
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

TCP-Fuzz: Detecting Memory and Semantic Bugs
in TCP Stacks with Fuzzing

Yong-Hao Zou and Jia-Ju Bai, Tsinghua University; Jielong Zhou, Jianfeng Tan,
and Chenggang Qin, Ant Group; Shi-Min Hu, Tsinghua University

https://www.usenix.org/conference/atc21/presentation/zou

TCP-Fuzz: Detecting Memory and Semantic Bugs in TCP Stacks with Fuzzing

Yong-Hao Zou, Jia-Ju Bai
Tsinghua University

Jielong Zhou, Jiangfeng Tan, Chenggang Qin
Ant Group

Shi-Min Hu
Tsinghua University

Abstract
TCP stacks provide reliable data transmission in network, and
thus they should be correctly implemented and well tested to
ensure reliability and security. However, testing TCP stacks
is difficult. First, a TCP stack accepts packets and system
calls that have dependencies between each other, and thus
generating effective test cases is challenging. Second, a TCP
stack has various complex state transitions, but existing testing
approaches target covering states instead of covering state
transitions, and thus their testing coverage is limited. Finally,
our study of TCP stack commits shows that 87% of bug-fixing
commits are related to semantic bugs (such as RFC violations),
but existing bug sanitizers can detect only memory bugs not
semantic bugs.

In this paper, we design a novel fuzzing framework named
TCP-Fuzz, to effectively test TCP stacks and detect bugs.
TCP-Fuzz consists of three key techniques: (1) a dependency-
based strategy that considers dependencies between pack-
ets and system calls, to generate effective test cases; (2) a
transition-guided fuzzing approach that uses a new cover-
age metric named branch transition as program feedback, to
improve the coverage of state transitions; (3) a differential
checker that compares the outputs of multiple TCP stacks for
the same inputs, to detect semantic bugs. We have evaluated
TCP-Fuzz on five widely-used TCP stacks (TLDK, F-Stack,
mTCP, FreeBSD TCP and Linux TCP), and find 56 real bugs
(including 8 memory bugs and 48 semantic bugs). 40 of these
bugs have been confirmed by related developers.

1 Introduction

The TCP protocol is a transport-layer network protocol that
receives system calls and packets to provide reliable data
transmission. It carries over 85% of network traffic nowa-
days [44, 63]. In practice, the TCP protocol has different
implementations, forming different TCP stacks. Each modern
operating system (such as Linux and FreeBSD) has its own
kernel-level TCP stack to provide fundamental network sup-

port for user-level applications. Besides, to achieve better per-
formance and reduce impact on OS kernels, many user-level
TCP stacks (such as mTCP [26], TLDK [59] and F-Stack [19])
have been developed and widely-used in telecom systems and
network nodes, to transfer data without OS involvement.

Though TCP stacks are critical, correctly implementing
them is difficult [4,16], as a TCP stack has rich functionalities
(such as reliable transmission and congestion control), com-
plex state model and various kinds of possible exceptions to
handle. Thus, developers may unintentionally make mistakes
when implementing TCP stacks, introducing bugs that can
cause serious problems. Memory bugs (such as null-pointer
dereferences and use-after-free issues) are common in TCP
stacks, and they can cause crashes, data corruption and so on.
Moreover, according to our study of TCP stack commits, 87%
of bug-fixing commits are related to semantic bugs (such as
RFC violations), which are related to code logics and RFC
documents, instead of memory accesses. For example, CVE-
2019-11478 [15] reports that the TCP retransmission queue
in the Linux TCP stack can be fragmented when handling
certain TCP Selective Acknowledgment (SACK) sequences,
and attackers can exploit this bug to cause a denial of service.
Thus, it is important to test TCP stacks to detect bugs.

To detect bugs in TCP stacks, some approaches [34, 40,
41, 53] use model checking or formal verification to check
the correctness of TCP implementation. But they require
much manual effort and TCP-specific knowledge to provide
a complete and correct TCP state model, and they are of-
ten time-consuming due to high complexity of TCP state
transitions. To reduce manual effort and time usage, some ap-
proaches [9, 30] perform static analysis of TCP stack source
code. But they often introduce false positives, due to lacking
exact runtime information. To reduce false positives, some
approaches [3–5,66] analyze the runtime traces of TCP stacks
to infer RFC violations. However, they require substantial and
effective test cases to achieve high testing coverage.

To generate effective test cases, many recent approaches
perform fuzz testing for the implementations of application-
layer network protocols, such as DTLS/TLS [17, 52, 54, 60],

USENIX Association 2021 USENIX Annual Technical Conference 161

FTP [6, 21, 43] and Modbus [37, 38]. But these approaches
are limited in testing TCP stacks for three critical reasons:
(1) These approaches generate just packets as input test
cases, without considering dependencies between inputs; but
TCP stacks receive both system calls (syscalls) and packets,
which have dependencies between each other. Thus, these ap-
proaches are limited in generating effective test cases for TCP
stacks. (2) These approaches use code coverage as program
feedback to cover different protocol states; but besides states,
TCP stacks also have various state transitions that heavily
affect TCP execution and can trigger semantic bugs. Thus,
these approaches fail to cover many state transitions and thus
may miss many real bugs. (3) Many of these approaches use
common bug sanitizers (such as ASan [2] and MSan [39])
to detect memory bugs; but many bugs in TCP stacks are
semantic bugs that are unrelated to memory accesses, and
thus common bug sanitizers cannot find these semantic bugs.

In this paper, we propose a novel TCP-stack fuzzing frame-
work named TCP-Fuzz, which consists of three key tech-
niques. First, to generate effective test cases, TCP-Fuzz uses
a dependency-based strategy that can generate the sequences
of syscalls and packets by considering dependencies between
them. Specifically, this strategy considers three kinds of de-
pendencies to generate effective test cases, including syscall-
syscall, packet-packet and syscall-packet dependencies. For
example, a typical packet-packet dependency is that the se-
quence number of a new packet should be equal to the sum of
the sequence number and data length of the previous packet.
Second, to effectively cover state transitions, TCP-Fuzz uses
a transition-guided fuzzing approach that exploits a new cov-
erage metric named branch transition as program feedback
to replace code coverage. Branch transition is represented
as a vector that stores both branch coverage for the current
input item (packet or syscall) and the change of branch cov-
erage between the current and previous input items. In this
way, branch transition can describe not only states but also
state transitions of two adjacent input items. Finally, to de-
tect semantic bugs, TCP-Fuzz uses a differential checker that
compares the outputs of multiple TCP stacks for the same
inputs. Indeed, different TCP stacks should obey many iden-
tical semantic rules (most of these rules are defined in RFC
documents), and thus they should produce identical or similar
outputs for the same inputs. Otherwise, these TCP stacks have
implementation inconsistencies, indicating some of them pos-
sibly have semantic bugs. This checker is scalable and does
not introduce runtime overhead for TCP stacks.

We have implemented TCP-Fuzz with Clang [33] and Pack-
etdrill [8]. TCP-Fuzz can detect both memory bugs with ex-
isting bug sanitizers and semantic bugs with our differential
checker. Overall, we make four main contributions:

• We study TCP stack commits, and find 87% of bug-fixing
commits are related to semantic bugs, which cannot be
found by existing bug sanitizers. We also reveal the limi-
tations of existing protocol fuzzing in testing TCP stacks.

• To improve fuzzing in testing TCP stacks, we propose
three key techniques: (1) a dependency-based strategy
that considers dependencies between packets and system
calls, to generate effective test cases; (2) a transition-
guided fuzzing approach that uses a new coverage metric
named branch transition as fuzzing feedback, to improve
the coverage of state transitions; (3) a differential checker
that compares the outputs of multiple TCP stacks for the
same inputs, to detect semantic bugs.

• Based on the three key techniques, we design a novel
fuzzing framework named TCP-Fuzz, to effectively test
TCP stacks. To our knowledge, TCP-Fuzz is the first
systematic TCP-stack fuzzing framework to detect both
memory and semantic bugs.

• We evaluate TCP-Fuzz on five widely-used user-level
and kernel-level TCP stacks (TLDK, F-Stack, mTCP,
FreeBSD TCP and Linux TCP), and find 56 real bugs
(including 8 memory bugs and 48 semantic bugs). 40 of
these bugs have been confirmed by related developers,
and 23 bugs have been fixed. Moreover, we also com-
pare TCP-Fuzz to existing fuzzing approaches (AFL-
like, Syzkaller-like, Boofuzz, Fuzzotron and AFLNet),
and it finds many real bugs missed by these approaches.

The rest of this paper is organized as follows. Section 2 in-
troduces the background and motivation. Section 3 introduces
our key techniques of fuzzing TCP stacks. Section 4 intro-
duces TCP-Fuzz. Section 5 shows our evaluation and com-
pares TCP-Fuzz to existing fuzzing tools. Section 6 makes
a discussion about fuzzing TCP stacks. Section 7 presents
related work, and Section 8 concludes this paper.

2 Background and Motivation

We first introduce TCP stacks, and then we motivate our work
by studying TCP stack commits and revealing the limitations
of existing protocol fuzzing in testing TCP stacks.

