
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

Octo: INT8 Training with Loss-aware Compensation and
Backward Quantization for Tiny On-device Learning

Qihua Zhou and Song Guo, Hong Kong Polytechnic University; Zhihao Qu,
Hohai University; Jingcai Guo, Zhenda Xu, Jiewei Zhang, Tao Guo, and

Boyuan Luo, Hong Kong Polytechnic University; Jingren Zhou, Alibaba Group
https://www.usenix.org/conference/atc21/presentation/zhou-qihua

Octo: INT8 Training with Loss-aware Compensation and Backward Quantization
for Tiny On-device Learning

Qihua Zhou†, Song Guo†, Zhihao Qu‡, Jingcai Guo†, Zhenda Xu†,
Jiewei Zhang†, Tao Guo†, Boyuan Luo†, Jingren Zhou∗

†Hong Kong Polytechnic University, ‡Hohai University, ∗Alibaba Group

Abstract
On-device learning is an emerging technique to pave the

last mile of enabling edge intelligence, which eliminates the
limitations of conventional in-cloud computing where dozens
of computational capacities and memories are needed. A high-
performance on-device learning system requires breaking the
constraints of limited resources and alleviating computational
overhead. In this paper, we show that employing the 8-bit
fixed-point (INT8) quantization in both forward and back-
ward passes over a deep model is a promising way to enable
tiny on-device learning in practice. The key to an efficient
quantization-aware training method is to exploit the hardware-
level enabled acceleration while preserving the training qual-
ity in each layer. However, off-the-shelf quantization methods
cannot handle the on-device learning paradigm of fixed-point
processing. To overcome these challenges, we propose a novel
INT8 training method, which optimizes the computation of
forward and backward passes via the delicately designed Loss-
aware Compensation (LAC) and Parameterized Range Clip-
ping (PRC), respectively. Specifically, we build a new net-
work component, the compensation layer, to automatically
counteract the quantization error of tensor arithmetic. We
implement our method in Octo, a lightweight cross-platform
system for tiny on-device learning. Evaluation on commercial
AI chips shows that Octo holds higher training efficiency over
state-of-the-art quantization training methods, while achiev-
ing adequate processing speedup and memory reduction over
the full-precision training.

1 Introduction

The unprecedented booming of Machine Learning (ML) tech-
niques has achieved great success in the past decade [8, 35].
The magic of ML comes from model training on large-scale
datasets, relying on the deployment in the cloud environment
to meet the resource-hungry demands [44, 45, 60]. This kind
of in-cloud computing paradigm can bring about the essen-
tial drawbacks that it is hard to provide personalized models

Distributed ProcessingLarge Model

Send Request and

Upload Data

Wait Execution

and Fetch Results

In-cloud Learning:

On-device Learning:

Deploy on Devices

High Latency

Privacy Leakage

Lack

Personalization

Huge Cost

Drawbacks:

Resource Saving

Adapt to Limited

Resources

Personalized

Training

Online Applicable

Advantages:

End-to-end

Implementation

Tiny Model

Figure 1: Conventional ML applications rely on the in-cloud
learning paradigm, incurring essential drawbacks. A new
trend is to use on-device learning to address these issues.

[14], suffering from high latency [46] and privacy leakage
[40]. These issues promote the rise of on-device learning
[5, 39, 65], which eliminates in-cloud learning’s limitations
by handling the end-to-end learning process totally on user
devices [4, 57], e.g., mobile and IoT equipment [54]. This
edge environment makes on-device learning often subject to
limited computational capacity and memory [66]. Therefore,
breaking resource constraints is the key step to implement
on-device learning systems.

Conventional model compression methods, e.g., Low-rank
Decomposition [31, 61–63], Model Pruning [11, 16, 18, 20]
and Network Sparsification [1, 19, 37], are insufficient as
they are designed for large-scale training tasks and cannot
well match the characteristic of tiny on-device learning. For-
tunately, previous researches reveal that neural networks are
often implemented in a 32-bit floating-point (FP32) format
[17] and representing model parameters in such high preci-
sion is not always necessary [36]. It is feasible to represent
parameters in lower bit precision while not downgrading the
entire network quality. Based on our preliminary experiments
(§2.4) that handle CNN training in the 8-bit fixed-point (INT8)
format [2], we are inspired by the potential improvements and

USENIX Association 2021 USENIX Annual Technical Conference 365

thus intend to design a full-INT8 quantization-aware training
system for on-device learning.

However, existing quantization methods can hardly be em-
ployed for on-device training due to the following limitations:
(1) cannot apply to the training process [3, 5, 24, 36, 42], (2)
cannot support generic networks without specific structure
design [34, 47, 58], (3) cannot enable hardware-level INT8
acceleration during the training phase [7, 23, 49, 56], and (4)
cannot make the gradient calibration fit on-device resource
restrictions in backward pass [32, 67]. Therefore, we need a
full-INT8 training method working on devices directly, cover-
ing both forward and backward passes.

Designing a desired INT8 on-device training is not easy,
and we need to overcome the following challenges: (1) sim-
plifying the computational procedure and truly accelerating
processing speed on devices, (2) maintaining model quality
when using INT8 quantization-aware training, (3) alleviating
system overhead, e.g., reducing memory footprint and I/O
bandwidth utilization, and (4) making the system ease-of-use
and compatible with multiple platforms. We achieve these
objectives via a co-design of neural network constructor and
8-bit training engine.

More precisely, we give deep insights into the rationale
of 8-bit training (§4.1) and present a theoretical analysis of
layer-wise quantization error (§4.2). We point out the key to
preserve model quality in forward pass is to fill the error gap
in tensor dot products and thus propose the Loss-aware Com-
pensation (LAC) method (§4.3) to approximately recover the
quantized output to the full-precision domain. Specifically,
we propose a new network component, the compensation
layer (§4.3.1), to handle this adjustment with three learnable
parameters, and design an L2-regularizer (§4.3.2) to bound
the update rate of these parameters for convergence stability.
Meanwhile, we optimize the gradient calculation in back-
ward pass by abstracting the calculation of derivative flows
(§4.4.1) as a series of primary instructions (e.g., dot product,
broadcasting and bit-wise shifting) and introducing symmet-
ric quantization on them. We carefully profile the possible
distribution of gradient tensors and propose the Parameter-
ized Range Clipping (PRC) method (§4.4.2) to handle INT8
quantization of intermediate derivatives. We address the issue
of zero point offset in backward pass by restricting clipping
domain in the symmetric scheme, under 95% confidence in-
terval of gradient distribution.

We implement our INT8 training method in Octo, a
lightweight cross-platform system for on-device learning
tasks. Octo’s training engine and network constructor are
built in pure Python without the dependency of other sophis-
ticated third-party libraries, and thus it is easy to port Octo
to embedded devices. We evaluate Octo in different operat-
ing systems and deploy it on commercial AI platforms, such
as HUAWEI Atlas 200DK [26] and NVIDIA Jetson Xavier
[27], which can utilize the dedicated INT8 neuron chips. The
evaluation results show that Octo achieves higher training

efficiency over state-of-the-art quantization training methods,
with tiny system overhead. Specifically, Octo accelerates pro-
cessing speed by up to 2.03× and saves memory footprint by
up to 3.37×, over the full-precision training.

Overall, the key contributions of our work are as follows:

• We propose a lightweight INT8 training method, en-
abling data quantization for both forward and backward
stages (§4.1), which is efficient for deploying on-device
learning applications.
• We present the theoretical characterization of quantiza-

tion errors and reveal that filling the error gap caused
by inner product is the key to preserve model quality of
quantization-aware training (§4.2). This analysis guides
us to design the compensation term to adjust quantized
convolutional output.
• To achieve stable training efficiency, we propose the

Loss-aware Compensation (LAC) and Parameterized
Range Clipping (PRC) methods to handle data quanti-
zation in forward pass (§4.3) and backward pass (§4.4),
respectively. LAC introduces the novel compensation
layers and updates the compensation term based on the
feedback of network loss. Meanwhile, PRC maintains
bit precision in gradient calculation and avoids offset
error of the zero point via symmetric clipping.
• We build a cross-platform system named Octo, which

is compatible with different operating systems and can
be easily ported to embedded platforms (§5). Octo is
specifically designed for on-device training by exploit-
ing the fixed-point computational primitives of embed-
ded processors, with no need of GPUs. Evaluation on
HUAWEI Atlas 200DK [26] and NVIDIA Jetson Xavier
[27] shows that Octo achieves higher system perfor-
mance over state-of-the-art quantization training meth-
ods, thus verifying the effectiveness of our approach (§6).

To the best of our knowledge, Octo is the first general
framework to implement INT8 training on devices, optimizing
both forward and backward stages. The project of Octo is
open-source1 and will constantly contribute to the further
development of on-device learning techniques in practice.

