
UniStore: A fault-tolerant
marriage of causal and

strong consistency
Manuel Bravo

IMDEA Software Institute, Madrid, Spain

Joint work with Alexey Gotsman, Borja de Régil (IMDEA) and

Hengfeng Wei (Nanjing University)

Geo-replication

2

Geo-replication

2

Geo-replication

This improves user experience by
allowing accesses to the closest site
and ensures disaster-tolerance

2

Geo-replication

However, it makes challenging to
maintain data consistent

3

Fundamental trade-offs

4

Fundamental trade-offs

strong consistency

4

Fundamental trade-offs

strong consistency

makes replication transparent

4

Fundamental trade-offs

strong consistency

makes replication transparent

high response time: 
synchronization critical path

4

Fundamental trade-offs

strong consistency

makes replication transparent

high response time: 
synchronization critical path
unavailable during network 
partitions

4

Fundamental trade-offs

strong consistency weak consistency

makes replication transparent

high response time: 
synchronization critical path
unavailable during network 
partitions

4

Fundamental trade-offs

strong consistency weak consistency

makes replication transparent

high response time: 
synchronization critical path
unavailable during network 
partitions

low response time

4

Fundamental trade-offs

strong consistency weak consistency

makes replication transparent

high response time: 
synchronization critical path
unavailable during network 
partitions

low response time

highly-available

4

Fundamental trade-offs

strong consistency weak consistency

makes replication transparent

high response time: 
synchronization critical path
unavailable during network 
partitions

low response time

highly-available

unable to preserve critical 
application invariants

4

The hybrid alternative

5

The hybrid alternative

• To allow multiple consistency levels to coexist

5

The hybrid alternative

• To allow multiple consistency levels to coexist

• Programmers can choose whether to execute a particular
operation under strong or weak consistency

5

The hybrid alternative

• To allow multiple consistency levels to coexist

• Programmers can choose whether to execute a particular
operation under strong or weak consistency

• E.g., if the execution of an operation may violate an
application invariant, then the programmer should execute it
under strong consistency

5

Partial order-restrictions (PoR)

6

Partial order-restrictions (PoR)

• The PoR model is a hybrid consistency model that allows
programmers to classify operations as either causal or strong

6

Partial order-restrictions (PoR)

• The PoR model is a hybrid consistency model that allows
programmers to classify operations as either causal or strong

• Causal operations satisfy causal consistency: clients observe
operations in an order that respects potential causality

6

Partial order-restrictions (PoR)

• The PoR model is a hybrid consistency model that allows
programmers to classify operations as either causal or strong

• Causal operations satisfy causal consistency: clients observe
operations in an order that respects potential causality

• Strong operations give the programmer more control over
causally independent operations

6

A banking application

7

A banking application
• Deposits to the same account can be executed under

weak consistency: deposit is marked a causal

7

A banking application
• Deposits to the same account can be executed under

weak consistency: deposit is marked a causal

US EU

7

A banking application
• Deposits to the same account can be executed under

weak consistency: deposit is marked a causal

US

Bob account

EU

Bob account

7

A banking application
• Deposits to the same account can be executed under

weak consistency: deposit is marked a causal

US

Bob account

EU

Bob account

deposit(100) deposit(200)

7

A banking application
• Deposits to the same account can be executed under

weak consistency: deposit is marked a causal

US

Bob account

EU

Bob account

commit commit

+100 +200

8

A banking application

US

Bob account

EU

Bob account
+100 +200

synchronize

+200 +100

• Deposits to the same account can be executed under
weak consistency: deposit is marked a causal

9

A banking application

US

Bob account

EU

Bob account
+100 +200

synchronize

+200 +100total +300 total +300

• Deposits to the same account can be executed under
weak consistency: deposit is marked a causal

9

A banking application

US

Bob account

EU

Bob account
+100 +200

synchronize

+200 +100total +300 total +300

• Deposits to the same account can be executed under
weak consistency: deposit is marked a causal

9

A banking application
• Withdrawals to the same account cannot be

executed under weak consistency

US

Bob account

EU

Bob account
+200 +200

10

A banking application
• Withdrawals to the same account cannot be

executed under weak consistency

US

Bob account

EU

Bob account
+200 +200

withdraw(100) withdraw(200)

