
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

First Responder: Persistent Memory Simultaneously
as High Performance Buffer Cache and Storage

Hyunsub Song, Shean Kim, J. Hyun Kim, Ethan JH Park, and Sam H. Noh, UNIST
https://www.usenix.org/conference/atc21/presentation/song

First Responder: Persistent Memory Simultaneously as
High Performance Buffer Cache and Storage

Hyunsub Song Shean Kim J. Hyun Kim Ethan JH Park Sam H. Noh

UNIST (Ulsan National Institute of Science and Technology)

Abstract
Persistent Memory (PM) is a new media with favorable

characteristics that can vastly improve storage I/O perfor-
mance. While new PM based file systems have been devel-
oped to exploit PM, most work have not been successful in
fully integrating PM media with traditional storage media
such as SSDs and HDDs. We present First Responder (FR), a
means to exploit the beneficial features of PM, while making
use of modern and mature file systems such as Ext4 developed
for traditional storage devices. Conceptually, FR is much like
a buffer cache, but much more is involved such as maintaining
consistency under failure and providing featherweight man-
agement overhead. FR brings about multiple benefits. First,
we retain the maturity of existing file systems allowing de-
ployment of FR at settings where traditional file systems are
deployed. Second, traditional storage devices supported by
these file systems can be used allowing easy integration of
PM with traditional storage. Finally, FR allows in-order file
system semantics at close to PM device latency. With experi-
mental evaluations with the Intel DC PMM, we show that FR,
when used in cache form, can outperform Ext4 by more than
9×, while providing durable in-order file system semantics,
whereas Ext4 cannot. We also show that when used as part of
a typical file system, performance is comparable with NOVA
and Ext4-DAX.

1 Introduction
Persistent Memory (PM) is a new media with favorable char-
acteristics such as nonvolatility and close to DRAM perfor-
mance that can vastly improve storage I/O performance. To
exploit these characteristics, new PM based file systems are
being developed [7,8,19,23,52,58]. These file systems, while
providing high performance, suffer from the following two
limitations. First, as the time to maturity for a file system is
long and a file system is a complex beast [11, 30, 42], most
of these relatively young and immature file systems will not
survive the test of time. For example, among the many file sys-
tems proposed, currently, NOVA [52] and DAX [36] are the
only ones that are stable and being maintained. Second, how

these file systems will integrate with existing storage devices
such as SSDs and HDDs is not straightforward. For example,
both NOVA and DAX assume that the storage media is PM.
In the long run, PM will fill up and some form of migration
may be needed to vacate PM, which some file systems are
not designed to do. Efforts to resolve this have been proposed.
In their seminal paper, Kwon et al. propose a cross-media
file system called Strata that can span a set of heterogeneous
storage devices such as PM and traditional devices [23]. Sep-
arately, Ziggurat, proposed by Zheng et al., is a tiered file
system that supports a combination of devices [58]. How-
ever, both proposals suffer from the first limitation; Strata, at
the time of this writing, still is not fully functional [46] and
Ziggurat is not open sourced and thus, its status is unknown.

The goal of this study is to encompass the goals of previous
PM file system developments. More specifically, the goals of
previously proposed PM based file systems can be summa-
rized as follows. First, file system performance should extract
the benefits that PM brings as storage media. This is an obvi-
ous goal when deploying PM. Second, it should support the
more natural in-order file system semantics [23] brought upon
by PM. In-order file system semantics is where all file system
operations, including writes, occur in the exact order in which
they are executed. Typically, this has been impossible due to
the writes, which were too slow to persist in order because of
the slow devices. Thus, application developers had to choose
between performance and durability. While it is true that some
applications do not require durability of writes or are highly
optimized to minimize sync’s, many applications knowingly
choose performance over durability, being aware of the neg-
ative consequences of failures [10, 37, 42]. With the advent
of PM, such choice seems unnecessary as providing in-order
file system semantics should be natural and easy [23, 42, 52].
However, to date, supporting such semantics is possible only
with a total revamp of the file system. Third, it should support
traditional storage media alongside PM (similarly to Strata
and Ziggurat) [23, 58]. Our work encompasses these goals
and yet, instead of developing yet another file system, our de-
sign allows to retain the modern, mature, constantly evolving

