

Palleon: A Runtime System for Efficient Video Processing toward Dynamic Class Skew

Boyuan Feng, Yuke Wang, Gushu Li, Yuan Xie, and Yufei Ding

UC SANTA BARBARA

1

Motivation

Continuous Video Streams

Mobile Platforms

CNN-based video processing system

- Analyze continuous video streams
- High accuracy
- Intensive resource consumption (e.g., energy and latency)

Mobile platforms

• Limited resource (e.g., energy and latency)

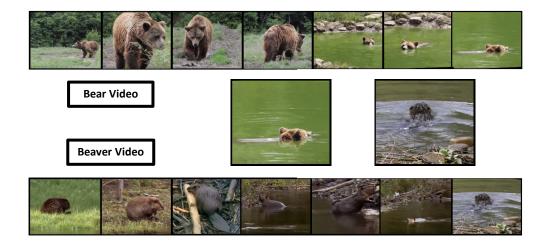
Goal: video processing system on mobile platforms with <u>high accuracy</u>, <u>low latency</u>, and <u>low energy consumption</u>.

Temporal Locality: Class Skew

• A small number of classes keep appearing in a large number of consecutive frames

Class Skew: Class Cardinality

• A small number of classes keep appearing in a large number of consecutive frames



Class cardinality

- The number of classes in a class skew
- Intuitive benefit:
 - From a general CNN (for recognizing thousands of classes)
 - To a specialized CNN (only recognizing a small number of classes in the current class skew)

Class Skew: Visual Separability

• A small number of classes keep appearing in a large number of consecutive frames

Easier to classify

Harder to classify

Visual separability

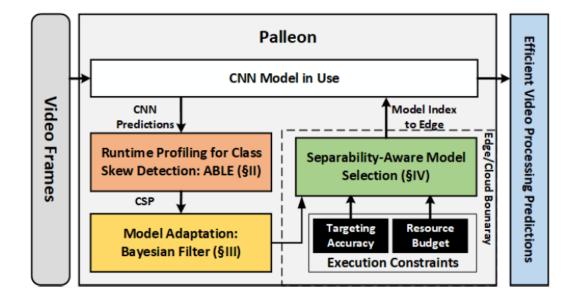
- Under the same class cardinality, one class skew is easy to classify and the other one is hard
- Intuitive benefit
 - Use a more compact model when the class skew is easier to classify

Challenges



- How to precisely capture class skews?
 - New class skews appear and disappear suddenly as time goes
 - A class skew may last for minutes or even hours while this lasting time varies across videos and scenarios
- How to efficiently adapt CNNs during runtime?
 - Do not foreknow class skews in an online video
 - Hard to offline train compact models for each class skew
 - Existing model adaptation are computation-intensive and not affordable on mobile platforms
- How to exploit visual separability and efficiently select CNNs?
 - A single model adapted to different class skews show significantly different accuracy
 - Model selection on mobile platforms may introduce high overhead

System Overview



- **ABLE** to abstract class skews from video streams
- **Bayesian Filter** to adapt CNNs toward the detected class skew during runtime
- Separability-Aware Model Selection to further squeeze system energy consumption

ABLE

Goal:

- Give a precise class-skew profile (CSP) in static regions between adjacent class-skew switches
- Detect when the class-skew switches occur

Static Class-Skew Profiling

• Approximate the CSP in each static region with an empirical distribution

$$p(j|r_t, x_{1:t}) = \frac{1}{r_t} \sum_{i=t-r_t+1}^t \mathbb{1}_{x_i=j}$$

 Early optimization by adaptive waiting scheme based on asymptotic error bound

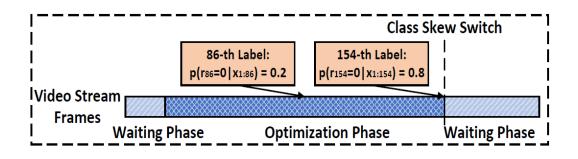
$$F_{min} = \max_{\hat{p}_j > \xi} Z_c / (\varepsilon \sqrt{\hat{p}(j|r_t, x_{1:t})})$$

I			Static Region	
Label Pred. Video Stream Frames	E D E F F E	DDFE	Class-Skew Profile: (A,B,C,D,E,F) = (0,0,0,0.3,0.4,0.3)	
	Window (Size rt =10)	Curr, Time t		
	Waiting Phase	Optin	Optimization Phase	

ABLE

Goal:

- Give a precise class-skew profile (CSP) in static regions between adjacent class-skew switches
- Detect when the class-skew switches occur



$$p(r_t | x_{1:t}) = p(r_t, x_{1:t}) / \sum_{r_t=0}^{t} p(r_t, x_{1:t})$$

$$p(r_t, x_{1:t}) = \sum_{i=1}^{k} p(r_t | r_{t-1} = w_i) \cdot p(x_t | r_{t-1} = w_i, x_{1:t-1}) \cdot p(r_{t-1} = w_i, x_{1:t-1})$$

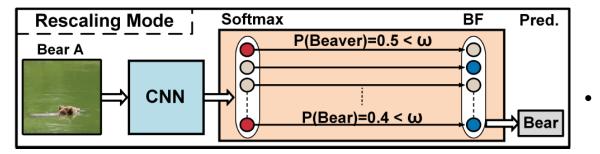
Dynamic Class-Skew Switch Detection

- Estimate the probability of class-skew switch at each time step t by considering:
 - Joint probability of the lasting time and the predicted label
 - The probability that a class skew of length rt-1 is still alive at rt
 - Detected class skew distribution
- Reduce detection overhead by
 - Window sampling that considers a subset of time windows
 - Reuse computation in adjacent time windows

