
Refurbish Your Training Data:
Reusing Partially Augmented Samples for

Faster Deep Neural Network Training
Gyewon Lee1,3, Irene Lee2, Hyeonmin Ha1,

Kyunggeun Lee1, Hwarim Hyun1, Ahnjae Shin1,3, and Byung-Gon Chun1,3

Seoul National University1, Georgia Institute of Technology2, FriendliAI3

1

DNN Training Pipeline

Data Preparation Gradient ComputationDNN Training = +

2

DNN Training Pipeline

Data Preparation Gradient ComputationDNN Training = +

● Data read and
preprocessing

● On CPU

3

DNN Training Pipeline

Data Preparation Gradient ComputationDNN Training = +

● Data read and
preprocessing

● On CPU

● Forward and
backward
operations

● On DL accelerators
(e.g., GPU, TPU)

4

DNN Training Pipeline

Data Preparation Gradient ComputationDNN Training = +

● Data read and
preprocessing

● On CPU

● Forward and
backward
operations

● On DL accelerators
(e.g., GPU, TPU)

Getting faster: NVIDIA
A100, Google TPU v3, ...

Bottleneck!

5

DNN Training Pipeline

Read Decode Format Augment Collate Gradient
Computation

Data Preparation : on CPU : on DL accelerator

6

DNN Training Pipeline

Read Decode Format Augment Collate Gradient
Computation

Data Preparation

RandAugment
Layer

RandAugment
Layer

Random
Padded

Crop

Random
Horizontal

Flip

: on CPU : on DL accelerator

RandAugment (NeurIPS ’20)

7

DNN Training Pipeline

Read Decode Format Augment Collate Gradient
Computation

Data Preparation

RandAugment
Layer

RandAugment
Layer

Random
Padded

Crop

Random
Horizontal

Flip

: on CPU : on DL accelerator

8

Image Image Image

DNN Training Pipeline

Read Decode Format Augment Collate Gradient
Computation

Data Preparation

RandAugment
Layer

RandAugment
Layer

Random
Padded

Crop

Random
Horizontal

Flip

: on CPU : on DL accelerator

Heavy CPU Overhead!

9

Image Image Image

Overhead of Data Augmentation

● Investigate the impact of data augmentation overhead
● Workload: Training ResNet50 on ImageNet with RandAugment

○ Configuration: # of RandAugment Layers

● Environment: One NVIDIA V100 GPU with four physical CPU Cores
○ Same CPU-GPU ratio as cloud GPU VMs such as AWS P3 and GCP N1 instances

10

Overhead of Data Augmentation

Only Random Crop + Random Flip

Maximum Gradient Computation Speed on NVIDIA V100

Model: ResNet50
Aug: RandAugment
Dataset: ImageNet

11

Overhead of Data Augmentation

Only Random Crop + Random Flip

Maximum Gradient Computation Speed on NVIDIA V100

12

Model: ResNet50
Aug: RandAugment
Dataset: ImageNet

Q. How can we reduce
CPU overhead from data
augmentation?

Existing Approach: Data Echoing

13

● Data echoing (arXiv ‘20, NeurIPS ‘20): Cache & reuse previously
materialized samples

● Useful for training tasks with slow I/O
○ e.g., Training data on remote storage

Standard Training

Image X Augmentation

Augmentation

Image X1

Image X2

14

Epoch 1

Epoch 3Augmentation Image X3

Epoch 2Image X

Image X

Data Echoing

Problem: Sample diversity decreases to a great degree.
-> Low generalization of trained models

1515

Image X Augmentation

Augmentation

Image X1

Image X1

Cached

Epoch 1

Epoch 3

Computation saved by caching

Reuse Factor = 3

Augmentation Image X1

Epoch 2

Contents

● Background & Motivation
● Data Refurbishing
● Revamper
● Evaluation

16

Our Approach: Data Refurbishing

Solution: Cache & reuse partially augmented samples
by splitting augmentation pipelines

17

Image X Partial Aug

Partial Aug

Cached

Epoch 1

Epoch 3

Computation saved by caching

Reuse Factor = 3

Partial Aug

Epoch 2

Image X’ Final Aug

Final Aug

Final Aug

Image X1

Image X2

Image X3

Analysis on Sample Diversity

● Notations
○ Given a sample,

■ U (Sample Diversity): # of unique augmented samples during training
■ |A| (Augmentation Diversity): # of possible unique augmented samples by an

augmentation pipeline A
■ |AF|: The augmentation diversity of the final augmentation