2.1 TCP Stack
The TCP protocol is a classical transport-layer protocol to
provide reliable, ordered and error-checked delivery of byte
streams via an IP network. In practice, the TCP protocol
has different implementations, forming different TCP stacks.
Besides classical kernel-level TCP stacks (such as Linux TCP
and FreeBSD TCP), many new user-level TCP stacks (such
mTCP, TLDK and F-Stack) have been developed and widely-
used to achieve better performance. However, all these TCP
stacks has three common features:
F1: Two-dimensional inputs with dependencies. As pre-
sented in Figure 1, a TCP stack receives both packets from
network drivers and syscalls from applications as inputs, and
it outputs the syscalls’ results to applications and response
packets to network drivers. TCP-related system calls are used

162 2021 USENIX Annual Technical Conference USENIX Association

TCP stack

Network drivers

Applications

Syscalls

Packets Packets

Results

Figure 1: Inputs and outputs of TCP stack.

Source port Destination port
Sequence number

Acknowledgement number
Data offset Reserved Flags Window size

Checksum Urgent pointer
Options Padding

TCP Data

0 16 32

TC
P

 h
e

ad
e

r

Figure 2: TCP packet format.

to perform fixed network functionalities. For example, the
syscall socket is used to create an endpoint for communica-
tion and it returns a file descriptor of the socket; the syscall
accept is used to accept a connection on a socket and it re-
turns a new file descriptor of the socket. A TCP packet has
a fixed format shown in Figure 2, including a header and
data. The TCP header consists of different fields to store the
parameters and state of an end-to-end TCP socket.

Packets and syscalls accepted by the TCP stack should
have dependencies between each other, otherwise they will be
simply neglected by the TCP stack without deep processing.
Specifically, there are three kinds of dependencies:

• Syscall-syscall dependency. For example, when a con-
nection is passive open, the application must call a series
of syscalls including socket, bind, listen and accept
in order. Otherwise, the application cannot successfully
establish the TCP connection.

• Packet-packet dependency. For example, after a connec-
tion is established, the source port and destination port
of each packet should be fixed. Otherwise, the TCP stack
identifies the packets to be invalid and thus directly drops
them without further processing.

• Syscall-packet dependency. For example, the syscall
accept returns only after the TCP stack receives the
last one of the three-way handshake packets.

According to this feature, two requirements should be satis-
fied when testing TCP stacks. First, it is necessary to generate
the sequences of both system calls and packets as input test
cases. Second, to make test cases more effective, it is impor-
tant to consider dependencies between packets and syscalls
when generating test cases.
F2: State model. A TCP stack works according to a basic
state model defined in the RFC 793 [50] document. Figure 3
shows this basic state model, which has 11 states and 20
state transitions. For a real-world TCP stack, there are often
more states and state transitions specific to the TCP stack’s
implementation.

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

FIN_WAIT1

FIN_WAIT2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Figure 3: Basic state model of TCP stack.

According to this feature, when testing TCP stacks, it is
important to cover both states and state transitions as many
as possible. As a state can be reached from different states
(for example in Figure 3, TIME_WAIT can be reached from
FIN_WAIT1, FIN_WAIT2 and CLOSING) and there are often
more state transitions than states, covering state transitions is
actually more important than covering states in testing.
F3: Semantic rules. Each TCP stack works based on some
regular semantic rules that stipulate how syscalls and packets
should be handled. Most of these semantic rules are explicitly
described in RFC documents. For example, the RFC 7323 [49]
document describes how to handle the timestamp option in
the TCP packet header. An important semantic rule in this
RFC document is that once the timestamp option has been
successfully negotiated during TCP connection, the TCP stack
should accept only packets with non-decreasing timestamps;
otherwise the TCP stack should simply drop the packets. How-
ever, some semantic rules are not explicitly described in RFC
documents. For example, RFC documents defines 32 possible
options in the TCP packet header and describes how these op-
tions should be handled [58]. But for unknown options, RFC
documents do not describe how to handle them. In practice,
most TCP stacks simply ignore these options.

According to this feature, when testing TCP stacks, it is
important to check these semantic rules and detect related vi-
olations. Indeed, these violations are unrelated to problematic
memory accesses, and thus we refer them to semantic bugs.

2.2 Study of TCP Stack Commits
To understand the proportion of memory bugs and semantic
bugs in existing TCP stacks, we select three open-sourced and
widely-used TCP stacks, including FreeBSD TCP, mTCP [26]
and TLDK [59], to study their commits1. Among these TCP
stacks, FreeBSD TCP is a classical kernel-level TCP stack;
mTCP is a well-known user-level TCP stack in academic
community; TLDK is a recent user-level TCP stack in industry

1FreeBSD commits: https://gitlab.com/FreeBSD/freebsd-src
mTCP commits: https://github.com/mtcp-stack/mtcp
TLDK commits: https://git.fd.io/tldk/commit/?h=dev-next-socket

USENIX Association 2021 USENIX Annual Technical Conference 163

Time FreeBSD mTCP TLDK
Memory Semantic Memory Semantic Memory Semantic

2017 2 26 2 6 1 11
2018 9 51 0 4 0 4
2019 9 65 1 3 2 5
Total 20 142 3 13 3 20

Table 1: Study results of TCP stack commits.

community and it has been deployed in many telecom systems
and network nodes. In our study, we first select the bug-fixing
commits from January 2017 to December 2019, resulting in
201 commits; and then we manually read each commit to
identify whether it fixes memory bugs or semantic bugs.

Table 1 shows the study results. 87% of bug-fixing commits
are related to semantic bugs, namely most of the reported bugs
in TCP stacks are semantic bugs. Figure 4 shows an example
commit [14] of fixing a semantic bug in FreeBSD TCP stack.
The annotation of this commit describes that it fixes a RFC
7323 [49] violation. Specifically, the TCP stack mistakenly
accepted the packets with decreasing timestamp values. To fix
the bug, this commit adds several checks about the timestamp
value to drop invalid packets.

FILE: FreeBSD/sys/netinet/tcp_syncache.c

 int syncache_expand(...) {

+ /* RFC 7323 PAWS: If we have a timestamp on this segment and
+ * it is less than ts_recent, drop it.
+ if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS &&
+ TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
+ SCH_UNLOCK(sch);
+ if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
+ log(LOG_DEBUG, ...);
+ free(s, M_TCPLOG);
+ }
+ return (-1); /* Do not send RST */
+ }

 }

Figure 4: Example commit of fixing a semantic bug.

In fact, these semantic bugs are introduced for three main
reasons. First, because a TCP stack has rich functionalities
and complex state model, developers may unintentionally
make mistakes about semantic rules when implemented the
TCP stack. Second, many semantic rules are used to handle
exceptions that infrequently occur in normal execution, and
thus the code related to these rules receives insufficient at-
tention in development and testing. Finally, some semantic
rules are not explicitly described in RFC documents, and thus
developers cannot ensure whether their implemented code
obeys these rules. For these reasons, it is important to find
semantic bugs in TCP stacks.

2.3 Limitations of Existing Protocol Fuzzing
Fuzzing is an effective technique of runtime testing, and it
has shown excellent ability of bug detection in practice. En-
couraged by the promising results, many recent approaches
perform fuzz testing for the implementations of application-

layer network protocols, such as DTLS/TLS [17, 52, 54, 60],
FTP [6, 21, 22, 43] and Modbus [37, 38]. However, we believe
that these approaches are limited in testing TCP stacks for
three critical reasons:

1) Fail to generate two-dimensional inputs with dependen-
cies. Existing fuzzing approaches only generate packets as
input test cases, without considering dependencies between
inputs. However, as described in F1 in Section 2.1, TCP stacks
receive both syscalls and packets, which have dependencies
between each other. If we only generate packets as input
test cases, much code about handling syscalls cannot be cov-
ered; if we ignore dependencies between system calls and
packets, many generated test cases will be meaningless and
neglected by TCP stacks without deep processing, which seri-
ously damages fuzzing efficiency. Thus, we need to design a
new strategy to generate effective test cases for TCP stacks.

2) Neglect the coverage of state transitions. Existing proto-
col fuzzing approaches use code coverage as program feed-
back to cover different protocol states. However, as described
in F2 in Section 2.1, besides states, TCP stacks also have many
state transitions that heavily affect TCP execution. Moreover,
two test cases covering the same states may cover different
state transitions. For example in Figure 5, the test case T1
covers the states S1, S2 and S3 in order, and then the test
case T2 covers the states S1, S3 and S2 in order. T1 and T2
both cover the states S1, S2 and S3, and thus existing fuzzing
approaches identifies T2 to be useless, as it fails to cover new
states. But T1 and T2 cover different state transitions, namely
T1 covers S1->S2 and S2->S3 while T2 covers S1->S3 and
S3->S2. Thus, T2 is useful in covering new state transitions.

S1

S2 S3

Test case T1: Covered states:
 S1, S2, S3

Covered state transitions:
 S1->S2, S2->S3

S1

S2 S3

Test case T2: Covered states:
 S1, S2, S3

Covered state transitions:
 S1->S3, S3->S2

Figure 5: Example of covering states and state transitions.

3) Lack effective detection of semantic bugs. Most exist-
ing fuzzing approaches use common bug sanitizers (such as
ASan [2] and MSan [39]) to detect memory bugs, such as
null-pointer dereferences and use-after-free issues. However,
as described in Section 2.2, most of the reported bugs in TCP
stacks are semantic bugs, which are not caused by problematic
memory accesses. Thus, these bug sanitizers cannot detect
semantic bugs in TCP stacks.