USENIX Association 2021 USENIX Annual Technical Conference 839

(a) Traditional FS (b) PM FS (c) Tiered PM FS (d) FR

User

Kernel

app

I/O Stack

app app app

Disk

(SSD, HDD)

Tiered File System

(e.g., Strata, Ziggurat)f

PM

File System

(e.g., Ext4, Btrfs)f

Disk

(SSD, HDD)

Disk

(SSD, HDD)PM
Disk

(SSD, HDD)

File System

(e.g., Ext4, Btrfs)f

PM File System

(e.g., DAX, NOVA)

Buffer Cache
DRAM

PM

DM-WriteCache

PM

FR

Figure 1: Comparison of PM use scenarios for file systems

file systems such as Ext4 developed for traditional storage
devices.

In this study, we introduce First Responder (FR), the solu-
tion that we propose. FR, like a buffer cache, absorbs requests
at the topmost layer of the I/O stack in PM, as shown in Fig-
ure 1(d), then immediately responds to the requests (hence,
the name). For reads, the requests end there, while for writes,
the requests are forwarded to the traditional file system, in
effect, hiding the entire I/O stack overhead.

At first glance, FR simply appears to be nothing but a buffer
cache that is persistent, but in reality, a lot more is involved. In
fact, FR is a union of storage and a cache. As it will become
more evident later, FR is storage as the contents that reside
in FR are consistent and permanent like any that is stored in
traditional storage media that have gone through the entire
storage stack. Thus, in that sense, flushing to the traditional
file system underneath is optional. FR is also a cache as the
size is limited (though generally large) and eventually, it is
flushed to the traditional storage media through the I/O stack.
Naturally, the design of FR is much more involved as main-
taining consistency under failure and providing featherweight
management overhead become technical issues that need to
be dealt with. We elaborate on these issues later.

There are two key benefits to FR. First, writes are imme-
diately durable. Thus, even applications that do not require
in-order semantics, but that issue occasional fsync()s can
benefit. Second, FR can coexist largely independently of the
underlying traditional file system. This allows for any mature
file system to take advantage of the benefits of PM. This is
especially important as efforts to move to disaggregation of
resources is gaining traction [3, 43, 48]. Thus, much extra
effort to integrate PM based file systems to any conventional
setting including disaggregated settings is not necessary with
FR. While we concentrate on the Ext4 file system in most
of our discussions, we also show performance results when
using Btrfs [5, 41] as the underlying file system.

Our performance evaluations with the Intel DC PMM using
an FIO generated synthetic workload show that FR, when used
in cache form, can outperform Ext4 by more than 9×, despite
providing durable in-order file system semantics, while Ext4
cannot. Using the Filebench and YCSB benchmarks, we also
show that when FR is used as part of a typical file system,
performance is comparable with the default Ext4, Ext4 with
DM-WriteCache, NOVA, and DAX, while, again, providing

Table 1: Characteristics of file systems in Figure 1. In-order:
In-order semantics support, Media: Storage media supported,
Mature: Mature file system support. (* refers to underlying
file system being mature, not that FR is.)

(a) Trad. FS (b) PM FS (c) Tiered FS (d) FR

In-order No Yes Yes Yes
Media All PM only All All
Mature Yes No No Yes∗

durable in-order file system semantics.
In the remainder of the paper, we first discuss progress on

work related to PM and distinguish how FR is different from
them. Then, we present the design of FR in two separate sec-
tions; Section 3 discusses the overall design and in Section 4,
we present a detailed discussion of how FR maintains consis-
tency as this is key in providing a correct, yet efficient system
to users. In Section 5, we perform a comprehensive evaluation
of FR using the Intel DC PMM platform. We compare FR
with NOVA and DAX, the two open source PM supporting file
systems, and the default Ext4 and DM-WriteCache, which do
not provide immediate durable in-order semantics supported
by PM file systems. Then, we conclude in Section 6.

