
XFUSE: An Infrastructure for Running 
Filesystem Services in User Space

Qianbo Huai∗, Windsor Hsu∗, Jiwei Lu∗, Hao Liang†, Haobo Xu∗ and Wei Chen∗

∗Alibaba Group
Sunnyvale, California

USA

†Alibaba Group
Shenzhen, Guangdong

China



User Space Filesystem

Benefits
• Higher development efficiency and velocity
• Decreased dependency on OS

Concerns
• Performance
• RAS (Reliability, Availability and Serviceability)
• Application and build changes may be required



Related Work
• FUSE: an interface for user-space programs to export a filesystem to the Linux kernel.

• FUSE-based filesystems are accessible through standard kernel interface 

• Large body of work on improving FUSE performance
• E.g. ExtFUSE allows applications to register “thin” specialized request handlers in 

the kernel to improve performance

• AVFS uses LD_PRELOAD to intercept libc POSIX API entry and invoke filesystem ops 
without context switch 

• ZUFS leverages persistent memory to have its kernel module directly copy data 
between source and destination, eliminating the extra copy to/from buffer cache. 

• NVFUSE is an embeddable file system as a library running in the user-space 
incorporated with SPDK library, and supports directly submitting I/O requests to 
NVMe SSDs. 

• Re-FUSE is a framework that provides support for restartable user space filesystems.



Our Contribution: XFUSE

XFUSE
• Backward compatible with FUSE
• Improves performance and RAS for XFUSE-optimized filesystems
• Facilitates large-scale and gradual rollout in production

Designed for user space filesystems that
• Use high speed storage devices
• PMEM, fast SSDs, distributed storage systems based on high perf network

• Are deployed in production environments
• With strict RAS requirements



Agenda

• Request Flow in FUSE
• XFUSE Improvements
• Adaptive waiting to reduce latency
• Increased parallelism to improve throughput
• Online upgrade for better RAS

• Performance Evaluation
• Parametric analysis
• System-level performance

• Conclusion



FUSE Request Flow
Request flow
• Application makes a syscall (e.g. via POSIX API) 

to a FUSE-mounted filesystem
• FUSE request travels from the app thread (via 

fuse.ko) to a filesystem daemon thread
• FUSE reply travels, in reverse direction, from 

the daemon thread back to the app thread

A synchronous FUSE request may involve two 
event waits in kernel
• Daemon thread: wait for pending requests if 

none is available at the time.
• App thread: wait for request completion

Notes:

- Certain details (such as background queue, async io) are omitted and the omission does not impact our discussion

fuse.ko

Filesystem

Libfuse

User
Application

FUSE API

Device
Handler

Daemon Process

Syscall

processing

FUSE Request Reply

Event 

Wait

pending

Filesystem
Handler



XFUSE improvements



Adaptive Waiting
Problem
• Kernel event-wait and notification take a few 𝜇𝑠 to deliver
• High perf storages: data may become available sooner

Add an initial busy-wait period
• End-to-end latency can be as low as 3~4 𝜇𝑠

(vs. 8~9 𝜇𝑠 under event-wait)

Effectiveness of busy-wait
• Performance characteristics of filesystem and storage
• Thread placement (same vs. different CPUs)
• Workload

Adaptive busy-event wait (or adaptive waiting)
• Dynamically predict if busy-wait is beneficial, and
• Turn on/off busy-wait accordingly

Invoke wait 
for condition

Wait on event

Is
Condition

true?

Is wait
< busy-wait

Period?

Return

Yield 
CPU

Yes

No

No

Yes Record
Latency

Compute
Busy-wait period



Increased Parallelism
FUSE
• New request → pending queue (one per mount)
• Request fetched → processing queue (one per FD)

XFUSE
• Introduces multiple request pending queues
• Groups each pair of pending and processing queues 

as a channel
• New request → channel (per selection policy)

Benefits
• Daemon threads work on their own pending and 

processing queues
• Reduced kernel lock contention between daemon 

threads
xfuse.ko

Filesystem

Libxfuse

User
Application

XFUSE API

Device
Handler

Daemon Process

Syscall

processing

FUSE Request Reply

Adaptive 

Waiting

pending

Filesystem
Handler

Channels



Online Upgrade
Business needs
• Fast paced rollout of new features and bug fixes for user space filesystems
• Minimal disruption to tens or hundreds of mounts and apps on each host during upgrade
Online upgrade solution
• Extend libfuse to support online upgrade workflow and state transition
• Monitor Service