Bayesian Filter

Goal:

- Efficiently adapting CNNs toward the detected class skew during runtime
- Allowing the adapted CNNs to recognize classes out of the current CSP



Rescaling Mode

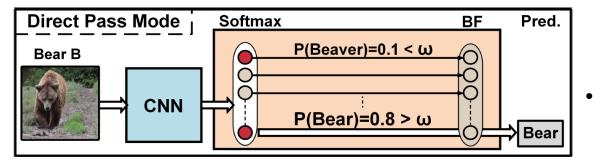
- Intuition:
 - Update the probability of each prediction based on both the current CSP and the predicted probability
- Given:
 - P(i): profiled probability of class *i* in the current CSP
 - P(X|i): CNN predicted probability that an image X comes from class *i*
- Generate:
 - Posterior probability

 $P(i|X) \propto P(i) \cdot P(X|i)$

Bayesian Filter

Goal:

- Efficiently adapting CNNs toward the detected class skew during runtime
- Allowing the adapted CNNs to recognize classes out of the current CSP



Direct Pass Mode

- Observation:
 - When a model makes a prediction with high probability (> ω), this prediction tends to be correct
- Strategy:
 - Select the original CNN prediction without rescaling when the predicted probability is higher than a pre-selected threshold ω
- Formally:

$$P(i|X) \propto \begin{cases} P(i) \cdot P(X|i) & \text{if } P(X|i) < \omega \\ P(X|i) & \text{if } P(X|i) \ge \omega \end{cases}$$

12

Separability-Aware Model Selection

Key observation:

- The same model under different CSP may have significantly different accuracy
 - Even with the same number of classes •

Strategy:

- Maintain a set of models with different accuracy ٠ and energy consumption
- Automatically switch to compact models for • saving energy when the detected CSP is easy to classify

Easier to classify

Harder to classify

Separability-Aware Model Selection

Key observation:

- The same model under different CSP may have significantly different accuracy
 - Even with the same number of classes

Strategy1: Efficient Online Model Selection

- Model selection on the cloud for only class skews detected during runtime
 - On the cloud, profiling CNN accuracy for the detected CSP
 - Using binary search for acceleration
- Cache service to avoid redundant model selection
 - Record the model selection results along with the CSP
 - Skip model selection for a CSP that have appeared previously

Strategy2: Edge-Cloud Duplicated Model Bank

- Model bank generation with offline profiling
 - Offline profile CNNs and select only models on the Pareto-optimal curve
 - Conduct once on all CSPs and keep top-k best to reduce online overhead
- Edge/cloud duplication to reduce network overhead
 - Maintain a duplicated model bank on both the edge and the cloud
 - The cloud select a model and only send index of the selected model to the edge

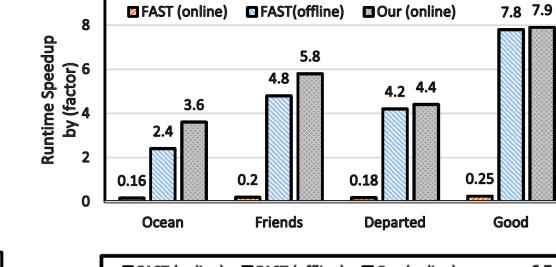
Evaluation

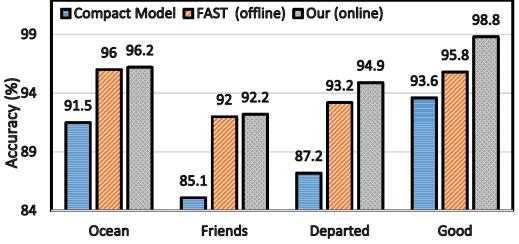
Dataset: Four real videos with

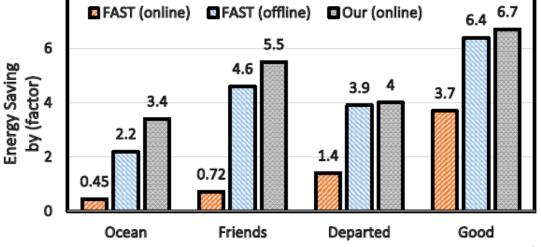
- 6~24 minutes
- 8~45 class skew switches
- 2.0 ~ 3.5 classes in each class skew

Platform:

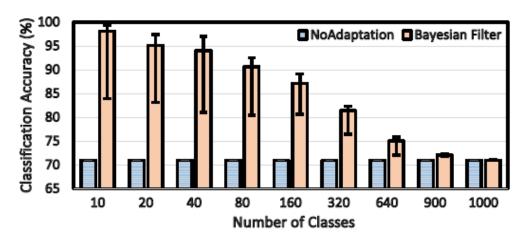
- NVIDIA Jetson Nano as the edge device
- Dell Workstation T7910 as the cloud server



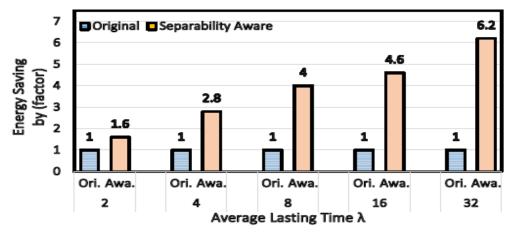




Evaluation



Accuracy improvement in an ideal case that class skew is known and fixed. Dataset: ImageNet. Model: MobileNet



Energy saving on synthesized class skews with diverse lasting time

Thanks!