2 Related Work
Persistent Memory (PM) technologies represented by PCM
(Phase Change Memory) [38] and STT-MRAM [22] are being
considered as high performance storage mediums as they are
nonvolatile and yet, provide random byte addressability and
latency similar to DRAM. Intel recently commercialized the
Optane DC PMM, the only product currently available in the
market [15, 17, 53]. It can be used in one of various forms,
specifically, as storage, as memory with DRAM as its cache,
and as an extension of memory [14]. While many recent
studies have considered file systems for PM [7,8,19,23,52,58],
our work is not about developing a new PM file system, but
rather on integrating PM with existing modern file systems
developed for traditional storage devices.

The closest set of related work are studies on the buffer (or
page) cache. The buffer cache, as depicted in Figure 1(a), is
a DRAM layer that attempts to hide the low performance
of storage and has been a topic of study for generations,
mostly concentrating on the replacement or prefetching pol-
icy issues [2, 18, 50]. This was important as performance
between DRAM and storage was many orders of magni-
tude different. With the advent of higher performing stor-
age devices, there have been arguments as to the need for
the buffer cache [8, 21, 52] as well as attempts to revisit this
topic [20, 24, 51]. In particular, the DM-WriteCache [20] is
an interesting optimization that introduces a new nonvolatile
layer, as PM or SSD, just before the slower storage device,
which could be an SSD or HDD, as depicted in the lower part
of Figure 1(a). DM-WriteCache, supported from Linux 4.18
and beyond, is a writeback cache that helps to improve perfor-
mance by caching writes from the page cache to the storage
media. However, as writes are first written to the page cache,

840 2021 USENIX Annual Technical Conference USENIX Association

in-order file system semantics is not supported. The contrast
between Figures 1(a) and (d) show how DM-WriteCache and
FR are different by design.

There are also studies of the buffer cache that exploit the
nonvolatile nature of PM [25, 40, 51]. UBJ, one of the first
studies in this realm, makes use of PM based main memory
as a buffer cache that unifies the functionalities of journaling
and caching [25]. Tinca is a PM based buffer cache located in
the external disk cache below the DRAM-based main mem-
ory [51] that uses a similar technique proposed in UBJ. FR
is different from these studies in that durability is provided
from the earliest layer of the I/O stack allowing immediate
response. This requires careful design for consistency with
the underlying file system, which these earlier studies neglect.

Retaining consistency is a key design issue for FR. Sim-
ilarly, consistency has been the central issue in the design
of numerous studies on data structures for PM. With efforts
to reduce instructions that control write order [13, 35] such
as clwb and sfence as these instructions incur considerable
overhead [17], while, at the same time, abiding to the 8-byte
failure atomicity restriction to maintain consistency, various
data structures for PM have been proposed [12, 27, 31, 55].
FR conforms with these efforts as it carefully designs the use
of 8-byte writes with clwb and sfence.

Other related studies include PM based file systems. Re-
cent studies have proposed many optimizations including
user-level approaches to avoid crossing the kernel boundary
in an effort to improve performance [7, 19]. While so, only
NOVA and DAX are stably supported in Linux. They all,
more or less, share the common layout shown in Figure 1(b).
Out of these, as mentioned previously, Strata and Ziggurat,
are unique in their support of traditional storage media in
the form depicted in Figure 1(c). These diagrams contrast
the differences between them and FR. Finally, a recent study
presents Assise, a new distributed file system based on Strata,
where PM is used as a client-local cache layer [4]. The use of
PM cache and its effectiveness is coordinated in a distributed
setting through replication and choices between pessimistic
and optimistic consistency modes. This is different from our
approach where we exploit existing file systems and consis-
tency is always immediate, though locally ensured. Table 1
summarizes how previous local file systems differ from FR.

