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User Space Filesystem

Benefits
• Higher development efficiency and velocity
• Decreased dependency on OS

Concerns
• Performance
• RAS (Reliability, Availability and Serviceability)
• Application and build changes may be required



Related Work
• FUSE: an interface for user-space programs to export a filesystem to the Linux kernel.

• FUSE-based filesystems are accessible through standard kernel interface 

• Large body of work on improving FUSE performance
• E.g. ExtFUSE allows applications to register “thin” specialized request handlers in 

the kernel to improve performance

• AVFS uses LD_PRELOAD to intercept libc POSIX API entry and invoke filesystem ops 
without context switch 

• ZUFS leverages persistent memory to have its kernel module directly copy data 
between source and destination, eliminating the extra copy to/from buffer cache. 

• NVFUSE is an embeddable file system as a library running in the user-space 
incorporated with SPDK library, and supports directly submitting I/O requests to 
NVMe SSDs. 

• Re-FUSE is a framework that provides support for restartable user space filesystems.



Our Contribution: XFUSE

XFUSE
• Backward compatible with FUSE
• Improves performance and RAS for XFUSE-optimized filesystems
• Facilitates large-scale and gradual rollout in production

Designed for user space filesystems that
• Use high speed storage devices
• PMEM, fast SSDs, distributed storage systems based on high perf network

• Are deployed in production environments
• With strict RAS requirements



Agenda

• Request Flow in FUSE
• XFUSE Improvements
• Adaptive waiting to reduce latency
• Increased parallelism to improve throughput
• Online upgrade for better RAS

• Performance Evaluation
• Parametric analysis
• System-level performance

• Conclusion



FUSE Request Flow
Request flow
• Application makes a syscall (e.g. via POSIX API) 

to a FUSE-mounted filesystem
• FUSE request travels from the app thread (via 

fuse.ko) to a filesystem daemon thread
• FUSE reply travels, in reverse direction, from 

the daemon thread back to the app thread

A synchronous FUSE request may involve two 
event waits in kernel
• Daemon thread: wait for pending requests if 

none is available at the time.
• App thread: wait for request completion

Notes:

- Certain details (such as background queue, async io) are omitted and the omission does not impact our discussion
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XFUSE improvements



Adaptive Waiting
Problem
• Kernel event-wait and notification take a few 𝜇𝑠 to deliver
• High perf storages: data may become available sooner

Add an initial busy-wait period
• End-to-end latency can be as low as 3~4 𝜇𝑠

(vs. 8~9 𝜇𝑠 under event-wait)

Effectiveness of busy-wait
• Performance characteristics of filesystem and storage
• Thread placement (same vs. different CPUs)
• Workload

Adaptive busy-event wait (or adaptive waiting)
• Dynamically predict if busy-wait is beneficial, and
• Turn on/off busy-wait accordingly
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Increased Parallelism
FUSE
• New request → pending queue (one per mount)
• Request fetched → processing queue (one per FD)

XFUSE
• Introduces multiple request pending queues
• Groups each pair of pending and processing queues 

as a channel
• New request → channel (per selection policy)

Benefits
• Daemon threads work on their own pending and 

processing queues
• Reduced kernel lock contention between daemon 

threads
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Online Upgrade
Business needs
• Fast paced rollout of new features and bug fixes for user space filesystems
• Minimal disruption to tens or hundreds of mounts and apps on each host during upgrade
Online upgrade solution
• Extend libfuse to support online upgrade workflow and state transition
• Monitor Service

• Coordinates the interactions between two filesystem daemons
• Assists the transfer of filesystem internal states, including FDs (to special fuse device)
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Performance Evaluation



Parametric Analysis
Objectives
• Understand the effects of policy choices and tuning params
• Project potentially achievable performance

Method
• Explore aspects of XFUSE individually

Aspects
• Waiting strategy in adaptive waiting
• Placement of app and daemon threads
• Channel selection for new FUSE request

Test setup
• Dedicated Linux 4.19.91 servers on Alibaba Cloud
• 24 channels in XFUSE
• 24 threads in TimingFS
• Threads can configured to affine to CPUs

TimingFS
• User space filesystem, via FUSE lowlevel API
• Optimized to probe aspects of XFUSE individually
• Can emulate timing characteristics storage 

systems
• E.g. READ copies 4KB randomly from a large file

• PMEM-like: reply to XFUSE.ko immediately
• SSD-like: delays 100 𝜇𝑠 before replying
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Parametric Analysis: Waiting Strategy
How I/O performance is impacted by

• Varying busy-wait period (note: “0𝜇𝑠” disables busy-wait, is essentially event-wait only)

• Wait-decision algorithm; threshold for turning on/off busy-wait

Findings

• PMEM-like: 10𝜇𝑠 busy-wait, good balance between performance and CPU usage.