2 Motivation

We start by discussing the limitations of conventional in-
cloud learning (§2.1), and introducing the background of on-
device learning applications (§2.2). Then, we will point out
quantization-aware training (§2.3) is the key to deploy on-
device learning in real-world scenarios, holding significant
advantages over conventional model compression methods.
We also present a case study to demonstrate the performance
improvements (§2.4) by leveraging INT8-based training on

1https://github.com/kimihe/Octo

366 2021 USENIX Annual Technical Conference USENIX Association

devices, and analyze the limitations of existing quantization
methods (§2.5).

2.1 Limitations of In-cloud Learning
Training ML models is a resource-hungry procedure, relying
on a mass of learnable data and computational capacity. Thus,
conventional ML applications are often deployed in the cloud
environment, requiring expensive cost of machine clusters and
distributed processing. However, such an in-cloud learning
paradigm is vulnerable to privacy leakage as user information
may be exposed to untrusted third parties. More seriously, the
high latency for fetching inference results may become the
bottleneck to slow down the learning performance. Also, as
models are trained in a global scheme (e.g., the Federated
Learning [40]), it is not easy to provide customized models
for different users to match personalized preferences [4].

2.2 Rise of On-device Learning
With the rapid growth of device processing capacity and mem-
ory volume, it comes the rise of on-device learning, which
handles the end-to-end ML procedure on devices directly and
breaks the limitations of in-cloud learning. A pertinent case
in industry is the Apple Face ID [51], which enables personal-
ized face recognition totally on user phones. Here, we briefly
introduce the definition and key objectives of on-device learn-
ing.
Definition. In general, on-device learning refers to entirely
transferring the model training and inference procedure on
user devices, with no need of data exchanging to other ma-
chines [54]. Besides, on-device learning can apply to edge
equipment (e.g., IoT and mobile devices), thus it also corre-
sponds to Edge Intelligence [66] in practice.
Objective #1: Resource Saving. The on-device hardware
is often bounded by the resource-constrained environment,
with limited computational capacity [30], memory volume
[22, 33] and I/O bandwidth [38]. Therefore, saving the system
overhead is the key to deploy on-device learning.
Objective #2: Model Quality. The learning algorithm should
hold a stable convergence efficiency, with a comparable pre-
diction accuracy and generalization ability as the in-cloud
training schemes [39].
Objective #3: Personalized Training. As the training pro-
cedure is entirely based on the local data on user devices, it
should provide customized models to meet user preference
[14], instead of generating a global model for an ensemble of
applications.
Objective #4: End-to-end Implementation. Considering
the incremental user data, the trained models should keep
up-to-date continuously. Thus, the entire learning process
requires an end-to-end implementation on the devices [6].
Summary. These four objectives are the key metrics guiding
the design of high-efficiency on-device learning systems.

2.3 Bit Precision and Data Quantization

Considering the resource-constrained environment on de-
vices, compressing model size and alleviating computational
pressure is the key to applying on-device learning in real-
world scenarios. Although there are some common compres-
sion methods, e.g., Low-rank Decomposition [31, 61–63],
Model Pruning [11, 16, 18, 20] and Network Sparsification
[1, 19, 37], they are designed for large-scale training tasks
and cannot well match the pattern of tiny on-device learn-
ing. Fortunately, data quantization is a promising method to
address these limitations.
Definition. The gist of quantization is to represent data via
less bit precision, e.g., converting a 32-bit floating-point
(FP32) number to the 8-bit fixed-point (INT8) format. Here
are two core operations of data quantization.
Operation #1: Number Discretization. The first operation
is to map real numbers from a “continuous” domain to certain
discrete values, e.g., from floating-point numbers to integers.
The number of discrete values is called the quantization level.
A common way is to partition the original domain into several
intervals and represent the numbers located in an interval by
the central point [36]. The objective of number discretization
is to reduce the value variety and represent the numbers by a
few target points.
Operation #2: Domain Transformation. The second opera-
tion is to restrict the values from a wide representation range
to a small range, e.g., from 32 bits to 8 bits. The transforma-
tion procedure can be abstracted as a step function, where
the “width” of the step can be uniformly or non-uniformly
assigned [24]. Uniform transformation is hardware-friendly
while non-uniform transformation can provide higher bit pre-
cision. Therefore, domain transformation aims at storing each
real number in the fixed-point format with fewer bits.
Inspirations. Existing ML frameworks often implement the
tensor arithmetic in FP32 or FP64 format to maintain high
precision of numerical operations. However, previous work
reveals that most neural networks are over-parameterized and
representing model parameters in such high-precision format
is not necessary [36]. It is feasible to maintain parameters in
lower bit precision while not downgrading the entire network
quality. Besides, numerical operations based on floating-point
formats are much more expensive than fixed-point ones, es-
pecially for the tiny IoT equipment without floating-point
processing units. Therefore, it comes to our motivation to
compress model parameters from FP32 to INT8 format and
handle the training procedure on devices.
Summary. Overall, we summarize the following properties
of data quantization: First, it enables model in bit level, which
can effectively reduce memory footprint and accelerate ten-
sor arithmetic. This helps us implement on-device learning
systems in resource-constrained cases. Second, quantization
is more hardware-friendly for both generic hardware (e.g.,
CPU/GPU) and specific chips (e.g., FPGA), which can be

USENIX Association 2021 USENIX Annual Technical Conference 367

Forward
Pass (ms)

Backward
Pass (ms)

Per-iteration
Time (ms)

Parameter
Memory (MB)

Model
Accuracy

FP32 95.85 140.03 240.06 18.51 97.6%
INT8 54.57 67.66 126.41 9.42 95.2%
Comparison 1.86× 2.07× 1.89× 1.96× −2.39%

Table 1: System performance using INT8 and FP32 training.

easily applied to edge intelligence applications.

2.4 Potential Gains
Employing data quantization into model training can save
resource costs and accelerate processing speed. Here, we
present an illustrative case study to show the potential gains.
The experiment is the image classification task on a 3-layer
CNN with MNIST dataset [9], running on the HUAWEI At-
las 200DK platform [26] with 10 epochs. We quantize the
mini-batch input, weights and gradients of convolutional lay-
ers into INT8 format and inspect the system performance
in terms of arithmetic efficiency, memory footprint and I/O
bandwidth. From the comparison shown in Table 1, the INT8-
based quantization-aware training can effectively alleviate
system overhead while not downgrading the model quality.
This raises an interesting question: can we achieve the same
level of FP32 training performance with only INT8 opera-
tions for common on-device learning applications (e.g., im-
age classification)? Therefore, we are dedicated to building a
lightweight INT8 training system to achieve this target.

2.5 Why not Existing Quantization Methods?
To implement on-device learning systems, existing quantiza-
tion methods are insufficient due to the following limitations.
#1. Cannot apply to training process. Most quantization
methods are designed for inference only, where quantization
is used in the forward pass based on a pre-trained model
for accelerating the prediction speed [3, 5, 24, 36, 42]. As
these methods have not addressed the issues of calculating
gradients on discretized parameters and eliminating error gap
after convolutional operations, they cannot be used in training
process.
#2. Cannot support generic networks without specific
structure design. Some methods aim at quantizing param-
eters with extremely low bit precision, e.g., the binary [58],
ternary [34] and XNOR [47] networks. However, they are
specifically designed and require fundamentally modifica-
tions of network structures. Thus, they are not suitable for the
training of generic networks.
#3. Cannot enable hardware-level INT8 acceleration in
training phase. Google has proposed a verifying quantiza-
tion method, called Fake Quantization [23], which uses INT8-
based numerical information for parameter representation,
while still packaging values in FP32 format for tensor arith-
metic. The subsequent methods [7, 49, 56] also follow this
paradigm that tensors are quantized and dequantized before

arithmetic operations. This paradigm cannot fundamentally
accelerate processing speed or reduce memory footprint be-
cause it does not exploit the hardware-level power of fixed-
point processing.
#4. Cannot make the gradient calibration in backward
pass fit on-device resource restrictions. Recently, it is a
trend to study the quantization-aware training with 8 bits. For
example, Zhu et al. [67] proposed the unified INT8 training
covering both forward and backward passes. However, current
researches have not optimized the derivative calculation of
model parameters and intermediate tensors during the back-
ward pass, which still follows the fake quantization paradigm.
As the backward pass often dominates the per-iteration time,
it is of great potential to conduct backward quantization to
further improve training efficiency.
Summary. Overall, we aim at designing an INT8 quantization
method for training neural networks directly on devices.

