
TIPS:Making Volatile Indexes Persistent
With DRAM-NVMM Tiering

R. Madhava Krishnan,
Wook-hee Kim, Hee Won Lee

+*
, Minsung Jang

†*
,

Sumit Monga, Ajith Mathew, Changwoo Min

* The authors contributed to this work while they were at AT&T Labs Research .

+ Samsung Electronics

†
Peraton Labs

2

NVMM is Gaining Traction in Real-world Systems!

➢ Byte addressable Non-Volatile Main Memory
(NVMM) has high capacity, low latency and durability

➢ Lots of interest in extending support for in-memory
databases and key-value stores

➢ Index structures are core part of in-memory databases

➢ Recent research works focuses on converting volatile indexes

to work on NVMM

➢ Manual porting is complex and error-prone

➢ Provides framework or guidelines to facilitate the porting

➢ State-of-the-art index conversion techniques

❑ NVTraverse [PLDI-20], PRONTO[ASPLOS-20], RECIPE[SOSP19]

3

Porting Volatile Indexes for NVMM is Crucial!

Existing Techniques Have a Narrow Scope

➢ Existing conversion techniques are proposed based on the

concurrency control

❑ NVTraverse [PLDI-20] for lock-free indexes, e.g., Atomic CAS

❑ PRONTO [ASPLOS-20] for blocking indexes, e.g., Mutex

❑ RECIPE [SOSP-19] for fine-grained and lock-free indexes

4

Existing Conversion Techniques Have
Limited Applicability

Existing Techniques Have Other Critical Limitations

➢ Support only Buffered Durable Linearizability [RECIPE]

➢ Not handling persistent memory leaks [RECIPE, NVTraverse]

➢ In-depth knowledge on the volatile index [RECIPE, NVTraverse]

➢ Can not scale beyond the DRAM capacity [PRONTO]

➢ High crash consistency overhead [PRONTO]

5

We propose TIPS to solve these problems and make the overall
conversion process simple, intuitive and less error prone

➢ Motivation

➢ Overview

➢ Evaluation

➢ Conclusion

6

Talk Outline

Three Main Goals of TIPS

7

1) Support an Index-agnostic Conversion

2) Guarantee Durable Linearizability for Correctness

3) Provide High-Performance and Scalability

TIPS Architecture

8

void add_customer (list, k, v) {
tips_insert(list, K3, V3, list_insert)

}

…K3 V3

… …list_insert (list, K3, V3,)
commit-ts = T1

K0 V0 K1 V1 K2 V2 K3 V3

Node A Node B Node C Node D

Node C
Alloc:

Node D
… … … …

TIPS-Frontend

Application Code

TIPS-Backend

DRAM-cache

Per-thread Operational Log

User-defined
Linked List

(Plugged-in index)

UNDO Log MEM Log

DRAM

NVMM

Concurrent Open-chaining Hash Table
on DRAM

Per-thread Operational Log on NVMM to
Guarantee Durability for Writes

User-defined Volatile Index (Plugged-
in Index) on NVMM

UNDO Log to Guarantee Crash Failure-
atomic Updates to the Plugged-in Index

Mem Log to Prevent Memory leaks and
Double Frees During Recovery

DRAM-NVMM Tiering

Application Writes are Absorbed in TIPS-Frontend

9

Void add_customer (list, k, v) {
tips_insert(list, K3, V3, list_insert)

}

…K3 V3

…… list_insert (list, K3, V3,)
commit-ts = T1

TIPS-Frontend

Application Code

DRAM-cache

Per-thread Operational Log (OLog)

TIPS Facade API

Function Pointer to the Volatile
Index Implementation

n

DRAM

NVMM

Application Thread

2

1 Execute the TIPS facade API with a pointer to the
volatile index implementation

Commit the write operation in the OLog and Persist the
OLog record (Durability Point)

3 Update the DRAM-cache to make the write visible
(Linearization Point)

4 Exit and return success to the application

Writes always happen at the fast TIPS-Frontend; Parallel disjoint writes
regardless of concurrency model supported by the plugged-in index

Durable Linearizability

Plugged-in Index is Updated Using Background Threads

10

…K3 V3

… …list_insert (list, K3, V3,)
commit-ts = T1

K0 V0 K1 V1 K2 V2 K3 V3

Node A Node B Node C Node D

Node C
Alloc:

Node D
… … … …

TIPS-Frontend

TIPS-Backend

DRAM-cache

Per-thread Operational Log (OLog)

User-defined
Linked List

(Plugged-in index)

