
A Fast and Flexible Hardware-based Virtualization 

Mechanism for Computational Storage Devices

Dongup Kwon, Dongryeong Kim, Junehyuk Boo, Wonsik Lee, and Jangwoo Kim

Department of Electrical and Computer Engineering, Seoul National University



Background: Computational Storage

• SSD-FPGA integration for near-storage processing

− Fast data transfers between the storage and computation units

− Programmable operators and on-chip interconnects in an FPGA
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Computational storage = SSD + FPGA + near-storage processing
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Background: I/O Virtualization

• SW-based virtualization: Paravirtualization (VirtIO)

• HW-assisted virtualization: Passthrough, SR-IOV, FVM*

*FVM: FPGA-assisted Virtual Device Emulation for Fast, Scalable, and Flexible Storage Virtualization, OSDI 2020

I/O virtualization enables resource sharing between VMs.
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Outline

• Background

• Motivation

− SW-based virtualization for computational storage

• FlexCSV: HW-assisted Virtualization Stack

• Evaluation
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SW-based Virtualization Approach

• SW emulation of SSD-FPGA integrated devices

• Host SW-level device resource allocation and scheduling

SW-based virtualization provides flexible virtual device construction mechanisms.
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Limitation #1:
CPU-centric Device Emulation

• CPU-centric device orchestration & data transfers

• Cannot achieve full potential of near-storage processing

The bottleneck shifts to the SW components in a virtualized environment.
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Limitation #2:
Static Resource Allocation

• Static VM-to-HW resource allocation & scheduling

• Cannot achieve cost-effectiveness due to inefficient
resource sharing

Static resource allocation incurs extra costs for the additional 
HW resources to meet QoS requirements.
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Limitation #3:
Coupled HW Architecture

• SSD-FPGA coupled designs & fixed provisioning

• Cannot provide flexible device/resource configurations
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Design Goals
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FlexCSV: SW/HW Architecture

• HW virtualization for computational storage
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FlexCSV: Key Ideas

FlexCSV

HW-assisted virtualization
(including SR-IOV)

SSD-FPGA 
decoupled architecture

HW-level 
resource orchestration

Dynamic resource 
allocation

Device Sharing

Device Scalability

High Performance

Low Cost

Design Goals Key Ideas

12/21



Key Idea #1:
HW-assisted Virtualization

• SR-IOV implementation in FlexCSV Engine

• SSD/FPGA sharing between VMs with direct HW access

FlexCSV Engine virtualizes itself through SR-IOV and offers device sharing.
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Key Idea #2:
HW-level Orchestration

• NVMe extension for data processing requests

• Guest/host OS bypassing and direct data communications

FlexCSV Engine orchestrates SSD and FPGA operations without SW arbitration.

struct nvme {

u8  rw;

u64 rsvd;

u64 prp1;

u64 prp2;

u64 slba;

}

struct proc {

u64 op;

u64 src;

u64 dst;

u32 size;

u64 param;

} DRAM
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Key Idea #3:
Dynamic HW Allocation

• Renaming of user-requested HW resources

• Efficient use of HW resources – High HW utilization

FlexCSV Engine implements HW renaming logic for dynamic resource allocation.
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FPGA

Key Idea #4: 
SSD-FPGA Decoupled Architecture

• Decoupled HW through board-level PCIe switches

• Scalable virtual devices with many PCIe-attached cards

FlexCSV Engine provides scalable and flexible device/resource configurations.
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FlexCSV Prototype

• HW Prototype

−Supermicro Server 4029GP-TRT2

− Intel Optane 900P SSDs

− Xilinx U250 FPGA (FlexCSV Engine)

• SW Frameworks

− Ubuntu / Linux kernel v5.3

− KVM / QEMU v3.0

FlexCSV prototype is built on off-the-shelf HW devices and open-source SW.
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Near-storage Processing Performance

• 8 FPGA benchmarks with direct SSD read & write

• Guest/host OS bypassing + fast data copy ➔ 2.4x speedup
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FlexCSV achieves high performance through its HW-assisted virtualization.
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QoS Evaluation with Oversubscription

• 2 operators + 4 VMs with different request rates

• Dynamic allocation + partial reconfiguration ➔ 2.4x better
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FlexCSV achieves lower QoS violations through its efficient HW resource use.
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Thank You!

A Fast and Flexible Hardware-based Virtualization Mechanism for 
Computational Storage Devices, ATC 2021

Dongup Kwon, dongup@snu.ac.kr, https://hpcs.snu.ac.kr/~dongup/
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