10

A banking application
• Withdrawals to the same account cannot be

executed under weak consistency

US

Bob account

EU

Bob account
+200 +200

commit commit

-100 -200≥0 ≥0

11

A banking application
• Withdrawals to the same account cannot be

executed under weak consistency

US

Bob account

EU

Bob account
+200 +200
-100 -200

synchronize

12

A banking application
• Withdrawals to the same account cannot be

executed under weak consistency

US

Bob account

EU

Bob account
+200 +200
-100 -200

synchronize

-200 -100
<0 <0

12

A banking application
• Withdrawals to the same account cannot be

executed under weak consistency

US

Bob account

EU

Bob account
+200 +200
-100 -200

synchronize

-200 -100
<0 <0

too late, money’s gone!
12

Partial order-restrictions (PoR)

13

Partial order-restrictions (PoR)

• The programmer provides a symmetric conflict relation
⋈ on operations

13

Partial order-restrictions (PoR)

• The programmer provides a symmetric conflict relation
⋈ on operations

• Any operation involved in the conflict relation is 
marked as strong

13

Partial order-restrictions (PoR)

• The programmer provides a symmetric conflict relation
⋈ on operations

• Any operation involved in the conflict relation is 
marked as strong

• PoR guarantees that, out of two conflicting strong
transactions, one has to observe the other

13

A banking application

US

Bob account

EU

Bob account
+200 +200

• Withdrawals to the same account are executed 
under strong consistency: withdrawals to the same account conflict

14

A banking application

US

Bob account

EU

Bob account
+200 +200

withdraw(100) withdraw(200)

• Withdrawals to the same account are executed 
under strong consistency: withdrawals to the same account conflict

14

A banking application

US

Bob account

EU

Bob account
+200 +200

synchronize

• Withdrawals to the same account are executed 
under strong consistency: withdrawals to the same account conflict

15

A banking application

US

Bob account

EU

Bob account
+200 +200

synchronize

withdraw(100) < withdraw(200)

• Withdrawals to the same account are executed 
under strong consistency: withdrawals to the same account conflict

15

A banking application

US

Bob account

EU

Bob account
+200 +200

withdraw(100) < withdraw(200)

synchronize

• Withdrawals to the same account are executed 
under strong consistency: withdrawals to the same account conflict

16

A banking application

US

Bob account

EU

Bob account
+200 +200
-100 -100

withdraw(100) < withdraw(200)

≥0 ≥0

synchronize

• Withdrawals to the same account are executed 
under strong consistency: withdrawals to the same account conflict

16

A banking application

US

Bob account

EU

Bob account
+200 +200
-100 -100

commit

withdraw(100) < withdraw(200)

≥0 ≥0

• Withdrawals to the same account are executed 
under strong consistency: withdrawals to the same account conflict

17

A banking application

US

Bob account

EU

Bob account
+100 +100

commit

withdraw(100) < withdraw(200)

• Withdrawals to the same account are executed 
under strong consistency: withdrawals to the same account conflict

18

A banking application

US

Bob account

EU

Bob account
+100 +100

commit

withdraw(100) < withdraw(200)

• Withdrawals to the same account are executed 
under strong consistency: withdrawals to the same account conflict

19

A banking application

US

Bob account

EU

Bob account
+100 +100
-200 -200

commit

withdraw(100) < withdraw(200)

<0 <0

• Withdrawals to the same account are executed 
under strong consistency: withdrawals to the same account conflict

19

A banking application

US

Bob account

EU

Bob account
+100 +100
-200 -200

commit

withdraw(100) < withdraw(200)

<0 <0

abort

• Withdrawals to the same account are executed 
under strong consistency: withdrawals to the same account conflict

19

A banking application

US

Bob account

EU

Bob account
+100 +100

commit

withdraw(100) < withdraw(200)

abort

• Withdrawals to the same account are executed 
under strong consistency: withdrawals to the same account conflict

20

A banking application

US

Bob account

EU

Bob account
+100 +100

commit

withdraw(100) < withdraw(200)

abort

• Withdrawals to the same account are executed 
under strong consistency: withdrawals to the same account conflict

20

UniStore

21

UniStore

• The first fault-tolerant and scalable data store that combines
causal and strong consistency

21

UniStore

• The first fault-tolerant and scalable data store that combines
causal and strong consistency

• Implements a transactional variant of PoR consistency

21

UniStore

• The first fault-tolerant and scalable data store that combines
causal and strong consistency

• Implements a transactional variant of PoR consistency

• It guarantees transactional causal consistency by default
and allows the programmer to additionally specify which
pairs of transactions conflict, i.e., have to synchronize

21

UniStore: causal baseline

22

UniStore: causal baseline

• UniStore builds on Cure [ICDCS’ 16], a scalable
implementation of transactional causal consistency