3 Overview and Design Challenges

Enabling INT8 quantization on devices requires a co-design
of neural network constructor and 8-bit training engine. We
present Octo, an INT8 quantization-aware training system
that addresses the following key challenges.
Challenge #1: How to fundamentally accelerate processing
speed on devices? Existing quantization methods based on
fake quantization cannot fully exploit the power of INT8
processing, thus the on-device training performance is still
bounded by iterative tensor arithmetic. We need to simplify
the computational procedure for more effective acceleration.
Our solution: We introduce the uniform 8-bit quantization
into convolutional operations, affine blocks, activation func-
tions and gradient calculation. The data quantization covers
both forward and backward passes, thus the entire iteration
can be accelerated. Also, the uniform range transformation is
hardware-friendly and can be implemented in the layer wise.
Challenge #2: How to maintain model quality when using
INT8 quantization-aware training? Introducing data quan-
tization during model training will inevitably impact the nu-
merical precision of parameters and incur accumulative errors
cross layers. The final output will be significantly different
from the full-precision training. Besides, the gradient calcu-
lation will face the same issue if we use quantization in the
derivative calculation. These factors will degrade the final
model accuracy and even make the training cannot converge.
Our solution: We maintain the model accuracy by adjust-
ing the intermediate results of forward and backward passes
together. In the forward pass, we propose the Loss-aware
Compensation (LAC) method and design a new network com-
ponent, called the compensation layer, to fill the error gap
caused by quantized tensor arithmetic. The parameters in-
side the compensation layer will be optimized according to
the network loss. For a higher updating efficiency, we intro-
duce an L2-regularization term of compensation parameters

368 2021 USENIX Annual Technical Conference USENIX Association

to modify the loss function. In the backward pass, we pro-
pose the Parameterized Range Clipping (PRC) to bound the
transformation domain of quantized gradients, using a 95%
confidence interval based on our theoretical analysis (§4.2).
Challenge #3: How to alleviate system overhead, especially
reducing memory footprint? The training efficiency is often
bounded by the limited memory volume and I/O bandwidth.
This requires us to conduct memory and storage optimization
in the training engine.
Our solution: We preserve all the parameters and interme-
diate derivatives in INT8 format. This effectively reduces
the peak memory footprint and saves the storage cost for ac-
cessing parameter cache. Also, introducing LAC and PRC
mentioned in challenge #2 may incur extra overhead. We
transfer the compensation term from a higher-degree polyno-
mial using FP32 tensors into an affine operation just relying
on the output of convolutional layers. This can effectively
restrict the computational cost of compensation and clipping.
Challenge #4: How to make the system ease-of-use and
compatible with multiple platforms? In real-world cases, de-
vices are often handled by tiny embedded systems that may
not be well compatible with commodity learning frameworks
(e.g., PyTorch Mobile [41] and TensorFlow Lite [15]). This
requires us to build the system based on the standard envi-
ronment without the dependency of other sophisticated third-
party libraries.
Our solution: We first abstract core computation of convo-
lutional and fully-connected layers into the basic operation
of tensor-wise dot product. Then, we optimize the dot prod-
ucts by using pure Python and C++. We use the light-weight
Pybind tool [43] and C++ header-based Eigen [52] to embed
the hardware-level matrix instructions in Python-level train-
ing. This kind of hybrid implementation makes our system
compatible with most operating systems, including embedded
Linux, macOS and Windows.
Summary: The above four challenges and solutions guide
the design of our system.

4 Octo Design

We first discuss the rationale of 8-bit training, and highlight
the key difference between Octo and the prior fake quantiza-
tion method (§4.1). Then, we present a theoretical formulation
of quantization error and analyze how to preserve training
quality (§4.2). We propose the Loss-aware Compensation
(LAC) and Parameterized Range Clipping (PRC) methods to
conquer the aforementioned challenges, in forward (§4.3) and
backward pass (§4.4), respectively.

4.1 Workflow of 8-bit Training
We describe the gist of 8-bit training by discussing the prior
work of fake quantization (§4.1.1), which is helpful for under-
standing the next steps of Octo design. For a clear explanation,

Variable Definition
n The number of bits used for quantization.
Wf The full-precision FP32 weights.
X f The full-precision FP32 input.
Wq The quantized INT8 weights.
Xq The quantized INT8 input.
Yf The FP32 output of dot product in fake quantization.
Yq The INT32 output of dot product in Octo.
sw The scaling factor when quantizing Wf .
sx The scaling factor when quantizing X f .
zw The offset of zero point when quantizing Wf .
zx The offset of zero point when quantizing X f .
Q(X) The quantization function.
Q−1(X) The dequantization function.
scale(M) The function for calculating scaling factor of tensor M.
round(M) The discretization function using stochastic rounding on tensor M.
clip(M) The clipping function to bound the range of tensor M.
dot(X ,W) The dot product of X and W .
rx The error gap incurred by discretizing Xq.
rw The error gap incurred by discretizing Wq.
δ The error gap between FP32 and INT8 dot product.
δ̂ The compensation term to approximate δ .

Table 2: Notations used in INT8 quantization-aware training.

we take a 3-layer CNN (1 CONV + 2 FCs) as the example
and list all the notations in Table 2.

4.1.1 Fake Quantization Training

Compared with vanilla full-precision training (Figure 2(a)),
fake quantization (Figure 2(b)) first quantizes the input and
weight into INT8 format, then it dequantizes these variables
back to the FP32 format before conducting tensor dot prod-
uct. Note that the computational overhead of CONVs and
FCs mainly comes from convolutional and affine operations,
which can be unfolded as a series of dot products in low-level
instructions. Therefore, we regard dot products as the key
computation in forward pass. The rationale of fake quantiza-
tion training can be described as following three steps:
Step #1: Quantization. This step transfers FP32 numbers to
INT8 format.

Xq = round(
X f

sx
+ zx), (1)

Wq = round(
Wf

sw
+ zw), (2)

sx = scale(X ,n) =
max(X f)−min(X f)

2n−1
, (3)

zx = max(Xq)−
max(X f)

sx
, (4)

sw = scale(W,n) =
max(Wf)−min(Wf)

2n−1
, (5)

zw = max(Wq)−
max(Wf)

sw
. (6)

Step #2: Dequantization. This step recovers the INT8 num-
bers to FP32 format.

X f = (Xq− zx) · sx (7)
Wf = (Wq− zw) · sw (8)

USENIX Association 2021 USENIX Annual Technical Conference 369

CONV Softmax

Input

Batch

Normalization ReLU FC1

Weight

Loss

Convolutional Layers

FC2

Fully Connected Layers

Original Full-precision Training:

(a) Original full-precision training.

CONV Softmax

Input

Batch

Normalization ReLU FC1

Weight

Loss

Convolutional Layers

FC2

Fully Connected Layers

Fake Quantization Training:

Quantization Dequantization

(b) Fake quantization training.

Figure 2: Workflow of previous training methods.

Step #3: Dot Products. This step conducts dot products
based on the recovered FP32 tensors and yields FP32 results.

Yf = dot(X f ,Wf) (9)

Performance Analysis. Fake quantization captures the INT8
numerical information while still handling tensor arithmetic in
FP32 format. Thus, it cannot truly alleviate the computational
overhead. Also, the precision degradation after the first two
steps mainly comes from the integer rounding, thus the dot
products in the third step will not incur much error. However,
a practical quantization-aware training method needs to move
the dot products between quantization and dequantization, so
as to utilize the power of fixed-point hardware. We follow this
principle to design Octo’s training.

4.1.2 Octo’s Training

As shown in Figure 3, Octo holds the tensor arithmetic totally
in INT8 format and contains the following three steps.
Step #1: Quantization. This step follows the same formula-
tion as Eq. (2) and Eq. (1). We use the stochastic rounding
[17] to build the discretization function round(M), which
maps floating-point numbers into integers and can be defined
as:

round(M) =

bxc, w.p. 1− x−bxc

ε

bxc+ ε, w.p.
x−bxc

ε

, (10)

where ε represents the smallest positive fixed-point value
under given bits. For example, ε = 2−8 in 8-bit quantiza-
tion. This discretization function holds the unbiased round-
ing property, thus the expected rounding error is zero, i.e.,
E[round(M)] = M. This property alleviates the discretization
error caused by integer rounding.
Step #2: Dot Product This step conducts dot products on
INT8 tensors and returns the INT32 results to avoid overflow.

Yq = dot(Xq,Wq) (11)

Step #3: Dequantization with compensation This step con-
verts the INT32 tensor to FP32 format and compensates the
error of dot products caused by step #2.
Performance Analysis. If zx = 0 and zw = 0, we can simply
use the following transformation to restore the INT32 output
to FP32 format.

Yf = Yq · (sx · sw). (12)

However, realistic INT8 processing requires int or unsigned
int data type, which means the quantized values should be
restricted within [−128,127] or [0,255], instead of using ar-
bitrary 8-bit domains (e.g., [100,355] is not feasible). Thus,
we need non-zero zx and zw to serve as the offset of domain
transformation. As zx and zw participate the dot product, we
cannot recover Yf by using Eq. (12), because the multipli-
cation of zero point offset will incur a significant error gap.
Compared with the vanilla dot product based on FP32 tensors,
the dequantized output can be described as follows.

