
Ayudante: A Deep Reinforcement
Learning Approach to Assist

Persistent Memory Programming
Hanxian Huang, Zixuan Wang, Juno Kim, Steven Swanson, Jishen Zhao

University of California, San Diego
hah008@ucsd.edu

• Background and Motivation
• Ayudante Framework
• Evaluation Results
• Conclusion

Outline

2

Background and Motivation
• Challenges in persistent memory (PM) programming

- Non-trivial labor effort
- Error-prone
- Require a good knowledge of PM

• Our goal
- Assist PM programming by transforming volatile memory-based code into

corresponding PM code with minimal programmer interference

3

Ayudante Framework
• Two key components

- 1. Deep reinforcement learning (RL)-based code generator
- 2. Code refining pipeline

4

Deep RL-based Code Generator
• Agent
• State
• Action
• Reward

5

Deep RL-based Code Generator
• Agent: the executor of actions on a state
• State: <string, position>
• Action: navigation or edit
• Reward: 𝜙! ⋅ 𝑙𝑛𝑆 + 𝜙" ⋅ 𝑙𝑛𝑀 + ∑ #$!

% 𝜌#𝐸#
• 𝜙!, 𝜙", 𝜌# are penalty factors
• 𝑆, 𝑀, 𝐸# #steps, #modifications and #errors reported by PM checker 𝑖

6

Deep RL-based Code Generator – the Model

7

Deep RL-based Code Generator – Search Strategy

•Monte-Carlo Tree Search

8

Deep RL-based Code Generator – Transfer Learning

• Transfer Learning: From C/C++ to Java

9

10

An Example of RL-based Code Generation

Ayudante Framework
• Two key components

- 1. Deep reinforcement learning (RL)-based code generator
- 2. Code refining pipeline
• (1) Compilers
• (2) Sanity checkers: PMEMCHECK and PM-Reorder
• (3) Validation tools: PMTest, XFDetector, and AGAMOTTO

11

12

A refining suggestion report example

• Training dataset
- Volatile version PMDK example codes

• Testing dataset
- Microbenchmarks: array, string, list, queue, btree, rbtree, hashmap
- KV store application
- Open source leetcode solution

13

Implementation

• PM Checker Passing Rate (CPR) in Inference

Evaluation

14

• Labor Effort Reduction
- Lines of code (LOC) changed

Evaluation

15

• Execution Performance on an Intel Optane DC PM server

Evaluation

16

• Ayudante offers
- Efficient PM code generation through a

deep RL model augmented with Monte-Carlo
tree search

- Reduced bugs through a deep RL model
pre-trained to avoid bugs detectable by
checkers in the training environment

- Code refining reports and improved
performance through a code refining
pipeline

17

Conclusion

Reduce programmer’s
burden on PM programming

Ayudante: A Deep Reinforcement
Learning Approach to Assist

Persistent Memory Programming
Hanxian Huang, Zixuan Wang, Juno Kim, Steven Swanson, Jishen Zhao

University of California, San Diego
hah008@ucsd.edu