3 Key Techniques

To solve the limitations of existing fuzzing in testing TCP
stacks, we propose three key techniques: a dependency-based
strategy to generate effective test cases, a transition-guided
fuzzing approach to improve the coverage of state transitions
and a differential checker to detect semantic bugs. We intro-
duce these techniques as follows.

164 2021 USENIX Annual Technical Conference USENIX Association

3.1 Dependency-Based Strategy
Inspired by existing two-dimensional fuzzing approaches [29,
64] for file systems, we generate input sequences containing
syscalls and packets as test cases for TCP stacks. Consider-
ing that packets and syscalls accepted by TCP stacks have
many dependencies with each other, we design a dependency-
based strategy to generate more effective test cases for TCP
stacks. Given an original input sequence that improves test-
ing coverage, our strategy mutates it to generate new input
sequences. As shown in Figure 6, for each item in the original
input sequence, our strategy first selects a mutation type and
then mutates this item by considering dependencies with the
previously handled items.

Item1 Item2 Item3 Item4 …… ItemnItem5

Previously handled items Items to be handledItem being
handled

Consider dependencies with previous items
to generate new item

Select mutation type Handling order

Item: syscall or packet

Figure 6: Input sequence mutation.

Mutation-type selection. According to possible operations
on a syscall or packet, our strategy provides five available
types of mutation (including deletion, addition, replacement
and two kinds of changes), as listed in Table 2. Our strategy
randomly selects a mutation type to handle each item in the
input sequence in order. As a result, different items in the
input sequence can be handled with different mutation types.

Item type Mutation type

Syscall

Deletion: delete this syscall.
Addition: add a new syscall or packet.
Replacement: replace this syscall with a new packet.
Change1: change the parameter of this syscall.
Change2: change the syscall type with the same parameter.

Packet

Deletion: delete this packet.
Addition: add a new syscall or packet.
Replacement: replace this packet with a new syscall.
Change1: change the TCP header fields of this packet.
Change2: change the TCP data length of this packet.

Table 2: Available mutation type.

Dependency-based generation. In Table 2, all of the muta-
tion types except deletion generate a new syscall or packet
in the input sequence. As described in F1 in Section 2.1,
there are three kinds of dependencies between packets and
syscalls. If an input sequence violates these dependencies, it
is considered to be invalid and can be simply neglected by
TCP stacks. Thus, to generate more effective test cases, our
strategy considers these dependencies to generate each item
in the input sequence. Specifically, when handling an item,
our strategy considers the dependencies between this item
and the previously handled items. At present, we have imple-
mented 15 dependency rules in Table 3, by referring to RFC
documents (packet-packet and syscall-packet dependencies)
and syscall-usage conventions (syscall-syscall dependencies).

Kind Dependency rule

Syscall-syscall

SS1: socket, bind, listen and accept are called in order when a
connection is passive open.
SS2: socket and connect are called in order when a connection is
active open.
SS3: The file descriptor that socket or accept returns is used by
fcntl, ioctl, read, write and other syscalls.
SS4: read and write can be called only after accept or connect is
called and returns a success.
SS5: read and write are never called after close is called.

Packet-packet

PP1: After a connection is established, the source port and destina-
tion port of each packet are fixed.
PP2: The order and control flags of three-way handshake packets
and four-way handshake are never changed.
PP3: The sequence number of a packet is equal to the sum of se-
quence number and data length of the previous packet.
PP4: The timestamps of packets are non-decreasing.
PP5: The echo reply value in timestamp of a packet is equal to the
echo value in timestamp of the previous received packet.

Syscall-packet

SP1: accept can be called only after the three-way handshake when
a connection is passive open.
SP2: connect can be called only before the three-way handshake
when a connection is active open.
SP3: Packets can be sent only after accept or connect is called and
returns a success.
SP4: The relative acknowledge number of a packet sent to the stack
is no more than total length of data sent by write.
SP5: After close is called, a packet with the FIN flag should be sent.

Table 3: Implemented dependency rules.

Considering that each TCP stack is implemented according
to RFC documents and syscall-usage conventions, we believe
that these dependency rules are general to all TCP stacks.

Note that to test whether TCP stacks correctly obey these
dependency rules, our strategy also generates some excep-
tional input sequences by deliberately violating packet-packet
and syscall-packet dependency rules, with a small probability.
Indeed, such input sequences are useful in detecting RFC
violations about exception handling.

3.2 Transition-Guided Fuzzing Approach
As described in Section 2.3, code coverage cannot describe
state transitions, and thus our fuzzing approach requires a new
coverage metric that can effectively describe both states and
state transitions.

For a given input sequence, the TCP stack’s state is always
changed when handling each item (a syscall or packet) in this
sequence. Namely, each such item affects the execution situa-
tion of the TCP stack. Thus, after handling each item, the TCP
stack can be considered to reach a new state. This state can be
described with branch coverage (namely the coverage of code
branches), as existing fuzzing approaches do. Accordingly,
a state transition can be described as the transition between
two covered states due to two adjacent input items, namely
the change of branch coverage between these input items. In-
spired by this idea, we propose a new coverage metric named
branch transition to describe both states and state transitions.
For a given input sequence, a branch transition is represented
as a vector that stores both branch coverage for the current
input item and the change of branch coverage between the
current and previous input items.

USENIX Association 2021 USENIX Annual Technical Conference 165

BR1 BR2 BR3 BR4

1 0 1 0

BR1 BR2 BR3 BR4

0 1 0 1

BR1 BR2 BR3 BR4

1 1 1 0

BRC1 BRC2 BRC3 BRC4
-1 1 -1 1

BRC1 BRC2 BRC3 BRC4
1 0 1 -1

BR1 BR2 BR3 BR4

1 0 1 0

BRV1 BRV2 BRV3 BRV4
0 -1 0 0

BR1 BR2 BR3 BR4
0 1 0 1

BR1 BR2 BR3 BR4
1 1 1 0

BR1 BR2 BR3 BR4
1 0 1 0

Input item0: Branch transition1

Branch transition2

Branch transition3

Branch coverage0

Branch coverage1

Branch coverage2

Branch coverage3

S1 S2

Input Item1

Input item1:

Input item2:

Input item3:

S3 S1

Input Item2 Input Item3 Input Item4 Covered states:
 S1, S2, S3, S1

Covered state transitions:
 S1->S2, S2->S3, S3->S1

(a) State and state transitions

(b) Branch coverage and branch transition

Branch is covered: 1
Branch is not covered: 0

Subtraction

Subtraction

Subtraction

Figure 7: Example of branch transition.

Figure 7 illustrates branch transition using an example.
Each state is described using a branch coverage vector, which
contains the executed situation (covered or not covered) of
each branch in TCP stack code. Then, the state change be-
tween the current and previous input items is represented as
the subtraction of their branch coverage vectors (current −
previous). Finally, the branch transition of the current input
item is obtained as a two-dimensional vector containing its
branch coverage vector and the calculated subtraction vector.
In Figure 7(a), an input sequence contains four input items
which cover the states S1, S2, S3 and S1 in order, and thus it
covers three different state transitions S1->S2, S2->S3 and
S3->S1. These state transitions are described as three differ-
ent branch transitions in Figure 7(b). If code coverage is used,
input item3 is identified to be useless, as it covers an old state
S1 that is already covered by input item0. However, input
item3 actually covers a new state transition S3->S1, which
can be successfully described using branch transition.

Our fuzzing approach uses branch transition as program
feedback, to effectively cover both states and state transitions.
For a given input sequence, if it covers new branch transi-
tions, our fuzzing approach identifies it to be interesting and
puts it into the seed corpus for future mutation. Then, our
fuzzing approach selects a seed input sequence from the seed
corpus and mutates it to generate new input sequences using
our dependency-based strategy. We implement most of the
fuzzing process by referring to AFL [1].

In fact, besides branch transition, state transition can be
also represented as higher-level state change learned by sev-
eral recent approaches of fuzzing DTLS/TLS protocol im-
plementations [17, 52]. However, the state models learned by
these approaches can have mistakes, and thus they still require
much manual guidance and validation to ensure correctness.
By contrast, branch transition can be automatically and con-
veniently obtained by collecting runtime information of TCP
stacks. Thus, our approach uses branch transition instead of
higher-level state change learned by these approaches.

TCP stack 1

TCP stack 2

TCP stack 3
(reference stack)

Input
sequences

Outputs 1

Outputs 2

Outputs 3

Comparer inconsistencies

Figure 8: Procedure of our differential checker.

3.3 Differential Checker

To detect semantic bugs, an intuitive solution is to implement
semantic checkers by referring to semantic rules in RFC docu-
ments. But there are many RFC documents and some semantic
rules are even implicit, and thus it is hard to manually im-
plement these checkers. Indeed, different TCP stacks should
obey identical semantic rules (many of these rules are defined
in RFC documents), and thus they should produce identical
or similar outputs for the same inputs. Otherwise, these TCP
stacks have implementation inconsistencies, indicating that
some of them possibly have semantic bugs.

