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DNN Training Pipeline
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Getting faster: NVIDIA 
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DNN Training Pipeline
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: on CPU : on DL accelerator
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Overhead of Data Augmentation

● Investigate the impact of data augmentation overhead
● Workload: Training ResNet50 on ImageNet with RandAugment

○ Configuration: # of RandAugment Layers

● Environment: One NVIDIA V100 GPU with four physical CPU Cores
○ Same CPU-GPU ratio as cloud GPU VMs such as AWS P3 and GCP N1 instances
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Overhead of Data Augmentation

Only Random Crop + Random Flip

Maximum Gradient Computation Speed on NVIDIA V100

Model: ResNet50
Aug: RandAugment
Dataset: ImageNet
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Overhead of Data Augmentation
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Model: ResNet50
Aug: RandAugment
Dataset: ImageNet

Q. How can we reduce 
CPU overhead from data 
augmentation?



Existing Approach: Data Echoing
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● Data echoing (arXiv ‘20, NeurIPS ‘20): Cache & reuse previously 
materialized samples

● Useful for training tasks with slow I/O
○ e.g., Training data on remote storage



Standard Training
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Data Echoing

Problem: Sample diversity decreases to a great degree.
-> Low generalization of trained models
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Our Approach: Data Refurbishing

Solution: Cache & reuse partially augmented samples
by splitting augmentation pipelines
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Analysis on Sample Diversity

● Notations
○ Given a sample,

■ U (Sample Diversity): # of unique augmented samples during training
■ |A| (Augmentation Diversity): # of possible unique augmented samples by an 

augmentation pipeline A
■ |AF|: The augmentation diversity of the final augmentation

○ r (Reuse Factor): # of reuses for each cached sample
○ k: The total number of training epochs
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Analysis on Sample Diversity
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Case #1: Standard Training

Sample Diversity

Final Augmentation
Diversity
(Split Strategy)

Reuse Factor

Aug: RandAugment
k (# of epochs) = 300
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Case #2: Data Echoing
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Case #3: Data Refurbishing
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=> High throughput & 
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1 < |AF| < |A| and r > 1
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Case #3: Data Refurbishing
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Reuse Factor

Aug: RandAugment
k (# of epochs) = 300
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1 < |AF| < |A| and r > 1

Exploit “sweet spot”
=> High throughput & 
high sample diversity

Good Split Strategy

1. Final augmentation has “enough”
diversity

2. Final augmentation has low 
computation overhead
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Challenge: Inconsistent Batch Time

25

● Within a mini-batch,
○ CPU processing time fluctuates according to the # of cache misses
○ Gradient computation time on DL accelerator remains the same

=> Poor computation overlap
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● Within a mini-batch,
○ CPU processing time fluctuates according to the # of cache misses
○ Gradient computation time on DL accelerator remains the same

=> Poor computation overlap
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Solution: Revamper

1. Balanced Eviction: Balance # of 
cache misses across epochs

2. Cache-Aware Shuffle: Balance # of 
cache misses within an epoch
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Revamper
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Balanced Eviction
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Balanced Eviction
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Cache-Aware Shuffle
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Cache-Aware Shuffle
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Implementation

● Implemented in 2000+ lines of Python code based on PyTorch 1.6
● Identical interface to the PyTorch dataloader except for some additional 

parameters
○ e.g., reuse factor and split strategy
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Evaluation: Environments

● Training server specification
○ CPU: Intel Xeon E5-2695v4 (18 cores, 2.10GHz, 45MB Cache)
○ RAM: 256GB DRAM
○ GPU: NVIDIA V100
○ Disk: Samsung 970 Pro 1TB NVMe SSDs

● We adjust CPU-GPU ratios using a Docker container (Default = 4:1)
● Workload: Image Classification
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Evaluation: Baselines

● Standard: DNN training without adopting data reusing mechanism
● Data Echoing: Cache & reuse fully augmented samples
● Simplified: Simply removing one or more transformation layers
● Same hyperparameters for all the training settings

○ Revamper does not require additional hyperparameter tuning
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Evaluation: Accuracy & Throughput
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Revamper improves 
training throughput up to 
2.04x with comparable 
accuracy
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Evaluation: CPU-GPU Ratio
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Conclusion

● Data refurbishing is a new intermediate data caching technique for DNN 
training that accelerates data augmentation while preserving diversity 
of augmented samples.

● Revamper realizes data refurbishing by maximizing computation overlap 
between CPU and DL accelerators with carefully-designed cache eviction 
and shuffle strategies.

● Revamper improves training throughput of DNN models by 1.03x-2.04x
while maintaining comparable accuracy.
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