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Background and Motivation
• Challenges in persistent memory (PM) programming

- Non-trivial labor effort 
- Error-prone
- Require a good knowledge of PM

• Our goal
- Assist PM programming by transforming volatile memory-based code into 

corresponding PM code with minimal programmer interference
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Ayudante Framework
• Two key components 

- 1. Deep reinforcement learning (RL)-based code generator 
- 2. Code refining pipeline 
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Deep RL-based Code Generator
• Agent
• State
• Action
• Reward
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Deep RL-based Code Generator
• Agent: the executor of actions on a state
• State: <string, position>
• Action: navigation or edit
• Reward: 𝜙! ⋅ 𝑙𝑛𝑆 + 𝜙" ⋅ 𝑙𝑛𝑀 + ∑ #$!

% 𝜌#𝐸#
• 𝜙!, 𝜙", 𝜌# are penalty factors
• 𝑆, 𝑀, 𝐸# #steps, #modifications and #errors reported by PM checker 𝑖
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Deep RL-based Code Generator – the Model
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Deep RL-based Code Generator – Search Strategy

•Monte-Carlo Tree Search 
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Deep RL-based Code Generator – Transfer Learning

• Transfer Learning: From C/C++ to Java 
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An Example of RL-based Code Generation 



Ayudante Framework
• Two key components 

- 1. Deep reinforcement learning (RL)-based code generator 
- 2. Code refining pipeline 
• (1) Compilers
• (2) Sanity checkers: PMEMCHECK and PM-Reorder
• (3) Validation tools: PMTest, XFDetector, and AGAMOTTO
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A refining suggestion report example



• Training dataset
- Volatile version PMDK example codes

• Testing dataset
- Microbenchmarks: array, string, list, queue, btree, rbtree, hashmap
- KV store application
- Open source leetcode solution
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Implementation



• PM Checker Passing Rate (CPR) in Inference 

Evaluation
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• Labor Effort Reduction
- Lines of code (LOC) changed

Evaluation
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• Execution Performance on an Intel Optane DC PM server  

Evaluation
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• Ayudante offers
- Efficient PM code generation through a 

deep RL model augmented with Monte-Carlo 
tree search

- Reduced bugs through a deep RL model 
pre-trained to avoid bugs detectable by 
checkers in the training environment

- Code refining reports and improved 
performance through a code refining 
pipeline 
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Conclusion

Reduce programmer’s 
burden on PM programming
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