ogbg-code [6]
ogbg-ppa [6]

437,929
452,741
158,100

28.1
124.2
2,266.1

Benchmark

Software

Ubuntu 18.04,
DGL[1]

28/35

Evaluation - GLIST Performance

GLIST performs 13x and 10x faster on average than CPU and GPU based GL system due to
well exploited data locality and high-performance GL accelerator.

29/35

Evaluation – GLIST Efficiency

GLIST reduces average energy consumption by 98.7% and 98.0%, respectively than CPU
and GPU based GL systems, and is more efficient.

30/35

Evaluation – GLIST Optimization

The optimized GLIST system benefits more from shorter property vector length and
thankfully, few commonly used datasets have long feature vector [6,7,8,9,10].

31/35

Evaluation – GLIST Optimizations

The request scheduling strategy greatly exploits temporal data locality exists among GL
requests.

32/35

• The GLIST design provides a guarantee for the high energy
efficiency of the graph learning task.

• Proposed graph reorganization and request scheduling
algorithm that greatly contribute to the performance and
efficiency of GLIST by exploiting data locality.

• Built an FPGA-based prototype and performed various
benchmarks on it.

Conclusion

33/35

Cangyuan Li 1,2, Ying Wang 1,2, Cheng Liu 1,2,
Shengwen Liang 1,2, Huawei Li 1,2,3, Xiaowei Li 1,2

GLIST: Towards In-Storage Graph Learning

1State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing

2University of Chinese Academy of Sciences, Beijing
3Peng Cheng Laboratory, Shenzhen

Q&A

Email: licangyuan20@mails.ucas.ac.cn
34/35

[1] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng
Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J Smola, and Zheng Zhang. Deep graph library: Towards efficient
and scalable deep learning on graphs. ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[2] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

[3] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Advances in neural
information processing systems, pages 1024–1034, 2017.

[4] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph convolutional neural
networks for web-scale recommender systems. In Proceedings of the 24th ACMSIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 974–983, 2018.

[5] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

[6] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph
benchmark: Datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687, 2020.

[7] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group formation in large social networks: membership,
growth, and evolution. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 44–54,2006.

[8] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.

stanford.edu/data, June 2014.

[9] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter, a social network or a news media? In WWW ’10:
Proceedings of the 19th international conference on World wide web, pages 591–600, New York, NY, USA, 2010. ACM.

[10] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-truth. Knowledge and
Information Systems, 42(1):181–213, 20

Reference

35