3 First Responder: The Design
In this section, we present the design of First Responder (FR).
Before moving on, we set the premise on which our discussion
is presented. First, even though FR could be implemented in
either the user or kernel layer, we will describe it within the
latter layer as we implement it in the VFS layer. Second, as
the main dealings of FR are with the read() and write()
calls and as read() follows trivially from write(), we con-
centrate on write() in the following discussions. We first
discuss the assumptions, then the design choices that we make
based on the challenges we face.

3.1 Basic Architecture and Design Choices
Like many previous studies that assume memory to be a
hybrid of traditional DRAM and PM, FR works under this
assumption [4, 33, 52]. PM used by FR is a temporary storing
ground, and yet it is also storage. That is, what is stored in PM
is durable and consistent, though eventually, we anticipate
its contents to be stored in traditional storage media such as
SSDs and HDDs.

Traditional systems support two types of write modes,
namely, synchronous and asynchronous. In FR, all aligned
full chunk and/or new writes are synchronous, that is, they
are persisted immediately into PM by FR. Writes of partial
chunks already residing in underlying storage must first be
read into PM for consistency, but we find them to be only a
small portion of writes. FR manages the data and the location
of where the data should be placed within PM, guaranteeing
consistent and durable writes as PM is nonvolatile. Thus, ap-
plications upon receiving the response can continue execution
being assured that the write I/O request was serviced suc-
cessfully. Note that this has the consequence of dramatically
reducing the I/O path for such synchronous writes compared
to traditional file systems.

In the previous section, we mentioned that FR is like a
buffer cache, but that much more is involved. We now dis-
cuss the two specific issues that must be resolved, that is,
maintaining consistency upon failure and providing feather-
weight management overhead, which the traditional buffer
cache cannot support.
Handling Overhead: Recall that the traditional buffer cache
was developed as an optimization to alleviate the burden
due to slow storage, which was orders of magnitude slower
than DRAM. Thus, the buffer cache maintained separate data
structures and elaborate replacement algorithms were devel-
oped. Compared to accessing slow disks, maintaining such
data structures and running these algorithms were negligible.
However, as previously observed, software overhead consid-
ered to be negligible in the past is no longer so with faster
media [26, 45, 54]. This becomes more important as PM is
close to DRAM performance, which means that every little
overhead counts. Thus, management with such high cost is
unacceptable with PM systems.

To alleviate such overhead, FR chooses a simple, static
indexing scheme for placement as well as replacement as we
explain below. However, we must first argue that this is a valid
approach. For this, we perform our own set of experiments to
quantify the software effects of managing a cache, which we
elaborate on in Section 5.2. Briefly, we implement indexing
structures such as the Radix tree and the LRU replacement pol-
icy and find the overhead to be an order of magnitude higher
than the static approach that we propose, concluding that with
faster media such as PM, software overhead is profound.

The obvious question here, then, is, won’t this static index-
ing increase the miss ratio? The obvious answer, of course, is
yes; but we argue that this is true only under the traditional

USENIX Association 2021 USENIX Annual Technical Conference 841

f1
f0 fi

fi+1 Underlying

storage device

fi fi fifi fi+1 fi+1

f0 f1f0 f1 f1 fi fi…

fi Stride

f0 Stride

Key0 Keyi

Keyi+1

Key1

Key (7) Time stamp (8)

Status flag (1) (bytes)

File size (8) Inode no. (8)

Chunk

Tag

Chunk

Tag

fi+1 Stride

f1

…

Slot

Figure 2: Internal organization and components of FR

assumption that the cache size is a very small fraction of
storage capacity. This leads to our more important argument
that, if the cache is sufficiently large, then, we may be able to
avoid most cache misses. For reads, a miss is inevitable on the
first read from storage. However, aside from these, it is well
known that as the cache grows, the effect of the caching pol-
icy diminishes. For writes, a miss can be defined as a forced
storage access when the new write collides with a block that
is dirty. Then, so long as we keep all blocks clean, that is,
synchronized with storage, then all misses can be eliminated.
We show below that, under simplifying assumptions, if the
cache is large enough all write misses can be avoided.