• SSD-like: last latency value is sufficient to predict the latency for the current request

• SSD-like: adaptive waiting outperforms busy-wait-only when system is under load
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Wait-decision:

threshold = busy_wait_period + event_wait_overhead
= 10𝜇𝑠 + 5𝜇𝑠 = 15𝜇𝑠

if observed_latency < threshold
do busy-event wait

else
do event wait

Performance with Adaptive Busy-Event WaitPerformance with Busy-Event Wait



Parametric Analysis: Thread Placement
In production environments where thread placement can be controlled
Placement of app thread and corresponding daemon thread:
• PMEM-like storage, different CPUs

• Two threads affined on the same CPU cannot busy-wait for each other.
• SSD-like storage: same CPU

• Event notification on local CPU is faster than that across CPUs.
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Parametric Analysis: Channel Selection
Findings
• Best strategy: evenly distribute requests across all channels
• Avoid policies that keep on switching to an idle channel, which renders busy-wait ineffective

(see the RR line in PMEM-like figure).

• PID and HASH policies perform well in repeated tests
• PID-policy is computationally cheaper. HASH-policy consistently avoids skewed request distribution
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Channel selection

• channel_index = val % channel_num

Where val is

• PID: thread id

• CPUID: id of CPU

• RR: round-robin, i.e. val = ++channel_index

• ST: thread start time

• HASH: hash of thread id
Compute 3 different hashes
Select the channel with the shortest queue



Parametric Analysis: XFUSE vs FUSE
• Project the best-case performance that XFUSE can achieve
• XFUSE configuration:

• Adaptive busy-event wait: busy-wait period 10𝜇𝑠. event-wait overhead 5𝜇𝑠
• 24 channels. 24 threads in TimingFS, one for each physical core.
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System-Level Performance
Setup a common basis for comparing XFUSE, FUSE and 
regular kernel-mode EXT4

• Err on the side of being conservative for XFUSE

Evaluate the performance potential of XFUSE

• In cases where FUSE has a significate gap with EXT4

Filebench simulates workloads

• Web-Server, Random-Read, File-Create

Storage types

• RAMDisk: PMEM-like

• FastDisk: SSD-like cloud disk. Avg 4KB read latency: 
115𝜇𝑠. Max 80K IOPS

• SlowDisk: Cloud disk. Avg 4KB read latency: 250𝜇𝑠. Max 
5K IOPS



0

50

100

150

200

250

0 250 500 750 1000

La
te

nc
y 

(u
s)

Throughput (1000 ops/s)

RAMDisk

EXT4
FUSE
XFUSE
EXT4
FUSE
XFUSE

Random-
Read

Web-
Server

0

200

400

600

800

1000

0 60 120 180 240

La
te

n
cy

 (
u

s)

Throughput (1000 ops/s)

FastDisk

EXT4

FUSE

XFUSE

EXT4

FUSE

XFUSE

Random-
Read

Web-
Server

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20
La

te
nc

y 
(m

s)
Throughput (1000 ops/s)

SlowDisk

EXT4
FUSE
XFUSE
EXT4
FUSE
XFUSE

Random-
Read

Web-
Server

0

200

400

600

800

1000

0 50 100 150 200 250 300 350

La
te

nc
y 

(u
s)

Throughput (1000 ops/s)

File-Create EXT4
FUSE
XFUSE
EXT4
FUSE
XFUSE

RAMDisk

SlowDisk

4 threads

RAMDisk (PMEM-like)

• XFUSE closes the perf gap with kernel-mode EXT4.

• For random-read, XFUSE achieves 3x throughput over FUSE

FastDisk (SSD-like)

• XFUSE offers significant benefit over FUSE.

• For random read, XFUSE delivers full throughput of the 
FastDisk, maxed at 80K IOPS.

SlowDisk

• Performance is bottlenecked by the storage than by conduit to user space

File-Create

• XFUSE outperforms FUSE for RAMDisk and FastDisk but by a smaller margin

• Benefit of XFUSE over FUSE is limited by the scalability of StackFS and EXT4

System-Level Performance: Results



XFUSE
A FUSE-compatible framework for filesystem in user space

Enables significantly higher performing user space filesystems
• Delivers round-trip latency in the 4 𝜇𝑠 range, offers throughput exceeding 8 GB/s

Supports filesystems with strict RAS requirements in production
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