○ r (Reuse Factor): # of reuses for each cached sample
○ k: The total number of training epochs

18

Analysis on Sample Diversity

Sample Diversity

Final Augmentation
Diversity
(Split Strategy)

Reuse Factor

Aug: RandAugment
k (# of epochs) = 300

19

Slow

Fast Fast

Slow

High Accuracy

Low Accuracy

Case #1: Standard Training

Sample Diversity

Final Augmentation
Diversity
(Split Strategy)

Reuse Factor

Aug: RandAugment
k (# of epochs) = 300

20

High sample diversity
but low throughput|AF| = |A| or r = 1

Slow

Fast Fast

Slow

High Accuracy

Low Accuracy

Case #2: Data Echoing

Sample Diversity

Final Augmentation
Diversity
(Split Strategy)

Reuse Factor

Aug: RandAugment
k (# of epochs) = 300

21

High throughput but
low sample diversity

|AF| = 1 and r > 1

Slow

Fast Fast

Slow

High Accuracy

Low Accuracy

Case #3: Data Refurbishing

Sample Diversity

Final Augmentation
Diversity
(Split Strategy)

Reuse Factor

Aug: RandAugment
k (# of epochs) = 300

22

Exploit “sweet spot”
=> High throughput &
high sample diversity

1 < |AF| < |A| and r > 1

Slow

Fast Fast

Slow

High Accuracy

Low Accuracy

Slow

Fast Fast

Slow

High Accuracy

Low Accuracy

Case #3: Data Refurbishing

Sample Diversity

Final Augmentation
Diversity
(Split Strategy)

Reuse Factor

Aug: RandAugment
k (# of epochs) = 300

23

1 < |AF| < |A| and r > 1

Exploit “sweet spot”
=> High throughput &
high sample diversity

Good Split Strategy

1. Final augmentation has “enough”
diversity

2. Final augmentation has low
computation overhead

Contents

● Background & Motivation
● Data Refurbishing
● Revamper
● Evaluation

24

Challenge: Inconsistent Batch Time

25

● Within a mini-batch,
○ CPU processing time fluctuates according to the # of cache misses
○ Gradient computation time on DL accelerator remains the same

=> Poor computation overlap

CPU

DL
Accelerator

Wait

Wait
Time

Cached Sample

Non-Cached Sample

Challenge: Inconsistent Batch Time

26

● Within a mini-batch,
○ CPU processing time fluctuates according to the # of cache misses
○ Gradient computation time on DL accelerator remains the same

=> Poor computation overlap

CPU

DL
Accelerator

Wait

Wait
Time

Cached Sample

Non-Cached Sample

Solution: Revamper

1. Balanced Eviction: Balance # of
cache misses across epochs

2. Cache-Aware Shuffle: Balance # of
cache misses within an epoch

PyTorch Dataloader

Data Store
0

Sample
1

Sample
N-1

Sample. . .

Worker Process
Request
Queue

Main Process
Batch Shuffler

Gradient Calculator
(On DL Accelerator)

Mini-batch
Indices

Not Augmented Fully Augmented

27

Revamper

Data Store
0

Sample
1

Sample
N-1

Sample. . .

Worker Process
Request
Queue

Main Process
Batch

Shuffler

Gradient Calculator
(On DL Accelerator)

Mini-batch
Indices

Cache Store
0

Part Aug
1

Evicted
N-1

Part Aug. . .

Evict
Shuffler

Not Augmented Fully AugmentedPartially Augmented

28

Revamper

Data Store
0

Sample
1

Sample
N-1

Sample. . .

Worker Process
Request
Queue

Main Process
Batch

Shuffler

Gradient Calculator
(On DL Accelerator)

Mini-batch
Indices

Cache Store
0

Part Aug
1

Evicted
N-1

Part Aug. . .

Evict
Shuffler

Not Augmented Fully AugmentedPartially Augmented

Hit

29

Revamper

Data Store
0

Sample
1

Sample
N-1

Sample. . .

Worker Process
Request
Queue

Main Process
Batch

Shuffler

Gradient Calculator
(On DL Accelerator)

Mini-batch
Indices

Cache Store
0

Part Aug
1

Evicted
N-1

Part Aug. . .