Yf = Yq · (sx · sw)+δ, (13)

where δ is the polynomial related to zx and zw. Therefore, step
#3 is the key to Octo’s forward pass, and the gist is to find
a proper compensation term to fill the error gap δ while not
incurring too much computational overhead. The details will
be discussed in the next section (§4.2).

4.2 Analysis of Error Gap

In this section, we formulate the error gap δ and approximate
it as an affine transformation. Due to the page limit, we omit
proof details and present the major theorem.
Theorem 1. The error gap δ between FP32 and INT8 dot
product can be approximated as an affine transformation,

370 2021 USENIX Annual Technical Conference USENIX Association

CONV Softmax

Input

Batch

Normalization ReLU FC1

Weight

Loss

Convolutional Layers

FC2

Fully Connected Layers

Dequantization with

Loss-aware Compensation

Compensation

L2-Regularizer

Gradients of:

alpha, mu, offset

Bound Compensation

Parameters

Octo’s Training:

Asymmetric

Quantization

Operations:

scaling, zero_point,

rounding

Gradients of:

gamma, beta

Parameterized Range Clipping

Gradients of Dot Product:

X, W

Forward Pass

Backward Pass

Figure 3: Workflow of Octo’s training.

which is defined as:

δ = sx ∗∆X ·Wf + γ, (14)

∆X =
X f

sx
−round(

X f

sx
+ zx), (15)

γ = X f (rw− zw)sw− (rx− zx)(rw− zw)sxsw, (16)

where ∗ represents the broadcast operation on tensors.
Note that ∆X ·Wf dominates the computational overhead of
Eq. (14), with the same shape as the dot product. Also, sx
and γ can be regarded as the coefficient factor and bias, re-
spectively. This formulation can be simplified as an affine
transformation and we approximate δ as:

δ̂ = α∗µ+β. (17)

We call δ̂ as the compensation term, where the three parame-
ters α, µ and β can be optimized based on the loss function of
the network. Specifically, we abstract these parameters as a
new network component, i.e., the compensation layer (§4.3),
to better adjust the quantized dot product.

4.3 Loss-aware Compensation
We propose the Loss-aware Compensation (LAC) method
to preserve the numerical precision of tensor arithmetic in
forward pass, LAC holds two core modules: (1) compensa-
tion layer (§4.3.1) and (2) L2-regularization of compensation
parameters (§4.3.2).

4.3.1 Compensation Layer

The compensation layer is a new component injected to the
network structure. Our target of introducing the compensation
layer is to fill the error gap mentioned in Eq. (13) by approxi-
mating δ̂ in an affine transformation. We intend to compensate
the quantized output in each layer to avoid the large accumu-
lative errors across layers. Thus, the compensation layer is
designed as an independent component that can be added at
the end of both convolutional (CONV) and fully-connected
(FC) layers. As shown in Fig. 4, we conduct preliminary ex-
periments to inspect the layer completion time on CONVs
and FCs. We can observe that the time cost of FCs is far less
than that of CONVs. Besides, FCs usually occupy a tiny part

16
.6

5

12
8.

98

33
.9

6 51
.5

9

13
.5

3

53
.5

1

0.
34

0.
159.

05

12
9.

41

31
.1

8

10
0.

12

21
.6

3 52
.7

0

0.
32

0.
05

CONV1

CONV2

CONV3

CONV4

CONV5

CONV6
FC1

FC20
30
60
90

120
150
180

Ti
m

e C
os

t (
m

s)

 Forward Pass
 Backward Pass

Figure 4: Lyer completion time on CONV and FC layers.

of the entire network, quantizing FCs will not bring essential
improvements to alleviate computational overhead. Therefore,
we focus on using LAC on CONVs (although LAC can also
be applied to FCs) and insert a compensation layer at the end
of each CONV, following batch normalization to adjust the in-
put distribution before ReLu, as depicted in Figure 3. Indeed,
the compensation layer is an optional component, thus we
can add a compensation layer after multiple CONVs. Each
compensation layer holds three learnable parameters and we
summarize their properties as follows.
#1. α: This is a scalar controlling the scaling factor of com-
pensation term.
#2. µ: This is a tensor with the same shape as the dot product,
which represents the expectation of the distribution of δ.
#3. β: This is a tensor corresponding to the shape of µ, serving
as the bias to adjust the compensation offset.

According to the expression of compensation term in
Eq. (17), the calculation of α∗µ is handled by the broadcast
operation, instead of the time-consuming tensor dot product.
Also, adding β to α∗µ can be optimized as a shift operation,
holding much less arithmetic complexity over multiplication.
Therefore, calculating the compensation term will not incur
much computational overhead.

4.3.2 L2-Regularization of Compensation Parameters

Although adding compensation layers can effectively fill the
error gap caused by quantized dot product, the overall train-
ing efficiency may be impacted by the initialization of the
compensation parameters. Actually, we can treat the approxi-
mated compensation term as special “noise” to counteract the

USENIX Association 2021 USENIX Annual Technical Conference 371

1

2

2

1

Foward Pass

Backward Pass
X

W

X·W Y

B

dot +

Figure 5: The derivative flows across layers in backward pass.

quantization error. Thus, the network robustness and conver-
gence speed with compensation layers still rely on the update
rule of the compensation layers. To improve the stability of
compensation layers and accelerate the learning speed of com-
pensation parameters, we design a dedicated L2-regularizer
[55, 64] to better capture the significance of compensation
layers. By adding the L2-regularization term to loss function,
we modify the corresponding gradient calculation rule for
updating the compensation parameters more efficiently. The
modified loss function L is defined as follows:

L =− 1
N

n

∑
k

∑ tnk logynk︸ ︷︷ ︸
(1)

+
1
2

λ(µ2 +β
2)︸ ︷︷ ︸

(2)

, (18)

where the first term represents the primary cross-entropy error
measuring the difference between prediction y and ground
truth t, based on mini-batch of size N. Meanwhile, the second
term is the L2-regularizer reflecting the compensation perfor-
mance from µ and β. As α is a scalar, we can omit its impact
here. Actually, we can adjust the significance of these two
terms by changing the value of λ. For example, we can set λ

with a larger value to emphasize the effect of compensation
layers. In practice, we empirically set λ as 0.1.

4.4 Backward Quantization
Apart from introducing LAC in forward pass, we also em-
ploy data quantization in backward pass as the calculation
of gradients can also be abstracted as a series of dot product,
following the chain rule of derivative flows (§4.4.1). How-
ever, we cannot simply use the INT8 quantization mentioned
in forward pass because we cannot add a compensation-like
component in backward pass to fill the error gap incurred
by zero points. Here, we propose the Parameterized Range
Clipping (PRC) method to address this issue by restricting
the clipping domain in the symmetric scheme (§4.4.2).

4.4.1 Calculation of Derivative Flows

In practice, we usually calculate gradients based on chain
rules instead of using numerical differential, for higher com-
putational efficiency. As shown in Figure 5, the derivative

flows will go through the entire network, from the last layer
to the first one. Capturing the flows from the l+1-th layer, we
can handily calculate the gradients of current l-th layer and
push the flows to previous layers. Thus, the essential opera-
tions for calculating the parameter gradients (∂L

∂X and ∂L
∂W) of

CONVs and FCs can also be abstracted as a serious of tensor
dot products, which are described as follows:

∂L
∂X

= dot(
∂L
∂Y

,W>), (19)

∂L
∂W

= dot(X>,
∂L
∂Y

), (20)

where W> and X> represent the transpose of W and X , re-
spectively. Following these equations, we can also quantize
∂L
∂Y into INT8 format, and conduct the quantized dot prod-
uct by using Wq and Xq, which are obtained in forward pass.
After that, we can dequantize ∂L

∂X and ∂L
∂W based on the cor-

responding scaling factors by using Eq. (12). Note that this
dequantization relies on the prerequisite of using symmetric
clipping, which will be discussed in the next section.

4.4.2 Parameterized Range Clipping

As the intermediate derivative flows are also quantized before
the dot product for calculating gradients, we thus need to
address the issue of zero point offset. However, adding a
compensation-like component in backward pass is inefficient
in filling the error gap. Instead, we propose the Parameterized
Range Clipping (PRC) method that makes clipping in the
symmetric scheme to avoid the involvement of zero point,
such that the FP32 parameter gradients could be recovered
after conducting the INT8 dot product. The clipping range
will be specifically profiled according to the distribution of
the FP32 tensors. More precisely, we will discuss the clipping
strategy in the following two cases.
Case #1. The distribution of FP32 tensor locates on both
sides of the original point. In this case, we will quantize the
FP32 tensor within [−127,127], which can be covered by the
int data type. The clipping function is described as:

clip(M) ∈ [−a,a], (21)
a = min{|min(M)|,max(M)}. (22)

Case #2. The distribution of FP32 tensor locates on one
side of the original point. In this case, we will quantize
the FP32 tensor within [0,255] that can be covered by the
unsigned int data type. The clipping function is defined as:

clip(M) ∈ [0,a], (23)
a = max{|min(M)|, |max(M)|}. (24)

By profiling the clipping range in these two cases, we can as-
sert the zero point offset as 0 and surpass the issue of error gap.
Moreover, we further restrict the clipping range by applying

372 2021 USENIX Annual Technical Conference USENIX Association

95% confidence interval on Eq. (21), as the gradient tensors
usually follow the long-tailed but bell-shape distribution.
Gradient Recovery: Based on the above clipping, we can
recover the FP32 parameter gradients (∂L

∂X f
and ∂L

∂W f
) from the

intermediate INT8 quantized derivative flows (Yq, Wq and Xq)
as follows:

∂L
∂X f

= dot(
∂L
∂Yq

,W>q) · (sysw), (25)

∂L
∂Wf

= dot(X>q ,
∂L
∂Yq

) · (sxsy), (26)

where sy, sx and sw represent the scaling factors for quantizing
Yf , X f and Wf , respectively.