Based on this idea and inspired by recent approaches of dif-
ferential testing [11, 12, 65], we design a differential checker
for TCP stacks to detect semantic bugs that cause output in-
consistencies. As shown in Figure 8, our differential checker
provides the same input sequences to multiple TCP stacks,
then records their outputs (including return values and pa-
rameters of syscalls as well as response packets from TCP
stacks), and finally compares these outputs to identify and re-
port inconsistencies. The user can check these inconsistencies
to find related semantic bugs.

To improve the efficiency of finding semantic bugs, we sug-
gest using at least one classical and well-tested kernel-level
TCP stack (such as Linux TCP or FreeBSD TCP) as a refer-
ence stack in our differential checker, to test relatively newer
TCP stacks. In this case, if our checker reports inconsistencies,
it is very likely that one newer TCP stack has semantic bugs.

Our differential checker has three main advantages. First,
because different TCP stacks should obey identical seman-
tic rules, the possibility of producing inconsistencies for the
same inputs is not large. Thus, the manual work of checking
the differences reported by our checker should be much less
than that of implementing well-verified checkers of semantic
rules. Second, we believe that our checker is also helpful to
extracting implicit semantic rules, through identifying and
analyzing implementation inconsistencies of multiple TCP
stacks. Finally, our checker is scalable and does not introduce
runtime overhead for TCP stacks.

At present, our checker records and compares final outputs
of TCP stacks, without recording and checking intermedi-
ate information (such as window size and packet time) of
TCP stacks during packet transmission. Thus, it cannot de-
tect semantic bugs about congestion control and performance.
Moreover, our checker detects output inconsistencies between
multiple TCP stacks, instead of checking specific RFC doc-

166 2021 USENIX Annual Technical Conference USENIX Association

 TCP-Fuzz
Code

analyzer
Test-case
generator

Runtime
monitor

TCP stacks
Input

sequences
Runtime

information

Bug
checkers

Bug reports

Source code of
TCP stacks

Fuzzing loop

Figure 9: TCP-Fuzz architecture.

uments at runtime. The user needs to manually check RFC
documents and analyze the root causes of these inconsisten-
cies, to identify semantic bugs about RFC violations.

4 Framework

Based on the three key techniques in Section 3, we propose a
novel fuzzing framework named TCP-Fuzz, to effectively test
TCP stacks and detect bugs. We have implemented TCP-Fuzz
using Clang 9.0 [13] and Packetdrill [8]. Specifically, we use
Clang to perform code instrumentation on TCP stack code, in
order to collect covered branches during TCP-stack execution;
and we use Packetdrill to send the generated input sequences
of syscalls and packets to TCP stacks, and to receive return
values and parameters of syscalls as well as response packets
from TCP stacks. Overall, TCP-Fuzz consists of four parts:
Code analyzer. It first uses Clang to compile the source code
of TCP stacks into LLVM bytecode. Then, it instruments each
code branch in the LLVM bytecode. Finally, it compiles the
modified LLVM bytecode to generate executable TCP stacks.
Test-case generator. It uses our transition-based fuzzing
approach and dependency-based strategy to generate input
sequences of syscalls and packets. Each such input sequence
is presented as a Packetdrill script, and it is provided to the
TCP stacks via Packetdrill. Note that Packetdrill does not
support sending some exceptional input sequences that violate
dependency rules in Table 3. Thus, we modify Packetdrill by
dropping some related checks in its code, to make it support
sending such exceptional input sequences.
Runtime monitor. It collects two kinds of runtime informa-
tion. First, it collects covered branches and calculates branch
transitions to provide feedback to our fuzzing approach. Sec-
ond, it calls Packetdrill interfaces to receive the outputs of
each TCP stack, and provides them to our differential checker.
Bug checkers. TCP-Fuzz has three kinds of bug checkers to
detect both memory bugs and semantic bugs:

• Third-party sanitizers. Existing bug sanitizers (such as
ASan [2] and MSan [39]) are used to detect memory
bugs by monitoring memory accesses at runtime.

• Data validator. We implement this checker to detect
semantic bugs leading to incorrect data transfer of TCP
stacks, because ensuring data-transfer correctness is a
basic property of TCP stacks. Specifically, this checker

performs two kinds of validation: (1) whether the data
received by the TCP stack via calling read is identical
to the data stored in packets sent to the TCP stack; (2)
whether the data sent from the TCP stack via calling
write is identical to the data stored in packets received
by the remote end.

• Differential checker. This checker is used to compare the
outputs of multiple TCP stacks for the same inputs, in
order to detect semantic bugs.

Deployment. As shown in Figure 10, TCP-Fuzz is deployed in
a server-client mode. In this way, TCP-Fuzz can not only use
third-party bug sanitizers and data validator in each TCP stack
to detect memory bugs and data-correctness-related bugs, but
also use the differential checker in multiple TCP stacks to
detect their semantic bugs. The TCP-Fuzz server and clients
can be deployed in the same machine and communicate with
each other via virtual network controllers; or they can be
deployed in different machines and communicate with each
other via physical network controllers.

Server

Bug checker:
data validator

Runtime monitor:
server

Client

Bug checker:
third-party sanitizers

Runtime monitor:
client

TCP stackTest-case generator

Response packets
Input sequences

Branch transitions +
syscall results

Server

(a) Communication between a server and a client

(b) Communication between a server and multiple clients

Bug checker:
differential checker

Client 1
TCP stack 1

Client 2
TCP stack 2

Client 3
TCP stack 3

Figure 10: Server-client deployment of TCP-Fuzz.

5 Evaluation

5.1 Experimental Setup
To validate the effectiveness of TCP-Fuzz, we use it to ac-
tually test five open-sourced and widely-used TCP stacks,
including three user-level ones (TLDK, F-Stack and mTCP)
and two kernel-level ones (FreeBSD TCP and Linux TCP).
For the three user-level TCP stacks, we test them with the com-
plete fuzzing process of TCP-Fuzz. For the two kernel-level
TCP stacks, because they are classical and well-tested, we use
them as reference stacks in the differential checker. Moreover,
because TCP-Fuzz can only instrument user-level programs
at present, we only test the two kernel-level TCP stacks using
test cases generated from the user-level TCP stacks, without
feedback-driven fuzzing. In the future, we will implement
kernel-code instrumentation to support complete fuzzing of
kernel-level TCP stacks.

USENIX Association 2021 USENIX Annual Technical Conference 167

Table 4 shows the basic information about the five tested
TCP stacks. Among them, FreeBSD TCP and Linux TCP are
two classical kernel-level TCP stacks used in lots of machines;
mTCP is a well-known user-level TCP stack in academic
community; TLDK and F-Stack are two recent user-level
TCP stacks in industry community, and they have been widely
deployed in telecom systems and network nodes.

Type TCP stack Version LOC

User-level
TLDK [59] v2.0 15K
F-Stack [19] Commit 8d21adc 25K
mTCP [26] Commit 0463aad 18K

Kernel-level FreeBSD v12.1 171K
Linux v5.6 169K

Table 4: Basic information about tested TCP stacks.

We deploy TCP-Fuzz clients on five regular personal com-
puters, each of which runs a TCP stack to be tested. We deploy
TCP-Fuzz server on another personal computer to generate
test cases and compare the outputs of these TCP stacks. For
each user-level TCP stack, we test it for 48 hours; for each
kernel-level TCP stack, we test it by inputting the test cases
generated from the three user-level TCP stacks. Besides, we
run a third-party sanitizer ASan [2] to detect memory bugs in
the user-level TCP stacks.

5.2 Runtime Testing
Table 5 shows the fuzzing results, including covered branches
and branch transitions as well as found memory bugs and
semantic bugs. Note that TCP-Fuzz does not instrument the
two kernel-level TCP stacks, and thus their covered branches
and branch transitions are not obtained.
Testing coverage. TCP-Fuzz covers many more branch tran-
sitions than branches, indicating that TCP stacks have more
state transitions than states during execution. Figure 11 shows
the growth of covered branches and branch transitions for the
three user-level TCP stacks during fuzzing. Similar to existing
fuzzing approaches based on code coverage, TCP-Fuzz cov-
ers few new branches during the later tests, but it still covers
many new branch transitions during these tests.
Found bugs. TCP-Fuzz finds 56 real bugs in the five tested
TCP stacks, including 8 memory bugs and 48 semantic bugs.
We reported these bugs to related developers, and 40 of them
have been confirmed. We are still waiting for responses for
the remaining bugs (for example, the mTCP code in github
has not been updated for a long time, and thus we have not
received any response to our reported bugs in mTCP). Besides,
23 of the confirmed bugs have been fixed.
Output inconsistencies. TCP-Fuzz reports 15.1K inconsis-
tencies between the five tested TCP stacks, and we analyze
their root causes to identify semantic bugs, through our man-
ual review of RFC documents and observation of TCP stack
execution. Similar to SQLancer [51] and libFuzzer [32], for in-
consistencies that we identify as semantic bugs, we manually

Stack Testing coverage Found bugs
Branch Transition Memory / Semantic Confirmed / Fixed

TLDK 1.3K 329.4K 2 / 26 28 / 19
F-Stack 7.5K 46.8K 1 / 6 6 / 1
mTCP 1.2K 47.9K 5 / 9 0 / 0
FreeBSD - - 0 / 6 5 / 2
Linux - - 0 / 1 1 / 1
Total 10.0K 424.1K 8 / 48 40 / 23

Table 5: Results of fuzzing TCP stacks.