22

UniStore: causal baseline

• UniStore builds on Cure [ICDCS’ 16], a scalable
implementation of transactional causal consistency

• A causal transaction first executes at a single data center on
a causally consistent snapshot

22

UniStore: causal baseline

• UniStore builds on Cure [ICDCS’ 16], a scalable
implementation of transactional causal consistency

• A causal transaction first executes at a single data center on
a causally consistent snapshot

• After this it immediately commits, and its updates are
replicated to all other data centers in the background

22

UniStore: strong txs

23

UniStore: strong txs

• UniStore uses optimistic concurrency control to 
execute strong transactions

23

UniStore: strong txs

• UniStore uses optimistic concurrency control to 
execute strong transactions

• first executed speculatively and the results are then certified to
determine whether the transaction can commit

23

UniStore: strong txs

• UniStore uses optimistic concurrency control to 
execute strong transactions

• first executed speculatively and the results are then certified to
determine whether the transaction can commit

• Certification requires synchronization between the replicas of
partitions it accessed, located in different data centers

23

UniStore: strong txs

• UniStore uses optimistic concurrency control to 
execute strong transactions

• first executed speculatively and the results are then certified to
determine whether the transaction can commit

• Certification requires synchronization between the replicas of
partitions it accessed, located in different data centers

• Uses an existing fault-tolerant protocol that combines two-phase
commit and Paxos while minimizing commit latency

23

UniStore: key challenge

24

UniStore: key challenge

• Maintain liveness despite data center failures

24

UniStore: key challenge

• Maintain liveness despite data center failures

• Simply adding a Paxos-based commit protocol for strong
transactions to an existing causally consistent protocol does
not yield a fault-tolerant data store

24

UniStore: key challenge

US

EU

AS

25

UniStore: key challenge

US

EU

AS

submit(t1)

25

UniStore: key challenge

US

EU

AS

dep[t1]=∅

submit(t1)

25

UniStore: key challenge

US

EU

AS

dep[t1]=∅

submit(t1) submit(t2)

25

UniStore: key challenge

US

EU

AS

dep[t1]=∅ dep[t2]={t1}

submit(t1) submit(t2)

25

UniStore: key challenge

US

EU

AS

dep[t1]=∅ dep[t2]={t1}

certify(t2)

submit(t1) submit(t2)

25

UniStore: key challenge

US

EU

AS

dep[t1]=∅ dep[t2]={t1}

certify(t2)

submit(t1) submit(t2) commit(t2)

commit(t2)

commit(t2)

25

UniStore: key challenge

US

EU

AS

dep[t1]=∅ dep[t2]={t1}

certify(t2)

submit(t1) submit(t2) commit(t2)

commit(t2)

commit(t2)

US data
center exposes

t2 to other
transactions

25

UniStore: key challenge

US

EU

AS

dep[t1]=∅ dep[t2]={t1}

certify(t2)

submit(t1) submit(t2) commit(t2)

commit(t2)

commit(t2)

US data
center exposes

t2 to other
transactions

EU and AS cannot
expose t2 until they
receive t1 from US

25

UniStore: key challenge

US

EU

AS

submit(t1)

dep[t1]=∅

submit(t2)

dep[t2]={t1}

certify(t2)

commit(t2)

commit(t2)

commit(t2)

26

UniStore: key challenge

US

EU

AS

submit(t1)

dep[t1]=∅

submit(t2)

dep[t2]={t1}

certify(t2)

commit(t2)

commit(t2)

commit(t2)

US data
center crashes

before
replicating t1

26

UniStore: key challenge

US

EU

AS

submit(t1)

dep[t1]=∅

submit(t2)

dep[t2]={t1}

certify(t2)

commit(t2)

commit(t2)

commit(t2)

US data
center crashes

before
replicating t1

t2 will never be
exposed to other
transactions in AS

26

UniStore: key challenge

US

EU

AS

submit(t1)

dep[t1]=∅

submit(t2)

dep[t2]={t1}

certify(t2)

commit(t2)

commit(t2)

commit(t2) submit(t3)

US data
center crashes

before
replicating t1

t2 will never be
exposed to other
transactions in AS

26

UniStore: key challenge

US

EU

AS

submit(t1)

dep[t1]=∅

submit(t2)

dep[t2]={t1}

certify(t2)

commit(t2)

commit(t2)

commit(t2)

dep[t3]=∅

submit(t3)

US data
center crashes

before
replicating t1

t2 will never be
exposed to other
transactions in AS

26

UniStore: key challenge

US

EU

AS

submit(t1)

dep[t1]=∅

submit(t2)

dep[t2]={t1}

certify(t2)

commit(t2)

commit(t2)

commit(t2)

dep[t3]=∅
certify(t3)

submit(t3)