Evict
Shuffler

Not Augmented Fully AugmentedPartially Augmented

Miss

Hit

30

Balanced Eviction

Epoch 1

Epoch 2

Epoch 3

Epoch 4

0 0 0 0 0 0

2 2 2 2 2 2

1 1 1 1 1 1

0 0 0 0 0 0

Naive (Reference Count)

Fast: Possibly bottlenecked
by DL accelerators

Slow: Possibly bottlenecked
by CPU

Reuse Factor = 3
Cached Sample Non-Cached Sample

31

Balanced Eviction

Epoch 1

Epoch 2

Epoch 3

Epoch 4

Balanced Eviction

Reuse Factor = 3

0 0 0 0 0 0

2 2 2 2 2 2

1 1 1 1 1 1

0 0 0 0 0 0

Naive (Reference Count)

Cached Sample Non-Cached Sample
evicted samples: 6/3 = 2

32

Cache-Aware Shuffle

Random Shuffle

Cached Sample Non-Cached Sample
Batch Size = 4
Reuse Factor = 2

33

CPU

DL
Accelerator

Wait

Wait
Time

Cache-Aware Shuffle

Random Shuffle

Cache-Aware Shuffle

Batch Size = 4
Reuse Factor = 2

34

Cached Sample Non-Cached Sample

CPU

DL
Accelerator

Time

CPU

DL
Accelerator

Wait

Wait
Time

Contents

● Background & Motivation
● Data Refurbishing
● Revamper
● Evaluation

35

Implementation

● Implemented in 2000+ lines of Python code based on PyTorch 1.6
● Identical interface to the PyTorch dataloader except for some additional

parameters
○ e.g., reuse factor and split strategy

36

Evaluation: Environments

● Training server specification
○ CPU: Intel Xeon E5-2695v4 (18 cores, 2.10GHz, 45MB Cache)
○ RAM: 256GB DRAM
○ GPU: NVIDIA V100
○ Disk: Samsung 970 Pro 1TB NVMe SSDs

● We adjust CPU-GPU ratios using a Docker container (Default = 4:1)
● Workload: Image Classification

37

Evaluation: Baselines

● Standard: DNN training without adopting data reusing mechanism
● Data Echoing: Cache & reuse fully augmented samples
● Simplified: Simply removing one or more transformation layers
● Same hyperparameters for all the training settings

○ Revamper does not require additional hyperparameter tuning

38

Evaluation: Accuracy & Throughput

0 100 200 300
Training Throughput (images/sec)

76.6
76.8
77.0
77.2
77.4
77.6
77.8

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Standard
Revamper
Simplified
Echoing

Model: ResNet50
Aug: RandAugment
Dataset: ImageNet

r = 2 r = 3

r = 2

r = 3
Crop + Flip

1.59x

2.04x

39

Revamper improves
training throughput up to
2.04x with comparable
accuracy

Evaluation: Accuracy & Throughput

0 100 200 300
Training Throughput (images/sec)

76.6
76.8
77.0
77.2
77.4
77.6
77.8

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Standard
Revamper
Simplified
Echoing

Model: ResNet50
Aug: RandAugment
Dataset: ImageNet

r = 2 r = 3

r = 2

r = 3
Crop + Flip

1.59x

2.04x

40

Echoing & Simplified
improve training
throughput but with
degraded accuracy

Evaluation: CPU-GPU Ratio

2 4 60

50

100

150

200

250

300

350

Th
ro

ug
hp

ut
 (i

m
g/

se
c)

of CPU cores per one GPU

Standard
Revamper (r=2.0)
Revamper (r=3.0)

Fewer CPUs -> Bigger Thp Gain

41

Model: ResNet50
Aug: RandAugment
Dataset: ImageNet

1.95x

2.04x
1.61x

Maximum Gradient Computation
Throughput on GPU

Conclusion

● Data refurbishing is a new intermediate data caching technique for DNN
training that accelerates data augmentation while preserving diversity
of augmented samples.

● Revamper realizes data refurbishing by maximizing computation overlap
between CPU and DL accelerators with carefully-designed cache eviction
and shuffle strategies.

● Revamper improves training throughput of DNN models by 1.03x-2.04x
while maintaining comparable accuracy.

42