B
ra

n
ch

 t
ra

n
si

ti
o

n
s

B
ra

n
ch

es

(a) TLDK (b) F-Stack (c) mTCP
Time (h) Time (h) Time (h)

0K

1K

2K

3K

4K

5K

0K

100K

200K

300K

400K

0 1 2 2 4 3 6 4 8
0K

5K

10K

15K

20K

0K

10K

20K

30K

40K

50K

0 1 2 2 4 3 6 4 8
0K

1K

2K

3K

4K

0K

10K

20K

30K

40K

50K

0 1 2 2 4 3 6 4 8

Figure 11: Covered branches and branch transitions.

fix them using the developers’ patches or by ourselves, to re-
duce related inconsistencies. We iteratively repeat this process
until inconsistencies never occur, to count unique semantic
bugs, resulting in 48 semantic bugs. We observe that many
output inconsistencies are repeated, as they are triggered by
the same root cause. Only one output inconsistency is consid-
ered to be benign. Specifically, when normal packets come
after a FIN packet and their sequence numbers are larger than
that of the FIN packet, FreeBSD, F-Stack and mTCP drop the
FIN packet, while Linux TCP and TLDK reset the connection.
As RFC documents do not stipulate how to handle this case,
we are not sure which strategies are correct.
Bug-finding process. We also analyze how TCP-Fuzz finds
these 56 bugs, and show the results in Table 6. The 8 memory
bugs are all found by ASan, 2 semantic bugs are found by the
data validator and 46 semantic bugs are found by the differen-
tial checker. The results indicate that our differential checker
is effective in finding semantic bugs. Besides, we also high-
light that 2 semantic bugs found by the data validator are quite
dangerous, because they directly cause TCP stacks to send
or receive incorrect data, badly damaging data-transfer cor-
rectness. Moreover, 28 bugs are found via exceptional input
sequences generated by deliberately violating the dependency
rules listed in Table 3, while 28 bugs are found via normal
input sequences generated by obeying these rules. The results
indicate that the TCP stack code about handling exceptional
inputs is error-prone in practice. Thus, exception handling in
TCP stacks should receive more attention in testing.

Stack Number of tests Checker Input sequence type
ASan Data Differential Exceptional Normal

TLDK 123K 2 1 25 11 17
F-Stack 128K 1 1 5 6 1
mTCP 170K 5 0 9 4 10
FreeBSD 421K 0 0 6 6 0
Linux 421K 0 0 1 1 0
Total 1,263K 8 2 46 28 28

Table 6: Statistics of bug-finding process.

168 2021 USENIX Annual Technical Conference USENIX Association

Stack RFC violation Syscall issues Implicit rules
TLDK 15 9 2
F-Stack 5 1 0
mTCP 7 2 0
FreeBSD 5 1 0
Linux 1 0 0
Total 33 13 2

Table 7: Root causes of semantic bugs.

RFC document 791 793 1122 5961 6093 6691 7323 7413
Semantic bug 2 7 1 6 1 1 12 3

Table 8: Distribution of RFC violations.

Root causes of memory bugs. For the 8 found memory bugs,
2 are use-after-free issues, 3 are null-pointer dereferences, 2
are buffer-overflow issues, and 1 is a division-by-zero issue.
Root causes of semantic bugs. For the 48 found semantic
bugs, we summarize three root causes in Table 7 and find that:

(1) 33 semantic bugs are RFC violations, and they vio-
late semantic rules explicitly described in the 8 RFC doc-
uments shown in Table 8. For example, 6 semantic bugs
(3 in TLDK, 1 in mTCP, 1 in F-Stack and 1 in FreeBSD
TCP) are RFC 5961 [48] violations. Indeed, the RFC 5961
document is designed to mitigate the influence of blind in-
window attacks [36] by changing the range of acceptable
sequence numbers in reset packets and acknowledge numbers
in normal packets. Thus, these semantic bugs can be exploited
by attackers to reset the connection [62] or inject malicious
data [7, 10, 45] via blind in-window attacks.

(2) 13 semantic bugs are caused by incorrect results of
syscalls. For example, 3 semantic bugs (1 in TLDK, 1 in
F-Stack and 1 in FreeBSD TCP) are caused by using an in-
valid file descriptor obtained from socket after listen and
accept are called in order. Indeed, after listen and accept
are called, the previous file descriptor obtained from socket
becomes invalid, and thus ioctl, read and write should re-
turn an error code when using this file descriptor. However,
TLDK, F-Stack and FreeBSD TCP return zero to indicate a
success in this case, causing semantic bugs.

(3) 2 semantic bugs in TLDK are caused by violating im-
plicit semantic rules. Specifically, RFC documents do not
describe how to handle unknown options in the TCP packet
header. In our tests, F-Stack, mTCP, FreeBSD TCP and Linux
TCP simply ignore these options and accept related packets,
but TLDK drops related packets or enters an infinite loop
when handling these options.

5.3 Influences of the Found Bugs
We manually review the 56 found bugs to estimate their in-
fluences on the reliability and security of TCP stacks. The
results are shown in Table 9. We find that 6 semantic bugs
about RFC 5961 violations are vulnerable to the MIMT (Man-
in-the-middle) attacks; 9 bugs (including 4 memory bugs and
5 semantic bugs) can cause data corruption; 8 bugs (including

Stack MIMT attack Corruption Crash/DoS Functional error Inefficiency
TLDK 3 6 4 12 3
F-Stack 1 1 0 3 2
mTCP 1 2 4 3 4
FreeBSD 1 0 0 3 2
Linux 0 0 0 0 1
Total 6 9 8 21 12

Table 9: Reliability and security influence of the found bugs.

4 memory bugs and 4 semantic bugs) can cause crashes or de-
nial of services; 21 semantic bugs can cause functional errors
of data communication; and 12 semantic bugs can reduce the
efficiency of data communication.

Figure 12 shows three bugs found by TCP-Fuzz, including
1 memory bug and 2 semantic bugs. This figure also shows
the related test cases in form of Packetdrill scripts generated
by TCP-Fuzz for finding these bugs.
Use-after-free issue in TLDK. In Figure 12(a), the func-
tion rx_fin free the data of s->tx.q by calling empty_tq.
Then, this data is used by accessing m->data_len in the
function txq_rst_nxt_head, causing a use-after-free issue.
Once this bug is triggered, attackers can modify the data of
s->tx.q to inject malicious data in the TCP connection. To
fix this bug, the developer submits a patch to assign zero
to s->tcb.snd.una_offset in the function rx_fin, in or-
der to avoid accessing the data of s->tx.q in the function
txq_rst_nxt_head.
RFC 7323 violation in FreeBSD TCP. In Figure 12(b), as
shown in the annotation of the function syncache_expand,
if timestamps are not negotiated in the first two packets of
three-way handshake, FreeBSD TCP rejects the third packet
containing the timestamp option and resets the TCP connec-
tion. However, the RFC 7323 document stipulates that the
third packet in this case should be normally accepted. Once
this bug is triggered, the TCP connection can be abnormally
disconnected during three-way handshake, causing a func-
tional error. To fix this bug, the developer submits a patch to
modify the problematic code according to the related semantic
rule in the RFC 7323 document.
RFC 793 violation in mTCP. In Figure 12(c), if the se-
quence number of the current packet is smaller than the next
expected sequence number, mTCP drops the current packet.
However, the RFC 793 document stipulates if the current
packet overlaps the range of the expected receive window,
this packet should be accepted. Once this bug is triggered,
data communication can be inefficient due to abnormally
dropping packets. To fix this bug, our preliminary solution is
to accept the content of the current packet within the range of
expected receive window.

5.4 Comparison to Existing Fuzzing Tools
We perform the comparison in two ways. First, we com-
pare TCP-Fuzz to two classical and widely-used fuzzing ap-
proaches, namely AFL [1] and Syzkaller [57]. Considering

USENIX Association 2021 USENIX Annual Technical Conference 169

FILE: TLDK/src/lib/libtle_l4p/tcp_txq.h
 void tcp_txq_rst_nxt_head(...) {
 struct rte_ring *r = s->tx.q;

 offset = s->tcb.snd.una_offset;
 if (offset) {

 m = (struct rte_mbuf*)
 (_rte_ring_get_data(r)[r->cons.tail & r->mask]);

 data_len = m->data_len - PKT_L234_HLEN(m); // USE

 }

 }

Generated test case in form of a Packetdrill script
......
+0 write(4, ..., 5000) = 5000
+0.1 > . 1:5001(5000) ack 1
+0 < . 1:1(0) ack 1001 win 257
+0.1 close(4) = 0
+0.1 < F. 2001:2001(0) ack 5002 win 257
+0.5 < F. 1:2001(2000) ack 5002 win 257 // Use after free!

FILE: TLDK/src/lib/libtle_l4p/tcp_rxtx.c
 int rx_fin(...) {

 if (s->tcb.snd.fss >= s->tcb.snd.nxt &&
 si->ack == (uint32_t)s->tcb.snd.fss) {

+ s->tcb.snd.una_offset = 0;

empty_tq(s); // FREE the data of s->tx.q
 }

 }

(a) Use-after-free issue in TLDK

Generated test case in form of a Packetdrill script
......
+0 < . 1:1001(1000) ack 1
+0.1 read(4, ..., 1000) = 1000
+0 < . 501:1501(1000) ack 1
+0.1 read(4, ..., 500) = 500 // returns 0?