• Coordinates the interactions between two filesystem daemons
• Assists the transfer of filesystem internal states, including FDs (to special fuse device)

Monitor
service

xfuse.ko

libxfuse

Filesystem

libxfuse

Filesystem

CLI 1. Install new package

2. Start

87

5. Stop fetching requests

6. Finish fetched requests,
Save states

4 3

9. Load states

10. Start to fetch requests

Upgraded instancePrevious instance

Kernel

Holds fds to
xfuse device

0

200

400

600

800

0 10 20 30 40 50 60 70 80 90
Th

ro
ug

hp
ut

 (M
B/

s)
Time (s)

Upgrade 
Initiated

Package
Preparation

Pause

Upgrade 
Completed



Performance Evaluation



Parametric Analysis
Objectives
• Understand the effects of policy choices and tuning params
• Project potentially achievable performance

Method
• Explore aspects of XFUSE individually

Aspects
• Waiting strategy in adaptive waiting
• Placement of app and daemon threads
• Channel selection for new FUSE request

Test setup
• Dedicated Linux 4.19.91 servers on Alibaba Cloud
• 24 channels in XFUSE
• 24 threads in TimingFS
• Threads can configured to affine to CPUs

TimingFS
• User space filesystem, via FUSE lowlevel API
• Optimized to probe aspects of XFUSE individually
• Can emulate timing characteristics storage 

systems
• E.g. READ copies 4KB randomly from a large file

• PMEM-like: reply to XFUSE.ko immediately
• SSD-like: delays 100 𝜇𝑠 before replying

User
Kernel

Reader

xfuse.ko

lib
xf
us
e

Ti
m
in
gF
S



Parametric Analysis: Waiting Strategy
How I/O performance is impacted by

• Varying busy-wait period (note: “0𝜇𝑠” disables busy-wait, is essentially event-wait only)

• Wait-decision algorithm; threshold for turning on/off busy-wait

Findings

• PMEM-like: 10𝜇𝑠 busy-wait, good balance between performance and CPU usage.

• SSD-like: last latency value is sufficient to predict the latency for the current request

• SSD-like: adaptive waiting outperforms busy-wait-only when system is under load

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000

La
te

nc
y (

us
)

Throughput (MB/s)

SSD-like

0
5
10
15
20

Busy Wait (us)

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000

La
te

nc
y (

us
)

Throughput (MB/s)

SSD-like

0
5
10
15
20

Busy Wait (us)

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000

La
te

nc
y (

us
)

Throughput (MB/s)

PMEM-like

0
5
10
15
20

Busy Wait (us)

Wait-decision:

threshold = busy_wait_period + event_wait_overhead
= 10𝜇𝑠 + 5𝜇𝑠 = 15𝜇𝑠

if observed_latency < threshold
do busy-event wait

else
do event wait

Performance with Adaptive Busy-Event WaitPerformance with Busy-Event Wait



Parametric Analysis: Thread Placement
In production environments where thread placement can be controlled
Placement of app thread and corresponding daemon thread:
• PMEM-like storage, different CPUs

• Two threads affined on the same CPU cannot busy-wait for each other.
• SSD-like storage: same CPU

• Event notification on local CPU is faster than that across CPUs.

0

5

10

15

20

0 2000 4000 6000 8000 10000

La
te

nc
y 

(u
s)

Throughput (MB/s)

PMEM-like

Event/Same
Event/Cross
Adaptive/Same
Adaptive/Cross

Same CPU

Cross CPU
0

50

100

150

200

250

300

0 2000 4000 6000 8000

La
te

nc
y 

(u
s)

Throughput (MB/s)

SSD-like

Event-Wait/Same CPU
Event-Wait/Cross CPU
Adaptive-Wait/Same CPU
Adaptive-Wait/Cross CPU

Same
CPU

Cross CPU
App thread Daemon threadchannel

App thread Daemon threadchannel

Same CPU

App thread Daemon threadchannel

Cross CPU

CPUi

CPUi

CPUj



Parametric Analysis: Channel Selection
Findings
• Best strategy: evenly distribute requests across all channels
• Avoid policies that keep on switching to an idle channel, which renders busy-wait ineffective

(see the RR line in PMEM-like figure).