UNDO Log MEM Log

n

DRAM

NVMM

Background
Thread

5 Reply OLog records in the global timestamp order
i.e., execute list_insert on the NVMM

6

Backup Node C in the UNDO Log before modifying it

7 Insert Node D to the linked list

Allocation of Node D is recorded in MLog to
prevent persistent memory leaks

8 Invalidate the corresponding
DRAM-cache entry

Key Benefits of DRAM-NVMM Tiering

➢ Support index-agnostic conversion

❑ Allows plugged-in index to co-exist with the DRAM-cache

❑ No restrictions on the concurrency model of the volatile index

➢ Two different levels of concurrency (Tiered Concurrency Model)

❑ Concurrency model of DRAM-cache + Plugged-in index

❑ DRAM-Cache supports concurrent lock-free reads and disjoint writes

❑ Index with blocking concurrency (e.g., Mutex) can benefit from DRAM-cache

➢ Support Durable Linearizability agnostic of volatile index

11

Can the TIPS-Backend Become a Scalability Bottleneck?

➢ TIPS-Frontend is fast and scalable with concurrent DRAM-cache and

per-thread operational logging

➢ Backend writes are inherently slower because of

❑ Writes happening in the NVMM

❑ Notorious UNDO logging overhead

➢ Slower backend can easily bottleneck the frontend

➢ How do we make the TIPS-backend scalable?

12

How TIPS Makes its Backend Scalable?

➢ A Key Intuition

❑ Real-world workloads are rarely 100% writes

➢ We introduce two more techniques

13

UNO Logging Protocol to Reduce the UNDO Logging Overhead

Adaptive Scaling for Concurrent Background Writes

UNO Logging Protocol

➢ All three logs (OLog, ULog, MLog) in TIPS works synergistically

➢ Not all modified addresses are required to be UNDO logged

❑ Selectively log only the addresses required for the correct recovery

➢ Perform UNDO logging only when the requested address

❑ is not previously UNDO-logged i.e., avoid redundant UNDO logging

❑ is not present in the OLog i.e., addresses that can not be recreated

by OLog replay

➢ Significantly reduces the number of UNDO loggings performed

14

Benefits of UNO Logging

➢ Makes the backend writes fast

❑ Number of UNDO logging is significantly reduced

❑ Enables write coalescing in the UNDO log

➢ Reduces crash consistency overhead in the write critical path

❑ Using OLog requires only 2 persist barriers

➢ Prevents persistent memory leaks

❑ Addresses in the MLog can be freed upon recovery

➢ UNO logging is index-agnostic

❑ applicable to any index irrespective of type or concurrency control

15

Adaptive Scaling of Background Writers

➢ TIPS uses Adaptive Scaling to concurrently update the plugged-in index

❑ Carefully orders the operations for a faster concurrent reply

➢ Adaptive scaling has some very nice properties

❑ Automatically adjusts the worker count based on workload nature

❑ Optimizes worker count based on the write-scalability

❑ Prevents wastage of CPU cycles and other hardware resources

➢ Refer to the paper for more details and correctness

16

Converting a Volatile Hash Table Using TIPS

17

void hash_insert(hash_t *hash, key_t key, val_t value)
{

node_t **pprev_next, *node, *new_node;
int bucket_idx;
pthread_rwlock_wrlock(&hash->lock);

// Find a node in a collision list
bucket_idx = get_bucket(key);
node = hash->buckets[bucket_idx]->head;
pprev_next = &hash->buckets[bucket_idx]->head;
while (node && node->key < key) {

pprev_next = &node->next;
node = node->next;

}
// Case 1: update an existing key
if (node->key == key) {

// Case 2: add a new key

new_node->key = key;
new_node->value = value;
new_node->next = node;

unlock_out:
pthread_rwlock_unlock(&hash->lock);

}

// Before modifying the value, backup the old value
tips_ulog_add(&node->value, sizeof(node->value))
node->value = value; // then update then the node
goto unlock_out;

}

// Allocate a new node using tips_alloc
new_node = tips_alloc (sizeof(*new_node));

// Before modifying the value, backup the old value
tips_ulog_add(pprev_next, sizeof(*pprev_next))
*pprev_next = new_node; // then update then the node

new_node = malloc (sizeof(*new_node));

*pprev_next = new_node;

node->value = value;
goto unlock_out;

}

➢ Two simple guidelines for the conversion

❑ Replace the memory allocation/free with
tips_alloc or tips_free

❑ Add tips_undo_add before modifying any
NVMM address

➢ Key Benefits

❑ No need to manually insert flush/fence

❑ Makes the conversion simple and trivial

❑ Developers need not worry persistence and

visibility ordering

M2

M1

Other Interesting Designs

➢ Concurrency model and epoch-based GC in DRAM-cache

➢ Scan operation

➢ Adaptive Scaling

➢ UNO logging reclamation

➢ Recovery algorithm

➢ Detailed correctness section

18

➢ Motivation

➢ Overview

➢ Evaluation

➢ Conclusion

19

Talk Outline

Evaluation Questions

➢ How much LoC are required to convert an index using TIPS?