FILE: mtcp/src/tcp_ring_buffer.c
 int RBPut(...) {

+ if (cur_seq < buff->head_seq) {
+ len -= buff->head_seq - cur_seq;
+ data += buff->head_seq - cur_seq;
+ cur_seq = buff->head_seq;
+ }

......
if (GetMinSeq(buff->head_seq, cur_seq) != buff->head_seq)

 return 0;

 }

(c) RFC 793 violation in mTCP

FILE: FreeBSD/src/sys/netinet/tcp_syncache.c
 int syncache_expand(...) {

+ // If timestamps were not negotiated during SYN/ACK and a
+ // segment with a timestamp is received, ignore the
+ // timestamp and process the packet normally.
+ // See section 3.2 of RFC 7323.
+ if (!(sc->sc_flags & SCF_TIMESTAMP) &&
+ (to->to_flags & TOF_TS)) {
+ if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
+ log(LOG_DEBUG, ...);
+ free(s, M_TCPLOG);
+ s = NULL;
+ }
+ }

- // If timestamps were not negotiated during SYN/ACK they
- // must not appear on any segment during this session.
- if (!(sc->sc_flags & SCF_TIMESTAMP) &&
- (to->to_flags & TOF_TS)) {
- if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
- log(LOG_DEBUG, ...);
- goto failed;
- }
- }

 }

Generated test case in form of a Packetdrill script
......
+0 < S 0:0(0) win 12336
+0 ~ +1 > S. 0:0(0) ack 1 <mss 1460>
+0.1 < . 1:1(0) ack 1 win 25710 <TS val 100 ecr 0,eol,eol>
+0.1 > R 1:1(0) win 0 // RST is sent?

(b) RFC 7323 violation in FreeBSD TCP

Figure 12: Example bugs found by TCP-Fuzz.

that AFL and Syzkaller cannot directly test TCP stacks, we
implement a AFL-like and a Syzkaller-like fuzzing tool for
comparison. Specifically, the AFL-like tool only generates
packet sequences according to code coverage, by considering
dependencies between packets; the Syzkaller-like tool only
generates syscall sequences according to code coverage, by
considering dependencies between syscalls. The two fuzzing
tools use the three bugs checkers used by TCP-Fuzz. Sec-
ond, we compare TCP-Fuzz to three state-of-the-art and open-
sourced protocol fuzzing approaches, namely Boofuzz [6],
Fuzzotron [20] and AFLNet [43]. The three fuzzing tools use
ASan to detect memory bugs. In the experiments, we select
TLDK as the target. Indeed, TLDK contains a half of all bugs
found by TCP-Fuzz, and thus the compared approaches are
more likely to find bugs in TLDK than the other TCP stacks.

AFL-like and Syzkaller-like tools. Figure 13 plots the cov-
ered branch transitions of the two fuzzing tools and TCP-Fuzz.
We find that TCP-Fuzz covers many more branch transitions
than the two fuzzing tools. It indicates that generating two-
dimensional test cases (syscalls and packets) is more effec-
tive in improving testing coverage than generating only one-
dimensional test cases (syscalls or packets). Besides, we also
find that the AFL-like tool covers more branch transitions
than Syzkaller-like tool, indicating that the state transitions
of TCP stacks are more sensitive to packets than to syscalls.
Moreover, as shown in Figure 14, the AFL-like and Syzkaller-
like tools find 7 and 4 bugs, respectively. TCP-Fuzz finds all
these bugs, and it also finds 17 bugs missed by the two fuzzing
tools, due to covering more branch transitions.

Existing fuzzing tools of network protocols. As shown in
Figure 14, Boofuzz finds 1 null-pointer dereference, and Fuz-
zotron and AFLNet do not find any bug. Indeed, the three
fuzzing tools only generate packets according to code cover-
age, without considering the dependencies between packets.

(a) TLDK (b) F-Stack
Time (h) Time (h)

B
ra

n
ch

 t
ra

n
si

ti
o

n
s

(c) mTCP
Time (h)

0K

100K

200K

300K

400K

0 8 16 24 32 40 48
0K

10K

20K

30K

40K

50K

0 8 1 6 2 4 3 2 4 0 4 8
0K

10K

20K

30K

40K

50K

0 8 1 6 2 4 3 2 4 0 4 8

Figure 13: Comparison of testing coverage.

Thus, they miss many useful state transitions due to ineffec-
tive test-case generation and limited program feedback. Fuz-
zotron and AFLNet are mainly used to test implementations
of application-layer network protocols, so their ability to test
transport-layer TCP stacks is weak. TCP-Fuzz finds the null-
pointer dereference found by Boofuzz, and it also finds 27
bugs (including 1 memory bug) missed by the three fuzzing
tools, due to using the three key techniques in Section 3.

0

10

20

30

TCP-Fuzz AFL-like Syzkaller-like Boofuzz Fuzzotron AFLNet

Memory bug Semantic bug
28

7
4

1

Figure 14: Comparison of found bugs in TLDK.

6 Discussion

Differential checker. In our evaluation, this checker reports
15.1K inconsistencies between the five tested TCP stacks.
We intended to design an automated tool to count unique
bugs from these inconsistencies, but we found that doing so
is difficult for two reasons. First, these inconsistencies are
obtained from input sequences of syscalls and packets, and it
is hard to automatically identify whether two such sequences
have identical semantic information. Second, understanding

170 2021 USENIX Annual Technical Conference USENIX Association

the root causes of these inconsistencies requires TCP-specific
knowledge that is hard to extract as fixed patterns.
Testing congestion control. Congestion control is an impor-
tant functionality for TCP stacks, but TCP-Fuzz cannot test it
at present, due to ignoring congestion-control-related packet
information (such as the length of accepted data for each
packet) and code information (such as the variables about
congestion window size). In the future, we will collect and
check such information by referring to related work [27, 56],
to test congestion control implementations of TCP stacks.
Limitations and future works. TCP-Fuzz can be strength-
ened in some aspects. First, as described in Section 5.1,
TCP-Fuzz cannot instrument kernel code in the current imple-
mentation, and thus it fails to completely test kernel-level
TCP stacks. To solve this limitation, we plan to perform
kernel-code instrumentation or tune existing VM-based ap-
proaches [25, 55] in TCP-Fuzz. Second, TCP-Fuzz fails to
record intermediate information (such as window size and
packet time) of TCP stacks during packet transmission, and
thus it cannot detect semantic bugs about congestion con-
trol and performance. To solve this limitation, we plan to
record such intermediate information and implement related
checkers to detect these semantic bugs. Third, TCP-Fuzz fails
to check concurrent memory accesses, and thus it cannot
find concurrency bugs in TCP stacks. To solve this limita-
tion, we plan to introduce existing concurrency-analysis ap-
proaches [18, 31] to detect concurrency bugs in TCP stacks.
Finally, QUIC [46] is a new and promising transport-layer net-
work protocol proposed, and it is expected to replace TCP in
the future. Thus, we also plan to extend TCP-Fuzz to testing
QUIC implementations.

7 Related Work

7.1 Network Protocol Fuzzing
Fuzzing is a popular testing technique to detect bugs in soft-
ware systems. Many fuzzing approaches have been proposed
to test the implementations of network protocols.

Some approaches [6, 37, 38, 54, 60] use grammar-based
fuzzing. They utilize hard-coded or user-defined grammar
specifications to guide test-case generation. These specifi-
cations define data structure or field types of packets to be
generated. For example, TLS-Attacker [54] is a flexible TLS
testing framework for developers to test their TLS implemen-
tations by writing Java code or XML-based specifications.

Several recent approaches [17, 43, 52] perform stateful pro-
tocol fuzzing. AFLNet [43] can learn basic state models
of network protocols to improve seed selection and muta-
tion. Fiterau-Brostean et al. [17] propose a practical tool by
extending TLS-Attacker [54], to learn comprehensive state
models of multiple DTLS implementations. By comparing
these learned state models, the user can infer vulnerabilities
in DTLS implementations.

However, these approaches are limited in testing TCP
stacks. First, these approaches only generate packets as test
cases, but TCP stacks receive both packets and syscalls as
inputs, and thus these approaches may miss much code for
handling syscalls. Second, these approaches use code cov-
erage as program feedback to cover states, but code cover-
age cannot effectively describe state transitions in TCP state
model. Finally, many of these approaches only use existing
bug sanitizers to detect memory bugs, but fail to detect se-
mantic bugs. To solve these limitations, TCP-Fuzz uses a
dependency-based strategy to generate effective test cases of
packets and syscalls, a transition-guided fuzzing approach to
improve the coverage of state transitions, and a differential
checker to detect semantic bugs of TCP stacks.

7.2 TCP Stack Checking

Packetdrill [8] is a scripting tool to test the correctness and
performance of network stacks. The user can write tcpdump-
like scripts to generate and maintain test cases for new feature
development and regression testing of network stacks. But
writing effective test cases in form of Packetdrill scripts re-
quires a deep understanding of TCP stacks and much manual
effort. To solve this problem, TCP-Fuzz automatically gen-
erates Packetdrill scripts as test cases according to program
feedback and dependencies between packets and syscalls.