5 Implementation

We implement Octo’s training engine and network constructor
in pure Python without the dependency of other sophisticated
third-party libraries, making it a cross-platform system.

5.1 Network Construction
We abstract different layers for the construction of common
CNNs, including CONV layer, FC layer, Batch Normalization,
ReLu, Sigmoid, Pooling, Dropout, Softmax, and the proposed
compensation layer. Each layer holds uniform APIs to handle
the forward and backward passes. We can easily build CNNs
by assembling different layers in a proper sequence. We pro-
vide a configuration file to set layer size (e.g., neuron umber,
filter number, filter size and padding) and initialize model
parameters. We have embedded AlexNet, VGG11 and other
deep CNNs in Octo, supporting the training on MNIST, Fash-
ion MNIST and CIFAR-10/100 datasets. Moreover, we build
the auto inspection module to monitor the training perfor-
mance and record the key metrics, including model accuracy,
training completion time, per-iteration cost, computational
overhead, memory footprint and compensation performance.

5.2 Gradient Calculation
We implement the gradient calculation based on the chain
rule of derivative flows. Each layer can automatically obtain
its gradients by invoking the backward method. Here, we
take the compensation layer as an example and calculate the
gradients of α, µ and β by the following Python snippets:

def backward(self , dout)
self.d_alpha = np.sum(dout*self.mu, axis=0)
self.d_mu = self.alpha * dout
self.d_beta = dout
return dout

The backward method sequentially accepts the derivative of
∂L
∂Y (denoted as dout) from previous layers, calculates the

gradients of three compensation parameters, stores them for
model updating, and returns the latest derivative flows to the
next layer.

5.3 Hardware Deployment
We mainly extract the computational operations of model
training into three types: (1) tensor dot product, (2) tensor
broadcast, and (3) tensor addition. We optimize these opera-
tions in low-level instructions that can exploit the power of
fixed-point processing units. This requires us bridging the C++
level method calling with Python-level training engine. We
use the light-weight Pybind tool [43] and C++ header-based
Eigen [52] to embed the hardware-level matrix instructions in
Python training. This kind of hybrid implementation makes
our system compatible with most operating systems, including
embedded Linux, macOS and Windows. Specifically, apart
from the implementation of common PC and servers, we also
deploy Octo on commercial AI devices, such as HUAWEI
Atlas 200DK [26] and NVIDIA Jetson Xavier [27], which
can utilize the dedicated INT8 neuron chips.

6 Evaluation

We evaluate Octo on real embedded platforms in the produc-
tion environment. Our key insights are as follows:
#1. Does Octo preserve model quality and how is it com-
pared to FP32 training? Octo achieves stable convergence
efficiency in different benchmarks (§6.2) and holds compara-
ble model accuracy as FP32 training (§6.3).
#2. Can Octo improve inference efficiency? Octo acceler-
ates image processing speed, by up to 2.03× faster than FP32-
based inference (§6.4).
#3. How could Octo work? Octo can effectively fill the error
gap caused by data quantization and maintain tensor distribu-
tion as FP32 does. Thus, Octo preserves model quality and
makes training more stable (§6.5).
#4. What is the system overhead? Octo reduces the per-
iteration time cost while introducing a tiny overhead of data
quantization (§6.6.1). Meanwhile, Octo saves real-time mem-
ory footprint and decreases the peak memory usage, by up to
3.37× lower than FP32 training (§6.6.2).

6.1 Methodology
Testbed Setup. Considering the on-device learning charac-
teristics, we focus on the experimental results on embedded
devices. We deploy Octo on HUAWEI Atlas 200DK [26]
based on Ascend 310 AI processors [13] and NVIDIA Jetson
Xavier [27] equipped with dedicated INT8 neuron chips. All
these devices are operated with the Ubuntu 18.04 LTS system
with GNU/Linux 4.15.0-118-generic kernel.
Benchmarks. We use image classification tasks as our bench-
mark, based on the training of GoogLeNet [50], AlexNet

USENIX Association 2021 USENIX Annual Technical Conference 373

0% 20% 40% 60% 80% 100%
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

Training Progress (%)

 FP32 Acc.
 Fake QAT Acc.
 Octo Acc.

0

2

4

6

8

 FP32 Loss
 Fake QAT Loss
 Octo Loss

Tr
ai

ni
ng

 L
os

s

(a) GoogLeNet, Fashion MNIST, Adam.

0% 20% 40% 60% 80% 100%
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

Training Progress (%)

 FP32 Acc.
 Fake QAT Acc.
 Octo Acc.

0

2

4

6

8

 FP32 Loss
 Fake QAT Loss
 Octo Loss

Tr
ai

ni
ng

 L
os

s

(b) GoogLeNet, CIFAR-10, Adam.

0% 20% 40% 60% 80% 100%
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

Training Progress (%)

 FP32 Acc.
 Fake QAT Acc.
 Octo Acc.

0
2
4
6
8
10

 FP32 Loss
 Fake QAT Loss
 Octo Loss

Tr
ai

ni
ng

 L
os

s

(c) AlexNet, Fashion MNIST, Adam.

0% 20% 40% 60% 80% 100%
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

Training Progress (%)

 FP32 Acc.
 Fake QAT Acc.
 Octo Acc.

0
3
6
9
12
15

 FP32 Loss
 Fake QAT Loss
 Octo Loss

Tr
ai

ni
ng

 L
os

s

(d) AlexNet, CIFAR-10, Adam.

0% 20% 40% 60% 80% 100%
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

Training Progress (%)

 FP32 Acc.
 Fake QAT Acc.
 Octo Acc.

0

4

8

12

16

 FP32 Loss
 Fake QAT Loss
 Octo Loss

Tr
ai

ni
ng

 L
os

s

(e) VGG11, Fashion MNSIT, Adam.

0% 20% 40% 60% 80% 100%
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

Training Progress (%)

 FP32 Acc.
 Fake QAT Acc.
 Octo Acc.

0

4

8

12

16

 FP32 Loss
 Fake QAT Loss
 Octo Loss Tr

ai
ni

ng
 L

os
s

(f) VGG11, Fashion MNSIT, AdaGrad.

0% 20% 40% 60% 80% 100%
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

Training Progress (%)

 FP32 Acc.
 Fake QAT Acc.
 Octo Acc.

0
4
8
12
16
20

 FP32 Loss
 Fake QAT Loss
 Octo Loss Tr

ai
ni

ng
 L

os
s

(g) VGG11, CIFAR-10, Adam.

0% 20% 40% 60% 80% 100%
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

Training Progress (%)

 FP32 Acc.
 Fake QAT Acc.
 Octo Acc.

0
4
8
12
16
20

 FP32 Loss
 Fake QAT Loss
 Octo Loss Tr

ai
ni

ng
 L

os
s

(h) VGG11, CIFAR-10, AdaGrad.

0% 20% 40% 60% 80% 100%
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

Training Progress (%)

 FP32 Acc.
 FQAT Acc.
 Octo Acc.

0
4
8
12
16
20 FP32 Loss

 FQAT Loss
 Octo Loss

Tr
ai

ni
ng

 L
os

s

(i) VGG11, CIFAR-10, RMSprop.

Figure 6: Training convergence efficiency using different benchmarks and optimizers.

FP32 Acc. (%) Octo Acc. (%) Acc. Degradation (%)
GoogLeNet, FM 99.1−99.5 97.9−98.6 0.9−1.2
GoogLeNet, CF 97.8−99.2 97.6−98.8 0.2−0.4
AlexNet, FM 95.6−98.4 92.8−94.3 2.8−4.1
AlexNet, CF 91.8−95.2 86.1−87.3 5.7−7.9
VGG11, FM 97.5−98.8 94.4−96.5 2.3−3.1
VGG11, CF 97.2−99.5 96.5−98.6 0.7−0.9

Table 3: Comparison of FP32 and Octo’s model accuracy
(from MIN to MAX) with Fashion MNIST (FM) and CIFAR-
10 (CF) datasets, by using AdaGrad optimizer.