US data
center crashes

before
replicating t1

t2 will never be
exposed to other
transactions in AS

26

UniStore: key challenge

US

EU

AS

submit(t1)

dep[t1]=∅

submit(t2)

dep[t2]={t1}

certify(t2)

commit(t2)

commit(t2)

commit(t2)

dep[t3]=∅
certify(t3)

submit(t3)

US data
center crashes

before
replicating t1

t2 will never be
exposed to other
transactions in AS

abort(t3)

abort(t3)

26

UniStore: key challenge

US

EU

AS

submit(t1)

dep[t1]=∅

submit(t2)

dep[t2]={t1}

certify(t2)

commit(t2)

commit(t2)

commit(t2)

dep[t3]=∅
certify(t3)

submit(t3)

US data
center crashes

before
replicating t1

t2 will never be
exposed to other
transactions in AS

abort(t3)

abort(t3)

no transaction
conflicting with t2 can
commit from now on

26

Related work

27

Related work

• Solutions that are fault-tolerant do not support highly
available causal operations, and viceversa.

27

Related work

• Solutions that are fault-tolerant do not support highly
available causal operations, and viceversa.

• Previous solutions aren’t scalable: do not include
mechanisms for partitioning the key space among different
machines in a data center or include per-data center
centralized services

27

UniStore: uniformity

28

UniStore: uniformity

• UniStore ensures that all causal dependencies of a 
strong transaction are uniform before certification

28

UniStore: uniformity

• UniStore ensures that all causal dependencies of a 
strong transaction are uniform before certification

• A transaction is uniform if both the transaction and its causal
dependencies are guaranteed to be eventually replicated at all
correct data centers

28

UniStore: uniformity

• UniStore ensures that all causal dependencies of a 
strong transaction are uniform before certification

• A transaction is uniform if both the transaction and its causal
dependencies are guaranteed to be eventually replicated at all
correct data centers

• UniStore considers a transaction to be uniform once it is visible at 
f + 1 data centers, because at least one of these must be correct,
and data centers can forward causal transactions to others

28

UniStore: other features

29

UniStore: other features

• Causal transactions execute in a snapshot that it is slightly in the
past to minimise the latency of strong transactions

29

UniStore: other features

• Causal transactions execute in a snapshot that it is slightly in the
past to minimise the latency of strong transactions

• UniStore uses a fully-decentralized and lightweight background
stabilisation protocol to track uniformity

29

UniStore: other features

• Causal transactions execute in a snapshot that it is slightly in the
past to minimise the latency of strong transactions

• UniStore uses a fully-decentralized and lightweight background
stabilisation protocol to track uniformity

• It reuses the mechanism for tracking uniformity to let clients make
causal transaction durable on demand and enable consistent
client migration

29

Evaluation

30

Evaluation

• Amazon EC2 using m4.2xlarge VMs from 3 different regions:
Virginia (US-East), California (US-West) and Frankfurt (EU-FRA)

30

Evaluation

• Amazon EC2 using m4.2xlarge VMs from 3 different regions:
Virginia (US-East), California (US-West) and Frankfurt (EU-FRA)

• We use RUBiS, a popular benchmark that emulates 
an online auction website such as Ebay

30

Evaluation

• Amazon EC2 using m4.2xlarge VMs from 3 different regions:
Virginia (US-East), California (US-West) and Frankfurt (EU-FRA)

• We use RUBiS, a popular benchmark that emulates 
an online auction website such as Ebay

• Out of 15 transactions, four transactions are strong and declares
three conflicts between them

30

Evaluation: results

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 10 20 30 40 50 60 70 80A
ve

ra
g
e
 la

te
n
cy

 (
m

s)

Throughput (Ktxs/s)

UniStore
RedBlue

Strong
Causal

Mix workload with 15% of update transactions, which
yields a 10% of strong transactions

31

Evaluation: results

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 10 20 30 40 50 60 70 80A
ve

ra
g
e
 la

te
n
cy

 (
m

s)

Throughput (Ktxs/s)

UniStore
RedBlue

Strong
Causal

Causal implements causal consistency as a special
case of UniStore where all transactions are causal

32

Evaluation: results

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 10 20 30 40 50 60 70 80A
ve

ra
g
e
 la

te
n
cy

 (
m

s)

Throughput (Ktxs/s)

UniStore
RedBlue

Strong
Causal

Causal cannot preserve the integrity invariants of RUBiS,
but gives an upper bound on the expected performance.