Some approaches [24, 34, 40, 41, 53] perform model check-
ing or formal verification of TCP stacks. For example, Locke-
feer et al. [34] use µCRL and LTSmin [35] toolsets to generate
state spaces and perform formal verification of TCP extended
with the Window Scale Option. Hoque et al. [24] use symbolic
execution to precisely simulate program execution with sym-
bolic inputs and explore all possible execution paths, and also
use an off-the-shelf model checker to check temporal proper-
ties of TCP stacks. But these approaches require much manual
effort and TCP-specific knowledge to provide a complete and
correct TCP state model, and they are often time-consuming
due to high complexity of TCP state transitions.

Some approaches [9, 30] perform static analysis of TCP
stack source code. For example, PacketGuardian [9] uses
static taint analysis to check the packet handling logic of
various network protocol implementations, to detect packet-
injection vulnerabilities. However, these approaches often
introduce false positives in practice, due to lacking exact
runtime information for analysis.

Some approaches [3–5,66] analyze execution traces of TCP
stacks to infer RFC violations. For example, Bishop et al. [4]
analyze the execution traces with higher-order logic speci-
fications, to identify differences between multiple network
protocols stacks and thus to detect possible RFC violations.
However, these approaches require substantial and effective
test cases to achieve high testing coverage. To solve this prob-
lem, TCP-Fuzz automatically generates effective test cases
with fuzzing.

USENIX Association 2021 USENIX Annual Technical Conference 171

Some approaches [27, 28] perform runtime testing for au-
tomated attack discovery of TCP stacks. These approaches
strategically generate packets to cover different TCP states,
which are tracked according to packet information and pre-
defined protocol state machines, without modifying TCP stack
code. Different from these approaches, TCP-Fuzz generates
both packets and syscalls as test cases, with the guidance of
branch transition; TCP-Fuzz does not require pre-defined pro-
tocol state machines, but it performs code instrumentation on
TCP stacks to collect branch transition.

7.3 Differential Testing
To find semantic bugs, many approaches [11, 12, 23, 42, 47,
61,65] perform differential testing to identify implementation
inconsistencies between multiple programs of the same func-
tionalities. Classfuzz [12] and Classming [11] syntactically
mutate Java bytecode files and execute them on different JVM
implementations, to identify their inconsistencies. The two
approaches both use Markov Chain Monte Carlo (MCMC)
sampling to guide mutator selection to improve test-case gen-
eration. C2V [65] uses randomized differential testing to de-
tect bugs in code coverage tools (such as gcov and llvm-cov).
It randomly generates program code files and compares cover-
age reports of code coverage tools to identify inconsistencies.
Inspired by these approaches, we design a useful differential
checker to detect semantic bugs in TCP-stack fuzzing.

8 Conclusion

In this paper, we develop a novel fuzzing framework named
TCP-Fuzz, to effectively test TCP stacks and detect bugs. It
uses three key techniques: (1) a dependency-based strategy
that considers dependencies between packets and system calls,
to generate effective test cases; (2) a transition-guided fuzzing
approach that uses branch transition as program feedback, to
improve the coverage of state transitions; (3) a differential
checker that compares the outputs of multiple TCP stacks for
the same inputs, to detect semantic bugs. We have evaluated
TCP-Fuzz on five widely-used TCP stacks, and find 56 real
bugs (including 8 memory bugs and 48 semantic bugs). We
also compare TCP-Fuzz to existing fuzzing approaches, and
it finds many real bugs missed by these approaches.

In the future, we plan to improve TCP-Fuzz to detect con-
gestion control issues and performance problems, and to apply
TCP-Fuzz to other TCP stacks and QUIC implementations.

Acknowledgment

We thank our shepherd, Cristina Nita-Rotaru, and anonymous
reviewers for their helpful advice on the paper. We also thank
the developers of TCP stacks, who gave useful feedback and
advice to us. This work was supported by the Natural Science

Foundation of China under Project 62002195 and the China
Postdoctoral Science Foundation under Project 2019T120093.
Jia-Ju Bai is the corresponding author.

References

[1] American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.

[2] ASan: address sanitizer. https://github.com/google/san-
itizers/wiki/AddressSanitizer.

[3] Steve Bishop, Matthew Fairbairn, Hannes Mehnert,
Michael Norrish, Tom Ridge, Peter Sewell, Michael
Smith, and Keith Wansbrough. Engineering with logic:
rigorous test oracle specification and validation for
TCP/IP and the Sockets API. Journal of the ACM,
66(1):1:1–1:77, 2018.

[4] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter
Sewell, Michael Smith, and Keith Wansbrough. Rigor-
ous specification and conformance testing techniques
for network protocols, as applied to TCP, UDP, and
sockets. In Proceedings of the ACM SIGCOMM 2005
Conference, pages 265–276, 2005.

[5] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter
Sewell, Michael Smith, and Keith Wansbrough. Engi-
neering with logic: HOL specification and symbolic-
evaluation testing for TCP implementations. In Pro-
ceedings of the 33rd International Symposium on Princi-
ples of Programming Languages (POPL), pages 55–66,
2006.

[6] Boofuzz: network protocol fuzzing for humans.
https://github.com/jtpereyda/boofuzz.

[7] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao,
Srikanth V. Krishnamurthy, and Lisa M. Marvel. Off-
path TCP exploits: global rate limit considered danger-
ous. In Proceedings of the 25th USENIX Security Sym-
posium, pages 209–225, 2016.

[8] Neal Cardwell, Yuchung Cheng, Lawrence Brakmo,
Matt Mathis, Barath Raghavan, Nandita Dukkipati,
Hsiao-Keng Jerry Chu, Andreas Terzis, and Tom Her-
bert. packetdrill: scriptable network stack testing, from
sockets to packets. In Proceedings of the 2013 USENIX
Annual Technical Conference (ATC), pages 213–218,
2013.

[9] Qi Alfred Chen, Zhiyun Qian, Yunhan Jack Jia, Yuru
Shao, and Zhuoqing Morley Mao. Static detection of
packet injection vulnerabilities: a case for identifying
attacker-controlled implicit information leaks. In Pro-
ceedings of the 22nd International Conference on Com-
puter and Communications Security (CCS), pages 388–
400, 2015.

172 2021 USENIX Annual Technical Conference USENIX Association

[10] Weiteng Chen and Zhiyun Qian. Off-path TCP exploit:
how wireless routers can jeopardize your secrets. In
Proceedings of the 27th USENIX Security Symposium,
pages 1581–1598, 2018.

[11] Yuting Chen, Ting Su, and Zhendong Su. Deep differ-
ential testing of JVM implementations. In Proceedings
of the 41st International Conference on Software Engi-
neering (ICSE), pages 1257–1268, 2019.

[12] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su,
and Jianjun Zhao. Coverage-directed differential testing
of JVM implementations. In Proceedings of the 37th
International Conference on Programming Language
Design and Implementation (PLDI), pages 85–99, 2016.

[13] Clang: a LLVM-based compiler for C/C++ program.
https://clang.llvm.org/.

[14] FreeBSD commit bc35229fad1f: add PAWS check for
ACK segments in syncache code. https://gitlab.com/
FreeBSD/freebsd-src/commit/bc35229fad1f.

[15] CVE-2019-11478. https://nvd.nist.gov/vuln/detail/CVE-
2019-11478.

[16] Aled Edwards and Steve Muir. Experiences implement-
ing a high performance TCP in user-space. ACM SIG-
COMM Computer Communication Review, 25:196–205,
1995.

[17] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget,
Joeri de Ruiter, Konstantinos Sagonas, and Juraj So-
morovsky. Analysis of DTLS implementations using
protocol state fuzzing. In Proceedings of the 29th
USENIX Security Symposium, pages 2523–2540, 2020.

[18] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues. Find-
ing complex concurrency bugs in large multi-threaded
applications. In Proceedings of the 6th European Con-
ference on Computer Systems (EuroSys), pages 215–228,
2011.

[19] F-Stack: high performance network framework based
on DPDK. http://www.f-stack.org.

[20] Fuzzotron: a network fuzzer supporting TCP, UDP an
multithreading. https://github.com/denandz/fuzzotron.

[21] Hugo Gascon, Christian Wressnegger, Fabian Yam-
aguchi, Daniel Arp, and Konrad Rieck. Pulsar: stateful
black-box fuzzing of proprietary network protocols. In
Proceedings of the 11th International Conference on
Security and Privacy in Communication Systems, Se-
curity and Privacy in Communication Networks, pages
330–347, 2015.

[22] Serge Gorbunov and Arnold Rosenbloom. Autofuzz:
automated network protocol fuzzing framework. In-
ternational Journal of Computer Science and Network
Security (IJCSNS), 10(8):239, 2010.

[23] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Ji-
aguang Sun. Dlfuzz: differential fuzzing testing of deep
learning systems. In Proceedings of the 2018 Interna-
tional Symposium on Foundations of Software Engineer-
ing (FSE), pages 739–743, 2018.

[24] Endadul Hoque, Omar Chowdhury, Sze Yiu Chau,
Cristina Nita-Rotaru, and Ninghui Li. Analyzing op-
erational behavior of stateful protocol implementations
for detecting semantic bugs. In Proceedings of the 47th
International Conference on Dependable Systems and
Networks (DSN), pages 627–638, 2017.

[25] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar,
Byoungyoung Lee, and Insik Shin. Razzer: finding
kernel race bugs through fuzzing. In Proceedings of the
40th IEEE Symposium on Security and Privacy, pages
754–768, 2019.