[29] and VGG11 [48]. Considering the resource constraints,
large-scale datasets (e.g., ImageNet [10]) are not suitable for
training. We choose Fashion MNIST (FM) [59], CIFAR-10
(CF) [28] to fit the tiny on-device environment. We set the
mini-batch size as 50 with 100 epochs and check Octo under
Adam [25], AdaGrad [12] and RMSprop [21] optimizers.
Baselines. We build two pertinent baselines: the vanilla full-
precision training (FP32) and fake quantization-aware train-
ing without error compensation (Fake QAT), using the per-
formance metrics of training efficiency, model quality, image
processing throughput and system overhead.

6.2 Training Efficiency and Quality

Maintaining convergence efficiency is one of the most cru-
cial metrics in INT8 training design, we compare the model
accuracy and training loss, by using FP32, Fake QAT and
Octo training under different benchmarks in Figure 6. We can
observe that Fake QAT fails to converge, where the curves of

loss (in black) and accuracy (in red) almost remain unchanged.
This phenomenon indicates that putting tensor arithmetic (e.g.,
convolutional and affine operations) between quantization
and dequantization will incur huge computational errors, thus
Fake QAT is not suitable for hardware-level INT8 acceler-
ation in practice. In contrast, Octo (in green) obtains com-
parable accuracy as the FP32 (in blue) training, holding a
just slight degradation in most cases (e.g., Figure 6(a)-6(f)).
Specifically, as to the training of the deep VGG11 model,
Octo even achieves faster convergence speed over FP32 with
close final model accuracy (e.g., Figure 6(g)). Training curves
using other optimizers (e.g., Figure 6(h) and 6(i)) also con-
firm this property because the compensation layers inside
Octo can serve as specific ‘noise’ to help optimizers escape
saddle points. Also, the PRC method bounds the gradients in
a smoother distribution, making models update more stably.
Overall, the accuracy comparison and degradation gap are
summarized in Table 3, where Octo preserves model quality
as FP32 does and is sufficient for INT8 on-device training.

6.3 Ablation Study
We conduct the ablation study to inspect how much improve-
ment is achieved by LAC and PRC separately. The experi-
ments are based on the training of AlexNet model on CIFAR-
10 and Fashion MNIST datasets by using Adam optimizer.
Note that the LAC and PRC operations are added in CONV2,
CONV3 and CONV4. We compare the average model accu-
racy under different training configurations in Table 4. We
can observe that simply adopting INT8 data representation

374 2021 USENIX Annual Technical Conference USENIX Association

Configuration Acc. (%) Gap over FP32 (%)

Fashion
MNIST

FP32 97.1 0
INT8 13 −84.1

INT8 + LAC 90.4 −6.7
INT8 + PRC 14.8 −82.3

INT8 + LAC + PRC 93.6 −3.5

CIFAR-10

FP32 93.5 0
INT8 11 −82.5

INT8 + LAC 85.2 −8.3
INT8 + PRC 12.1 −81.4

INT8 + LAC + PRC 86.7 −6.8

Table 4: Comparison of average model accuracy under differ-
ent training configurations.

50
5

21
1

18

77
7

44
9

43

38
2

11
7

14

63
1

21
1

27

GoogLeNet AlexNet VGG11
0

200

400

600

800

1000

Sp
ee

d
(im

ag
es

/se
c) FP32, Fashion MNIST

 Octo, Fashion MNIST
 FP32, CIFAR-10
 Octo, CIFAR-10

Figure 7: Impage processing throughput, i.e., images per sec-
ond, by using FP32 and Octo trained models.

into training will significantly deteriorate the model accuracy
due to large errors of the quantized dot product. Enabling
LAC operation can fill this error gap by learning parameters
of an affine approximation. Note that directly using PRC
on vanilla INT8 training without LAC cannot eliminate the
deviation of intermediate results, thus still incurring a great
degradation of accuracy. However, PRC can further improve
the final accuracy when LAC has been enabled, where the
clipped gradients can restrict the training process in a proper
convergence boundary.

6.4 Image Processing Throughput

Apart from the training efficiency, we also inspect Octo’s infer-
ence performance. We measure the image processing speed,
i.e., image count per second, by using the models trained by
FP32 and Octo. As model parameters and tensor arithmetic
are converted in INT8 format, Octo can effectively reduce
I/O bandwidth and computational pressure. Therefore, Octo
improves the image processing throughput, by up to 2.03×,
on average, over FP32 model based inference. This property
is significantly meaningful for on-device learning as we can
reduce inference latency and improve user experience.

6.5 Octo Deep Dive

Observing the improvement of training and inference perfor-
mance, we wonder how could Octo achieve this. Here, we
give deep insights into how Octo compensates for quantiza-
tion error and preserves model accuracy. We visualize the
intermediate tensor distribution of a CONV layer’s output

−2.5 0.0 2.5

0.0

0.5

1.0

1.5

2.0

1e4

FP32

−5 0 5

0.0

0.5

1.0

1.5

2.0

1e4

Fake QAT

−5 0 5

0.0

0.5

1.0

1.5

2.0

1e4

Octo

Figure 8: The visualization of tensor distribution of CONV2’s
output, under FP32, Fake QAT and Octo’s training. Octo pre-
serves similar distribution as FP32 while Fake QAT cannot.

0

300

600

900

1200

Ti
m

e C
os

t (
m

s)

 Quantization
 Backward
 Forward

FM CF

FP32 Octo
FP32 Octo

(a) GoogLeNet.

0

1000

2000

3000

4000

Ti
m

e C
os

t (
m

s)

 Quantization
 Backward
 Forward

FM CF

FP32 Octo
FP32 Octo

(b) AlexNet.

0

10k

20k

30k

Ti
m

e C
os

t (
m

s)

 Quantization
 Backward
 Forward

FM CF

FP32 Octo
FP32

Octo

(c) VGG11.

Figure 9: We inspect the details of computational time cost
from 300 iterations and measure the overhead of Octo’s data
quantization on average, when training Fashion MNIST (FM)
and CIFAR-10 (CF) dataset.

by using FP32, Fake QAT and Octo. The data are collected
from training an 8-layer deep CNN with CIFAR-10 after 80
iterations. Fake QAT holds a distinct distribution compared
with FP32 because conducting dot products in the quantized
domain will incur significant error to the final output. In con-
trast, the compensation layers inside Octo can fill the error
gap and achieve similar distribution as FP32 does. Therefore,
the model accuracy is maintained. Also, the PRC method in
backward pass bounds derivative domains and smooths the
tensor distribution, making the training more stable.

6.6 System Overhead
We compare Octo’s system overhead with FP32 training, fol-
lowing two key metrics of embedded platforms: computa-
tional time cost (§6.6.1) and memory footprint (§6.6.2).

6.6.1 Computational Time Cost

We measure the average computational time cost of different
stages in each iteration, as depicted in Figure 9. Although
Octo introduces extra overhead of data quantization, about
17.21% increase on average, it reduces the completion time
of both forward and backward passes by using INT8-based
processing. Overall, Octo holds shorter per-iteration time, by
up to 1.73× faster, on average, over vanilla FP32 training.
Therefore, we believe introducing data quantization for on-
device training is meaningful.

USENIX Association 2021 USENIX Annual Technical Conference 375

0 400 800 1200 1600 2000
0%

50%
100%0 400 800 1200 1600 2000

0%
50%

100%

Octo's Training (s)

M
em

or
y

Fo
ot

pr
in

t

FP32 Training (s)

Figure 10: Octo effectively reduces real-time memory foot-
print over FP32 training.

64
1 17

11

31
80

27
9 55
8

20
06

12
99 23

34

53
20

38
5 95

2

31
94

GoogLeNet AlexNet VGG11
0

1000
2000
3000
4000
5000
6000

Pe
ak

 M
em

or
y

(M
B) FP32, Fashion MNIST

 Octo, Fashion MNIST
 FP32, CIFAR-10
 Octo, CIFAR-10

Figure 11: Peak memory usage of FP32 and Octo training.

6.6.2 Memory Footprint

We compare the memory usage under FP32 and Octo’s train-
ing, respectively. As shown in Figure 10, we monitor the
real-time memory footprint when training GoogLeNet with
CIFAR-10 in 2000 seconds. The FP32 training requires about
61.29% memory usage on average, while Octo only requires
40.13%. More precisely, we compare their peak memory us-
age of different benchmarks in Figure 11. Due to the INT8-
based parameters and gradient quantization, Octo can effec-
tively reduce peak memory usage, by up to 3.37× lower than
FP32 training. Such a reduction makes it possible to deploy
VGG-like models.