33

Evaluation: results

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 10 20 30 40 50 60 70 80A
ve

ra
g
e
 la

te
n
cy

 (
m

s)

Throughput (Ktxs/s)

UniStore
RedBlue

Strong
Causal

Strong implements serializability as a special case of
UniStore where all transactions are strong

34

Evaluation: results

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 10 20 30 40 50 60 70 80A
ve

ra
g
e
 la

te
n
cy

 (
m

s)

Throughput (Ktxs/s)

UniStore
RedBlue

Strong
Causal

RedBlue implements redblue consistency,  
which like PoR, combines causal and strong consistency.

However, it declares conflicts between all strong transactions.

35

Evaluation: results

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 10 20 30 40 50 60 70 80A
ve

ra
g
e
 la

te
n
cy

 (
m

s)

Throughput (Ktxs/s)

UniStore
RedBlue

Strong
Causal

UniStore exhibits a high throughput: 
72% and 183% higher than RedBlue and Strong

respectively at their saturation point.

36

Evaluation: results

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 10 20 30 40 50 60 70 80A
ve

ra
g
e
 la

te
n
cy

 (
m

s)

Throughput (Ktxs/s)

UniStore
RedBlue

Strong
Causal

UniStore exhibits an average latency of
16.5ms, lower than 80.4ms of Strong

37

Evaluation: results

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 10 20 30 40 50 60 70 80A
ve

ra
g
e
 la

te
n
cy

 (
m

s)

Throughput (Ktxs/s)

UniStore
RedBlue

Strong
Causal

The latency of RedBlue is comparable to that of
UniStore. This is because both systems mark

the same set of transactions as strong

38

Evaluation: results

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 10 20 30 40 50 60 70 80A
ve

ra
g
e
 la

te
n
cy

 (
m

s)

Throughput (Ktxs/s)

UniStore
RedBlue

Strong
Causal

In comparison to Causal, UniStore penalizes 
throughput by 45%. This is the unavoidable price
to pay to preserve application-specific invariants.

39

Evaluation: results

40

Evaluation: results
• In UniStore, strong transactions exhibit a latency of 73.9ms on

average, which is dominated by the RTT between Virginia (the
leader’s region) and California (Virginia’s closest data center) – 61ms

40

Evaluation: results
• In UniStore, strong transactions exhibit a latency of 73.9ms on

average, which is dominated by the RTT between Virginia (the
leader’s region) and California (Virginia’s closest data center) – 61ms

• Causal transactions exhibit a very low latency – 1.2ms on average,
which is comparable to that of Causal

40

Evaluation: results
• In UniStore, strong transactions exhibit a latency of 73.9ms on

average, which is dominated by the RTT between Virginia (the
leader’s region) and California (Virginia’s closest data center) – 61ms

• Causal transactions exhibit a very low latency – 1.2ms on average,
which is comparable to that of Causal

• This demonstrates that UniStore is able to mix causal and strong
consistency effectively

40

Evaluation: results
• In UniStore, strong transactions exhibit a latency of 73.9ms on

average, which is dominated by the RTT between Virginia (the
leader’s region) and California (Virginia’s closest data center) – 61ms

• Causal transactions exhibit a very low latency – 1.2ms on average,
which is comparable to that of Causal

• This demonstrates that UniStore is able to mix causal and strong
consistency effectively

••

40

Conclusion

41

• UniStore is the first fault-tolerant and scalable data store 
that combines causal and strong consistency

Conclusion

41

• UniStore is the first fault-tolerant and scalable data store 
that combines causal and strong consistency

• It combines causal and strong consistency effectively: 3.7× lower
latency on average than a strongly consistent system with 1.2ms
latency on average for causal transactions

Conclusion

41

• UniStore is the first fault-tolerant and scalable data store 
that combines causal and strong consistency

• It combines causal and strong consistency effectively: 3.7× lower
latency on average than a strongly consistent system with 1.2ms
latency on average for causal transactions

• We expect that the key ideas in UniStore will pave the way for
practical systems that combine causal and strong consistency

Conclusion

41

Thank you 
Follow up questions to manuel.bravo@imdea.org

• UniStore is the first fault-tolerant and scalable data store 
that combines causal and strong consistency

• It combines causal and strong consistency effectively: 3.7× lower
latency on average than a strongly consistent system with 1.2ms
latency on average for causal transactions

• We expect that the key ideas in UniStore will pave the way for
practical systems that combine causal and strong consistency

42