[26] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a highly scalable user-level TCP
stack for multicore systems. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 489–502, 2014.

[27] Samuel Jero, Md. Endadul Hoque, David R. Choffnes,
Alan Mislove, and Cristina Nita-Rotaru. Automated at-
tack discovery in TCP congestion control using a model-
guided approach. In Proceedings of the 25th Annual
Network and Distributed System Security Symposium
(NDSS), 2018.

[28] Samuel Jero, Hyojeong Lee, and Cristina Nita-Rotaru.
Leveraging state information for automated attack dis-
covery in transport protocol implementations. In Pro-
ceedings of the 45th International Conference on De-
pendable Systems and Networks (DSN), pages 1–12,
2015.

[29] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon
Yoon, Wen Xu, and Taesoo Kim. Finding semantic bugs
in file systems with an extensible fuzzing framework.
In Proceedings of the 27th International Symposium on
Operating Systems Principles (SOSP), pages 147–161,
2019.

[30] Nupur Kothari, Ratul Mahajan, Todd Millstein, Ramesh
Govindan, and Madanlal Musuvathi. Finding protocol
manipulation attacks. In Proceedings of the ACM SIG-
COMM 2011 Conference, pages 26–37, 2011.

USENIX Association 2021 USENIX Annual Technical Conference 173

[31] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman
Nath, and Rohan Padhye. Efficient scalable thread-
safety-violation detection: finding thousands of concur-
rency bugs during testing. In Proceedings of the 27th
International Symposium on Operating Systems Princi-
ples (SOSP), pages 162–180, 2019.

[32] libFuzzer: a library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html.

[33] LLVM compiler infrastructure. https://llvm.org/.

[34] Lars Lockefeer, David M. Williams, and Wan J. Fokkink.
Formal specification and verification of TCP extended
with the window scale option. Science of Computer
Programming (SCP), 118:3–23, 2016.

[35] LTSmin: model checking and minimization of labelled
transition systems. https://ltsmin.utwente.nl/.

[36] Matthew Luckie, Robert Beverly, Tiange Wu, Mark All-
man, and kc claffy. Resilience of deployed TCP to blind
attacks. In Proceedings of the 2015 Internet Measure-
ment Conference (IMC), pages 13–26, 2015.

[37] Zhengxiong Luo, Feilong Zuo, Yu Jiang, Jian Gao, Xun
Jiao, and Jiaguang Sun. Polar: function code aware fuzz
testing of ICS protocol. ACM Transactions on Embed-
ded Computing Systems, 18(5s):93:1–93:22, 2019.

[38] Zhengxiong Luo, Feilong Zuo, Yuheng Shen, Xun Jiao,
Wanli Chang, and Yu Jiang. ICS protocol fuzzing: cover-
age guided packet crack and generation. In Proceedings
of the 57th International Design Automation Conference
(DAC), pages 1–6, 2020.

[39] MSan: memory sanitizer. https://github.com/google/san-
itizers/wiki/MemorySanitizer.

[40] Sandra L. Murphy and A. Udaya Shankar. Service
specification and protocol construction for the transport
layer. In Proceedings of the ACM SIGCOMM 1988
Conference, pages 88–97, 1988.

[41] Madanlal Musuvathi and Dawson R. Engler. Model
checking large network protocol implementations. In
Proceedings of 1st USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 155–
168, 2004.

[42] Yannic Noller, Corina S. Păsăreanu, Marcel Böhme,
Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske.
HyDiff: hybrid differential software analysis. In Pro-
ceedings of the 42nd International Conference on Soft-
ware Engineering (ICSE), pages 1273–1285, 2020.

[43] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoud-
hury. AFLNet: a greybox fuzzer for network protocols.

In Proceedings of the 13th International Conference
on Software Testing, Validation and Verification (ICST),
pages 460–465, 2020.

[44] Lei Qian and Brian E. Carpenter. A flow-based per-
formance analysis of TCP and TCP applications. In
Proceedings of the 18th International Conference on
Networks (ICON), pages 41–45, 2012.

[45] Zhiyun Qian, Z. Morley Mao, and Yinglian Xie. Collab-
orative TCP sequence number inference attack: how
to crack sequence number under a second. In Pro-
ceedings of the 19th International Conference on Com-
puter and Communications Security (CCS), pages 593–
604, 2012.

[46] QUIC: a multiplexed stream transport over UDP.
https://www.chromium.org/quic.

[47] Gaganjeet Singh Reen and Christian Rossow. DPIFuzz:
a differential fuzzing framework to detect DPI elusion
strategies for QUIC. In Proceedings of the 36th Annual
Computer Security Applications Conference (ACSAC),
pages 332–344, 2020.

[48] RFC 5961: improving TCP’s robustness to blind in-
window attacks. https://tools.ietf.org/html/rfc5961.

[49] RFC 7323: TCP extensions for high performance.
https://tools.ietf.org/html/rfc7323.

[50] RFC 793: TCP (Transmission Control Protocol).
https://tools.ietf.org/html/rfc793.

[51] Manuel Rigger and Zhendong Su. Testing database
engines via pivoted query synthesis. In Proceedings of
the 14th International Symposium on Operating Systems
Design and Implementation (OSDI), pages 667–682,
2020.

[52] Joeri de Ruiter and Erik Poll. Protocol state fuzzing
of TLS implementations. In Proceedings of the 24th
USENIX Security Symposium, pages 193–206, 2015.

[53] Mark Anthony Shawn Smith. Formal verification of
TCP and T/TCP. PhD thesis, Massachusetts Institute of
Technology, 1997.

[54] Juraj Somorovsky. Systematic fuzzing and testing of
TLS libraries. In Proceedings of the 23rd International
Conference on Computer and Communications Security
(CCS), pages 1492–1504, 2016.

[55] Dokyung Song, Felicitas Hetzelt, Jonghwan Kim,
Brent Byunghoon Kang, Jean-Pierre Seifert, and
Michael Franz. Agamotto: accelerating kernel driver
fuzzing with lightweight virtual machine checkpoints.
In Proceedings of the 29th USENIX Security Symposium,
pages 2541–2557, 2020.

174 2021 USENIX Annual Technical Conference USENIX Association

[56] Wei Sun, Lisong Xu, and Sebastian Elbaum. Scalably
testing congestion control algorithms of real-world TCP
implementations. In Proceedings of the 2018 Interna-
tional Conference on Communications (ICC), pages 1–7,
2018.

[57] Syzkaller: an unsupervised coverage-guided kernel
fuzzer. https://github.com/google/syzkaller.

[58] Possible TCP options. https://www.iana.org/assign-
ments/tcp-parameters/tcp-parameters.xhtml.

[59] TLDK: Transport Layer Development Kit in network.
https://github.com/FDio/tldk/.

[60] Andreas Walz and Axel Sikora. Exploiting dissent: to-
wards fuzzing-based differential black-box testing of
TLS implementations. IEEE Transactions Dependable
Secure Computing (TDSC), 17(2):278–291, 2020.

[61] Zhongjie Wang, Shitong Zhu, Yue Cao, Zhiyun Qian,
Chengyu Song, Srikanth V. Krishnamurthy, Kevin S.
Chan, and Tracy D. Braun. SymTCP: eluding stateful
deep packet inspection with automated discrepancy dis-
covery. In Proceedings of the 27th Annual Network and
Distributed System Security Symposium (NDSS), 2020.

[62] Paul Watson. Slipping in the window: TCP reset attacks.
Technical Whitepaper, 2004.

[63] Shinae Woo, Eunyoung Jeong, Shinjo Park, Jongmin
Lee, Sunghwan Ihm, and KyoungSoo Park. Compari-
son of caching strategies in modern cellular backhaul
networks. In Proceeding of the 11th International Con-
ference on Mobile Systems, Applications and Services
(MobiSys), pages 319–332, 2013.

[64] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning
Tseng, and Taesoo Kim. Fuzzing file systems via two-
dimensional input space exploration. In Proceedings
of the 40th IEEE Symposium on Security and Privacy,
pages 818–834, 2019.

[65] Yibiao Yang, Yuming Zhou, Hao Sun, Zhendong Su,
Zhiqiang Zuo, Lei Xu, and Baowen Xu. Hunting for
bugs in code coverage tools via randomized differential
testing. In Proceedings of the 41st International Confer-
ence on Software Engineering (ICSE), pages 488–499,
2019.

[66] Yanyan Zhuang, Eleni Gessiou, Steven Portzer, Fraida
Fund, Monzur Muhammad, Ivan Beschastnikh, and
Justin Cappos. Netcheck: network diagnoses from black-
box traces. In Proceedings of the 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 115–128, 2014.

USENIX Association 2021 USENIX Annual Technical Conference 175

	Introduction
	Background and Motivation
	TCP Stack
	Study of TCP Stack Commits
	Limitations of Existing Protocol Fuzzing

	Key Techniques
	Dependency-Based Strategy
	Transition-Guided Fuzzing Approach
	Differential Checker

	Framework
	Evaluation
	Experimental Setup
	Runtime Testing
	Influences of the Found Bugs
	Comparison to Existing Fuzzing Tools

	Discussion
	Related Work
	Network Protocol Fuzzing
	TCP Stack Checking
	Differential Testing

	Conclusion