➢ How does TIPS perform against the prior index-specific

conversion techniques?

➢ How does TIPS perform against the NVMM-optimized indexes?

20

Evaluation Settings

➢ 2 socket server with Intel DCPMM

❑ 512GB NVMM and 64GB DRAM

❑ 2.4 GHZ 64 core Intel Xeon Gold CPU

➢ We evaluate 7 Indexes with different concurrency model

➢ YCSB with 32M keys for both integer and string type keys

21

Workload Name Read/Write/Scan Ratio Workload Nature

Workload A 50/50/0 Write intensive

Workload B 95/5/0 Read intensive

Workload C 100/0/0 Read only

Workload D 95/5/0 Read Latest

Workload E 0/5/95 Short Range Scan

Evaluation Settings

➢ DRAM-cache size is set to 25% (300 MB)

➢ Compared against the state-of-the-art index conversion techniques

❑ PRONTO [ASPLOS-20]

❑ NVTraverse [PLDI-20]

❑ RECIPE [SOSP-19]

➢ And against NVMM-optimized indexes

❑ Hash Indexes- CCEH [FAST-19], LevelHashing [OSDI-18],

❑ B+Tree Indexes- FastFair [Fast-18], BzTree[VLDB-18]

❑ Radix Tree Indexes- WOART [FAST-17]

22

LoC Required for Conversion

23

Indexes Concurrency Control LoC change/
original LoC

Hash Table (HT) Readers-Writer Lock 5/211

Lock-Free Hash Table (LFHT) Non-blocking reads and writes 5/199

Binary Search Tree (BST) Readers-Writer Lock 5/203

Lock-Free Binary Search Tree (LFBST) Non-blocking reads and writes 5/194

B+Tree Readers-Writer Lock 8/711

Adaptive Radix Tree (ART) Non-blocking reads and blocking writes 9/1.5k

Cache-Line Extensible Hash Table (CLHT) Non-blocking reads and blocking writes 8/2.8k

Redis Key-value Store Blocking reads and writes 18/10k

TIPS has better applicability and requires minimal
code changes in the original codebase

TIPS vs PRONTO for Blocking Indexes

24

0

2

4

6

8

10

A B C D E

T
h

ro
u

g
h

p
u

t
(M

o
p

s/
S

ec
)

YCSB Workload

Readers-Writer Lock B+Tree

TIPS

PRONTO

14X

4X

❑ TIPS outperforms PRONTO by up to 14X

❑ TIPS can support concurrent reads/writes
with its DRAM-cache

Pronto: Easy and Fast Persistence for Volatile Data Structures [ASPLOS-2020]

TIPS vs NVTraverse for Lock-Free Indexes

25

0

1

2

3

4

5

A B C D

T
h

ro
u

g
h

p
u

t
(M

o
p

s/
S

ec
)

YCSB Workload

Lock-Free BST
TIPS

NVTraverse

~2X

~3X

❑ NVTraverse incurs 6 and
17 p-barriers for reads
and writes

❑ TIPS incurs 2 p-barriers in
the write critical path

❑ No p-barriers required
for reads in TIPS

NVTraverse: In NVRAM Data Structures, the Destination Is More Important Than
the Journey [PLDI-2020]

Other Interesting Evaluations

➢ Performance comparison with the NVMM-optimized indexes

➢ Empirical analysis of TIPS design

➢ Scalability, skewness, large datasets etc.

➢ Sensitivity analysis

➢ Real-world application Redis

➢ More information on our conversion experience

26

Conclusion

➢ Current Index conversion techniques

❑ Limited applicability

❑ Weak consistency guarantee

❑ Not address persistent memory leak

➢ TIPS

❑ No restrictions on concurrency model

❑ Offers strong consistency i.e., Durable Linearizability

❑ In addition to providing outstanding performance and scalability

❑ https://github.com/cosmoss-vt/tips

27

Thank You

https://github.com/cosmoss-vt/tips