7 Discussion

In this section, we will discuss the potential usages, extensions
and limitations of Octo.
Deployment on edge devices. We mainly deploy Octo on
two kinds of edge devices: (1) Atlas 200DK developer board
integrating Ascend 310 AI processors and (2) NVIDIA Jetson
Xavier equipped with INT8 neural chips. These devices sup-
port hardware-level INT8 operations, thus making Octo truly
exploiting the power of quantization-aware training. Note that
Octo is a cross-platform system and its INT8 quantization
algorithm can apply to most existing ML frameworks. For
example, it is possible to extend the TensorRT engine [53] to
enable truly INT8 training on NVIDIA Pascal GPUs, rather
than current post-quantization or inference-only INT8 usage.
Comparison with existing work. We have to build Octo
from scratch due to the following limitations of existing
quantization methods. PACT [7] is designed for quantized
inference by optimizing the clipping range of activations in
forward pass, without the consideration of gradient calcula-
tion in backward pass. Fake QAT [23] needs to pre-train a
full-precision model and uses INT8 fine-tuning to preserve
quantized model quality. Fake QAT only simulates INT8 cal-

culations in forward pass and cannot bring actual acceleration.
Directly using Fake QAT to INT8 training will cause large
errors of dot product and cannot guarantee model conver-
gence. Unified QAT [67] enables INT8 training by adjusting
gradients in backward pass. However, it relies on the calcu-
lation of both quantized and full-precision gradients, as well
as plenty of exponent arithmetic. This computational over-
head requires the support of GPUs and is not feasible to the
device’s resource-constrained environment.
Extensions to other types of models and layers. Octo also
supports other layers and models (e.g., FC layers for saving
more memory and RNNs for time-series prediction) because
our basic optimization targets are tensor-level dot product and
broadcast operations, which are prevalent in modern neural
networks. Although Octo can reduce computational overhead
and save memory footprint for most CNN models, we admit
that Octo is just a first step to exploit the feasibility of deploy-
ing INT8 training on devices. Some complicated scenarios,
such as conducting NLP on large-scale datasets or detecting
real-time objects with high frame rates may still need supple-
mentary methods, where the construction of compensation
layers, clipping strategy of gradients, regularization terms of
loss function should be carefully designed.

8 Conclusion

This work demonstrates that introducing INT8 quantization
to training is a feasible way to implement on-device learning
in practice. To truly enable hardware-level INT8 acceleration,
the key of designing an efficient quantization-aware training
method is to fill the error gap of dot products. This target is
achieved by optimizing data quantization in both forward and
backward passes, via the proposed Loss-aware Compensation
(LAC) and Parameterized Range Clipping (PRC) methods,
respectively. Specifically, we design a novel compensation
layer to adjust the quantized output and smooth the model
update procedure. Our method is implemented in Octo, a
cross-platform system for tiny on-device learning. Evalua-
tions show that Octo holds higher training efficiency over
state-of-the-art quantization training methods and preserves
comparable model quality as full-precision training.

Acknowledgements

This research was supported by the funding from Hong
Kong RGC Research Impact Fund (RIF) with the Project No.
R5060-19 and R5034-18, General Research Fund (GRF) with
the Project No. 152221/19E and 15220320/20E, Collaborative
Research Fund (CRF) with the Project No. C5026-18G, the
National Natural Science Foundation of China (61872310),
Shenzhen Science and Technology Innovation Commission
(R2020A045), and Fundamental Research Funds for the Cen-
tral Universities (B210202079).

376 2021 USENIX Annual Technical Conference USENIX Association

References

[1] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung.
Structured pruning of deep convolutional neural net-
works. ACM J. Emerg. Technol. Comput. Syst.,
13(3):32:1–32:18, 2017.

[2] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel
Soudry. Scalable methods for 8-bit training of neural
networks. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), pages 5151–
5159, Montréal, Canada, 2018.

[3] Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel
Soudry. ACIQ: analytical clipping for integer quantiza-
tion of neural networks. arXiv preprint, abs/1810.05723,
2018.

[4] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,
and Song Han. Once-for-all: Train one network and spe-
cialize it for efficient deployment. In Proceedings of the
International Conference on Learning Representations
(ICLR), Addis Ababa, Ethiopia, 2020.

[5] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han.
Tinytl: Reduce memory, not parameters for efficient
on-device learning. In Proceedings of the Advances
in Neural Information Processing Systems (NeurIPS),
2020.

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Q. Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: an automated end-to-
end optimizing compiler for deep learning. In Proceed-
ings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 578–594,
Carlsbad, USA, 2018.

[7] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and
Kailash Gopalakrishnan. PACT: parameterized clip-
ping activation for quantized neural networks. arXiv
preprint, abs/1805.06085, 2018.

[8] Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa. Natu-
ral language processing (almost) from scratch. J. Mach.
Learn. Res., 12:2493–2537, 2011.

[9] MNIST Dataset. http://yann.lecun.com/exdb/
mnist/, 2013.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. Imagenet: A large-scale hierarchical
image database. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 248–255, Miami, USA, 2009.

[11] Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learn-
ing to prune deep neural networks via layer-wise optimal
brain surgeon. In Proceedings of the Advances in Neu-
ral Information Processing Systems (NeurIPS), pages
4857–4867, Long Beach, USA, 2017.

[12] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive
subgradient methods for online learning and stochas-
tic optimization. J. Mach. Learn. Res., 12:2121–2159,
2011.

[13] Ascend 310 AI Processor: Energy efficiency and
high integration for edges. https://e.huawei.
com/se/products/cloud-computing-dc/atlas/
ascend-310, 2021.

[14] Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn:
Resource-aware multi-tenant on-device deep learning
for continuous mobile vision. In Proceedings of the
Annual International Conference on Mobile Comput-
ing and Networking (MobiCom), pages 115–127, New
Delhi, India, 2018.

[15] TensorFlow Lite: ML for Mobile and Edge Devices.
https://www.tensorflow.org/lite, 2020.

[16] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic
network surgery for efficient dnns. In Proceedings of
the Advances in Neural Information Processing Systems
(NeurIPS), pages 1379–1387, Barcelona, Spain, 2016.

[17] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan,
and Pritish Narayanan. Deep learning with limited nu-
merical precision. In Proceedings of the International
Conference on Machine Learning (ICML), volume 37,
pages 1737–1746, Lille, France, 2015.

[18] Song Han, Huizi Mao, and William J. Dally. Deep com-
pression: Compressing deep neural network with prun-
ing, trained quantization and huffman coding. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR), San Juan, Puerto Rico, 2016.

[19] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao
Gong, Shijian Tang, Erich Elsen, Peter Vajda, Manohar
Paluri, John Tran, Bryan Catanzaro, and William J. Dally.
DSD: dense-sparse-dense training for deep neural net-
works. In Proceedings of the International Conference
on Learning Representations (ICLR), Toulon, France,
2017.

[20] Song Han, Jeff Pool, John Tran, and William J. Dally.
Learning both weights and connections for efficient neu-
ral networks. arXiv preprint, abs/1506.02626, 2015.

[21] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky.
Rmsprop: Divide the gradient by a running average of
its recent magnitude. In COURSERA: Neural Networks
for Machine Learning, Lecture 6.5, 2012.

USENIX Association 2021 USENIX Annual Technical Conference 377

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://e.huawei.com/se/products/cloud-computing-dc/atlas/ascend-310
https://e.huawei.com/se/products/cloud-computing-dc/atlas/ascend-310
https://e.huawei.com/se/products/cloud-computing-dc/atlas/ascend-310
https://www.tensorflow.org/lite

[22] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint, abs/1704.04861, 2017.

[23] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong
Zhu, Matthew Tang, Andrew G. Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training of
neural networks for efficient integer-arithmetic-only in-
ference. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
2704–2713, Salt Lake City, USA, 2018.

[24] Sangil Jung, Changyong Son, Seohyung Lee, JinWoo
Son, Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang,
and Changkyu Choi. Learning to quantize deep net-
works by optimizing quantization intervals with task
loss. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
4350–4359, Long Beach, USA, 2019.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In Proceedings of the In-
ternational Conference on Learning Representations
(ICLR), San Diego, USA, 2015.

[26] Atlas 200DK AI Developer Kit. https://e.huawei.
com/us/products/cloud-computing-dc/atlas/
atlas-200, 2020.

[27] Jetson AGX Xavier Developer Kit. https:
//developer.nvidia.com/embedded/
jetson-agx-xavier-developer-kit, 2021.

[28] Alex Krizhevsky. Learning multiple layers of features
from tiny images. University of Toronto, 2012.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural
networks. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), pages 1106–
1114, Lake Tahoe, USA, 2012.

[30] Liangzhen Lai, Naveen Suda, and Vikas Chandra.
CMSIS-NN: efficient neural network kernels for arm
cortex-m cpus. arXiv preprint, abs/1801.06601, 2018.

[31] Lieven De Lathauwer, Bart De Moor, and Joos Van-
dewalle. A multilinear singular value decomposition.
SIAM J. Matrix Anal. Appl., 21(4):1253–1278, 2000.