• PID and HASH policies perform well in repeated tests
• PID-policy is computationally cheaper. HASH-policy consistently avoids skewed request distribution

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000

La
te

nc
y 

(u
s)

Throughput (MB/s)

PMEM-like

PID
CPUID
RR
STIME
HASH

Channel 
Selection 

Policy

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000

La
te

nc
y 

(u
s)

Throughput (MB/s)

SSD-like

PID
CPUID
RR
ST
HASH

Channel 
Selection 

Policy

Channel selection

• channel_index = val % channel_num

Where val is

• PID: thread id

• CPUID: id of CPU

• RR: round-robin, i.e. val = ++channel_index

• ST: thread start time

• HASH: hash of thread id
Compute 3 different hashes
Select the channel with the shortest queue



Parametric Analysis: XFUSE vs FUSE
• Project the best-case performance that XFUSE can achieve
• XFUSE configuration:

• Adaptive busy-event wait: busy-wait period 10𝜇𝑠. event-wait overhead 5𝜇𝑠
• 24 channels. 24 threads in TimingFS, one for each physical core.

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000

La
te

nc
y 

(u
s)

Throughput (MB/s)

PMEM-like

XFUSE/Same CPU
XFUSE/Cross CPU
FUSE

0

50

100

150

200

250

300

0 2000 4000 6000 8000
La

te
nc

y 
(u

s)

Throughput (MB/s)

SSD-like

XFUSE/Same CPU

XFUSE/Cross CPU

FUSE



User
Kernel

RAMDisk/
FastDisk/
SlowDisk

Setup 1

Filebench

EXT4

Storage

Setup 2

Filebench

fuse.ko

Storage

lib
fu
se

EXT4

Setup 3

Filebench

xfuse.ko

Storage

EXT4

St
ac
kF
S

lib
xf
us
e

St
ac
kF
S

System-Level Performance
Setup a common basis for comparing XFUSE, FUSE and 
regular kernel-mode EXT4

• Err on the side of being conservative for XFUSE

Evaluate the performance potential of XFUSE

• In cases where FUSE has a significate gap with EXT4

Filebench simulates workloads

• Web-Server, Random-Read, File-Create

Storage types

• RAMDisk: PMEM-like

• FastDisk: SSD-like cloud disk. Avg 4KB read latency: 
115𝜇𝑠. Max 80K IOPS

• SlowDisk: Cloud disk. Avg 4KB read latency: 250𝜇𝑠. Max 
5K IOPS



0

50

100

150

200

250

0 250 500 750 1000

La
te

nc
y 

(u
s)

Throughput (1000 ops/s)

RAMDisk

EXT4
FUSE
XFUSE
EXT4
FUSE
XFUSE

Random-
Read

Web-
Server

0

200

400

600

800

1000

0 60 120 180 240

La
te

n
cy

 (
u

s)

Throughput (1000 ops/s)

FastDisk

EXT4

FUSE

XFUSE

EXT4

FUSE

XFUSE

Random-
Read

Web-
Server

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20
La

te
nc

y 
(m

s)
Throughput (1000 ops/s)

SlowDisk

EXT4
FUSE
XFUSE
EXT4
FUSE
XFUSE

Random-
Read

Web-
Server

0

200

400

600

800

1000

0 50 100 150 200 250 300 350

La
te

nc
y 

(u
s)

Throughput (1000 ops/s)

File-Create EXT4
FUSE
XFUSE
EXT4
FUSE
XFUSE

RAMDisk

SlowDisk

4 threads

RAMDisk (PMEM-like)

• XFUSE closes the perf gap with kernel-mode EXT4.

• For random-read, XFUSE achieves 3x throughput over FUSE

FastDisk (SSD-like)

• XFUSE offers significant benefit over FUSE.

• For random read, XFUSE delivers full throughput of the 
FastDisk, maxed at 80K IOPS.

SlowDisk

• Performance is bottlenecked by the storage than by conduit to user space

File-Create

• XFUSE outperforms FUSE for RAMDisk and FastDisk but by a smaller margin

• Benefit of XFUSE over FUSE is limited by the scalability of StackFS and EXT4

System-Level Performance: Results



XFUSE
A FUSE-compatible framework for filesystem in user space

Enables significantly higher performing user space filesystems
• Delivers round-trip latency in the 4 𝜇𝑠 range, offers throughput exceeding 8 GB/s

Supports filesystems with strict RAS requirements in production



Questions: qianbo.huai@alibaba-inc.com

WE ARE HIRING IN SUNNYVALE, CA

Thank You


