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However, it makes challenging to 
maintain data consistent
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Fundamental trade-offs

strong consistency weak consistency

makes replication transparent

high response time: 
synchronization critical path
unavailable during network 
partitions

low response time

highly-available

unable to preserve critical 
application invariants
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The hybrid alternative

• To allow multiple consistency levels to coexist

• Programmers can choose whether to execute a particular 
operation under strong or weak consistency

• E.g., if the execution of an operation may violate an 
application invariant, then the programmer should execute it 
under strong consistency
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Partial order-restrictions (PoR)

• The PoR model is a hybrid consistency model that allows 
programmers to classify operations as either causal or strong

• Causal operations satisfy causal consistency: clients observe 
operations in an order that respects potential causality

• Strong operations give the programmer more control over 
causally independent operations  
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A banking application
• Withdrawals to the same account cannot be 

executed under weak consistency

US

Bob account
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Bob account
+200 +200
-100 -200

synchronize

-200 -100
<0 <0

too late, money’s gone!
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Partial order-restrictions (PoR)

• The programmer provides a symmetric conflict relation 
⋈ on operations

• Any operation involved in the conflict relation is 
marked as strong

• PoR guarantees that, out of two conflicting strong 
transactions, one has to observe the other
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UniStore

• The first fault-tolerant and scalable data store that combines 
causal and strong consistency 

• Implements a transactional variant of PoR consistency

• It guarantees transactional causal consistency by default 
and allows the programmer to additionally specify which 
pairs of transactions conflict, i.e., have to synchronize
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UniStore: causal baseline

• UniStore builds on Cure [ICDCS’ 16], a scalable 
implementation of transactional causal consistency

• A causal transaction first executes at a single data center on 
a causally consistent snapshot 

• After this it immediately commits, and its updates are 
replicated to all other data centers in the background
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UniStore: strong txs

• UniStore uses optimistic concurrency control to 
execute strong transactions 

• first executed speculatively and the results are then certified to 
determine whether the transaction can commit 

• Certification requires synchronization between the replicas of 
partitions it accessed, located in different data centers

• Uses an existing fault-tolerant protocol that combines two-phase 
commit and Paxos while minimizing commit latency
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UniStore: key challenge

• Maintain liveness despite data center failures

• Simply adding a Paxos-based commit protocol for strong 
transactions to an existing causally consistent protocol does 
not yield a fault-tolerant data store 
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US data 
center crashes 

before 
replicating t1

t2 will never be 
exposed to other 
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abort(t3)
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no transaction 
conflicting with t2 can 
commit from now on
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Related work

• Solutions that are fault-tolerant do not support highly 
available causal operations, and viceversa.   

• Previous solutions aren’t scalable: do not include 
mechanisms for partitioning the key space among different 
machines in a data center or include per-data center 
centralized services
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UniStore: uniformity

• UniStore ensures that all causal dependencies of a 
strong transaction are uniform before certification

• A transaction is uniform if both the transaction and its causal 
dependencies are guaranteed to be eventually replicated at all 
correct data centers

• UniStore considers a transaction to be uniform once it is visible at 
f + 1 data centers, because at least one of these must be correct, 
and data centers can forward causal transactions to others
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UniStore: other features 

• Causal transactions execute in a snapshot that it is slightly in the 
past to minimise the latency of strong transactions

• UniStore uses a fully-decentralized and lightweight background 
stabilisation protocol to track uniformity

• It reuses the mechanism for tracking uniformity to let clients make 
causal transaction durable on demand and enable consistent 
client migration
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• Amazon EC2 using m4.2xlarge VMs from 3 different regions: 
Virginia (US-East), California (US-West) and Frankfurt (EU-FRA)

• We use RUBiS, a popular benchmark that emulates 
an online auction website such as Ebay

• Out of 15 transactions, four transactions are strong and declares 
three conflicts between them
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Causal cannot preserve the integrity invariants of RUBiS, 
but gives an upper bound on the expected performance. 
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RedBlue implements redblue consistency,  
which like PoR, combines causal and strong consistency. 

However, it declares conflicts between all strong transactions.  
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UniStore exhibits a high throughput: 
72% and 183% higher than RedBlue and Strong 

respectively at their saturation point.
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The latency of RedBlue is comparable to that of 
UniStore. This is because both systems mark 

the same set of transactions as strong
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In comparison to Causal, UniStore penalizes 
throughput by 45%. This is the unavoidable price 
to pay to preserve application-specific invariants. 
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• Causal transactions exhibit a very low latency – 1.2ms on average, 
which is comparable to that of Causal

• This demonstrates that UniStore is able to mix causal and strong 
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••
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Thank you 
Follow up questions to manuel.bravo@imdea.org

• UniStore is the first fault-tolerant and scalable data store 
that combines causal and strong consistency 


• It  combines causal and strong consistency effectively: 3.7× lower 
latency on average than a strongly consistent system with 1.2ms 
latency on average for causal transactions


• We expect that the key ideas in UniStore will pave the way for 
practical systems that combine causal and strong consistency
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