[32] Yuhang Li, Xin Dong, and Wei Wang. Additive powers-
of-two quantization: An efficient non-uniform discretiza-
tion for neural networks. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR),
Addis Ababa, Ethiopia, 2020.

[33] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang
Gan, and Song Han. Mcunet: Tiny deep learning on
iot devices. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[34] Zhouhan Lin, Matthieu Courbariaux, Roland Memise-
vic, and Yoshua Bengio. Neural networks with few
multiplications. In Proceedings of the International
Conference on Learning Representations (ICLR), San
Juan, Puerto Rico, 2016.

[35] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexan-
der C. Berg. SSD: single shot multibox detector. In
Proceedings of the European Conference on Computer
Vision (ECCV), volume 9905, pages 21–37, Amsterdam,
2016.

[36] Christos Louizos, Matthias Reisser, Tijmen Blankevoort,
Efstratios Gavves, and Max Welling. Relaxed quantiza-
tion for discretized neural networks. In Proceedings of
the International Conference on Learning Representa-
tions (ICLR), New Orleans, USA, 2019.

[37] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu
Liu, Yu Wang, and William J. Dally. Exploring the
regularity of sparse structure in convolutional neural
networks. arXiv preprint, abs/1705.08922, 2017.

[38] Akhil Mathur, Nicholas D. Lane, Sourav Bhattacharya,
Aidan Boran, Claudio Forlivesi, and Fahim Kawsar.
Deepeye: Resource efficient local execution of multiple
deep vision models using wearable commodity hard-
ware. In Proceedings of the Annual International Con-
ference on Mobile Systems, Applications, and Services
(MobiSys), pages 68–81, Niagara Falls, USA, 2017.

[39] Bradley McDanel, Sai Qian Zhang, H. T. Kung, and
Xin Dong. Full-stack optimization for accelerating cnns
using powers-of-two weights with FPGA validation. In
Proceedings of the ACM International Conference on
Supercomputing (ICS), pages 449–460, Phoenix, USA,
2019.

[40] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Agüera y Arcas. Communication-
efficient learning of deep networks from decentralized
data. In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS), vol-
ume 54, pages 1273–1282, Fort Lauderdale, USA, 2017.

[41] PyTorch Mobile. https://pytorch.org/mobile/
home/, 2020.

[42] Markus Nagel, Mart van Baalen, Tijmen Blankevoort,
and Max Welling. Data-free quantization through
weight equalization and bias correction. In Proceedings

378 2021 USENIX Annual Technical Conference USENIX Association

https://e.huawei.com/us/products/cloud-computing-dc/atlas/atlas-200
https://e.huawei.com/us/products/cloud-computing-dc/atlas/atlas-200
https://e.huawei.com/us/products/cloud-computing-dc/atlas/atlas-200
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/

of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 1325–1334, Seoul, Korea (South),
2019.

[43] Pybind11: Seamless operability between C++11 and
Python. https://pybind11.readthedocs.io/en/
stable/index.html, 2020.

[44] Jay H. Park, Gyeongchan Yun, Chang M. Yi, Nguyen T.
Nguyen, Seungmin Lee, Jaesik Choi, Sam H. Noh, and
Young-ri Choi. Hetpipe: Enabling large DNN training
on (whimpy) heterogeneous GPU clusters through inte-
gration of pipelined model parallelism and data paral-
lelism. In Proceedings of the USENIX Annual Technical
Conference (ATC), pages 307–321, 2020.

[45] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed DNN
training acceleration. In Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP), pages
16–29, Huntsville, Canada, 2019.

[46] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deep-
walk: online learning of social representations. In
Proceedings of the ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD),
pages 701–710, New York, USA, 2014.

[47] Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi. Xnor-net: Imagenet classifica-
tion using binary convolutional neural networks. In
Proceedings of the European Conference on Computer
Vision (ECCV), volume 9908, pages 525–542, Nether-
lands, 2016.

[48] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. In Proceedings of the International Conference
on Learning Representations (ICLR), San Diego, USA,
2015.

[49] Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin
Graham, and Hervé Jégou. And the bit goes down: Re-
visiting the quantization of neural networks. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR), Addis Ababa, Ethiopia, 2020.

[50] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott E. Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–9, Boston, USA, 2015.

[51] Apple Face ID Advanced Technology. https://
support.apple.com/en-us/HT208108, 2020.

[52] Eigen: A C++ template library for linear algebra. https:
//eigen.tuxfamily.org/index.php, 2020.

[53] NVIDIA TensorRT. https://developer.nvidia.
com/tensorrt, 2021.

[54] Mineto Tsukada, Masaaki Kondo, and Hiroki Matsutani.
A neural network-based on-device learning anomaly
detector for edge devices. IEEE Trans. Computers,
69(7):1027–1044, 2020.

[55] Li Wan, Matthew D. Zeiler, Sixin Zhang, Yann LeCun,
and Rob Fergus. Regularization of neural networks
using dropconnect. In Proceedings of the International
Conference on Machine Learning (ICML), volume 28,
pages 1058–1066, Atlanta, USA, 2013.

[56] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song
Han. HAQ: hardware-aware automated quantization
with mixed precision. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 8612–8620, Long Beach, USA, 2019.

[57] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E. Gonzalez. Skipnet: Learning dynamic routing
in convolutional networks. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), volume
11217, pages 420–436, Munich, Germany, 2018.

[58] Xundong Wu, Yong Wu, and Yong Zhao. Binarized neu-
ral networks on the imagenet classification task. arXiv
preprint, abs/1604.03058, 2016.

[59] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint, abs/1708.07747,
2017.

[60] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In Proceedings of
the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 595–610, Carlsbad,
USA, 2018.

[61] Pengtao Xie, Jin Kyu Kim, Yi Zhou, Qirong Ho, Ab-
himanu Kumar, Yaoliang Yu, and Eric P. Xing. Dis-
tributed machine learning via sufficient factor broadcast-
ing. arXiv preprint, abs/1511.08486, 2015.

[62] Pengtao Xie, Jin Kyu Kim, Yi Zhou, Qirong Ho, Abhi-
manu Kumar, Yaoliang Yu, and Eric P. Xing. Lighter-
communication distributed machine learning via suffi-
cient factor broadcasting. In Proceedings of the Con-
ference on Uncertainty in Artificial Intelligence (UAI),
New York, USA, 2016.

USENIX Association 2021 USENIX Annual Technical Conference 379

https://pybind11.readthedocs.io/en/stable/index.html
https://pybind11.readthedocs.io/en/stable/index.html
https://support.apple.com/en-us/HT208108
https://support.apple.com/en-us/HT208108
https://eigen.tuxfamily.org/index.php
https://eigen.tuxfamily.org/index.php
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

[63] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong
Ho, Xiaodan Liang, Zhiting Hu, Jinliang Wei, Pengtao
Xie, and Eric P. Xing. Poseidon: An efficient communi-
cation architecture for distributed deep learning on GPU
clusters. In Proceedings of the USENIX Annual Tech-
nical Conference (ATC), pages 181–193, Santa Clara,
USA, 2017.

[64] Huaqing Zhang, Jian Wang, Zhanquan Sun, Jacek M.
Zurada, and Nikhil R. Pal. Feature selection for neural
networks using group lasso regularization. IEEE Trans.
Knowl. Data Eng., 32(4):659–673, 2020.

[65] Qihua Zhou, Zhihao Qu, Song Guo, Boyuan Luo, Jingcai
Guo, Zhenda Xu, and R. Akerkar. On-device learning
systems for edge intelligence: A software and hardware
synergy perspective. IEEE Internet of Things Journal,
pages 1–1, 2021.

[66] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and
Junshan Zhang. Edge intelligence: Paving the last mile
of artificial intelligence with edge computing. Proc.
IEEE, 107(8):1738–1762, 2019.

[67] Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu,
Yanfei Wang, Zhelong Li, Xiuqi Yang, and Junjie Yan.
Towards unified INT8 training for convolutional neural
network. arXiv preprint, abs/1912.12607, 2019.

380 2021 USENIX Annual Technical Conference USENIX Association

	Introduction
	Motivation
	Limitations of In-cloud Learning
	Rise of On-device Learning
	Bit Precision and Data Quantization
	Potential Gains
	Why not Existing Quantization Methods?

	Overview and Design Challenges
	Octo Design
	Workflow of 8-bit Training
	Fake Quantization Training
	Octo's Training

	Analysis of Error Gap
	Loss-aware Compensation
	Compensation Layer
	L2-Regularization of Compensation Parameters

	Backward Quantization
	Calculation of Derivative Flows
	Parameterized Range Clipping

	Implementation
	Network Construction
	Gradient Calculation
	Hardware Deployment

	Evaluation
	Methodology
	Training Efficiency and Quality
	Ablation Study
	Image Processing Throughput
	Octo Deep Dive
	System Overhead
	Computational Time Cost
	Memory Footprint

	Discussion
	Conclusion