Imagine the cache to be organized in array form with the
index i and Sb denoting the location and block size of the
cache, respectively. Let Cs be the cache size and assume that
for our system, the time to flush a block to storage and receive
an acknowledgement (in order to synchronize) takes at most
t f time. Let us assume that the peak write rate for the cache
media is rpeakGB/s. Assume that a very large write that is
purely sequential arrives consecutively in Sb units and in ti
intervals, being placed from index i = 0 of the cache. To avoid
all misses, the cache should be large enough such that when
the entire cache fills up and wraps around to the beginning of
the cache, the cache entries there are all clean. Thus,

t f ≤
Cs

rpeak
≤ Cs× ti

Sb
⇒ Cs ≥

t f

ti
×Sb (1)

Then, with Cs satisfying Equation 1, no forced flushing of
dirty blocks will occur for sequential writes.

Let us apply Equation 1 on an example. Assuming Sb =
4KB, for current PM, we find that the peak write rate is
roughly 4GB/s (not including any software overhead) when
clwb and sfence operations are issued per chunk write. Thus,
even when writes are coming in at full throttle, simple calcu-
lations show that a 128GB PM will need 32 seconds to wrap
around the cache. In a recent article, Alibaba reported that it
saw a peak order rate of 544,000/s [47]. While we understand
that orders do not translate to actual I/O and, as Vuppalap-
ati et al. report for the Snowflake infrastructure running on
the Google Cloud Platform and Microsoft Azure [49], I/O
requests come at more moderate rates, let us take the Alibaba
numbers and say that an Sb = 4KB request comes in every
2µs, that is, ti = 2µs. Then, to wrap around the 128GB of PM,
it takes 64 seconds.

In real life, of course, not all writes are sequential and other
factors come into play. Also, keeping a cache in the GB range
was not considered the norm though this is changing. One
example is the Memory Mode use of PM where all of DRAM
(which is in the many GB range) is used as a cache of PM [14].
However, as we will see later, sequential allocation of files is
an important strategy in FR. Furthermore, as FR is based on
the premise that PM is in the size range used by PM based file
systems such as NOVA and DAX, for example, at least 128GB,
this sufficiently large cache size allows the accommodation
of a static indexing scheme, which we now describe.

Figure 2 shows, at a high level, how FR manages its space.
FR uses a simple indexing structure based on a key associated
with each file. (The details of what comprises chunks and slots
as well as the how the indexing structures are maintained are
given in Section 4.) Specifically, the index is simply calculated
using keyc+1 = keyc + stride where keyc is the current key
(initially 0) and stride is a value dynamically determined for
the workload. (Details of terms and their use are discussed
in Section 4). In short, every file has its destined location
within FR with no PM allocator involved, resulting in very
little overhead for placement. Similarly, there is no need for
replacement victim selection.
Handling Consistency: FR is a management module for data
that resides in PM. That is, when a user requests a write, FR is
the module that provides the response. The writes are made to
PM, and they must be made durable such that they are recov-
erable upon system failure. For example, we cannot have torn
writes; upon recovery from failure, its state should be either
before the write or after the write. Also, as FR is the first re-
sponder to the underlying file system, eventually all data (and
metadata) writes must reach the underlying storage, be it SSD
or HDD. For example, consider a case where an overwrite
of a block A, which resides in traditional storage happens.
Upon a write, the user could receive an acknowledgement
immediately after the data is placed in PM. However, this
data and block A in storage are not in sync. Ensuring immedi-
ate in-order file semantics so that what the user perceives as
valid data is indeed the (eventual) actual data, even in case of
failures, is not a trivial matter. This may incur considerable
performance overhead or require a completely new design
of a PM-aware data structure, which is not an easy task as
exemplified by previous studies [12, 27, 31, 59].

For this consistency issue, we develop a protocol under
the PM 8-byte failure atomicity assumption. Like previous
methods, the basic idea is to keep a dual copy of the data [16,
32], but the devil is in the details. Thus, a detailed and lengthy
discussion is required, which we continue in the next section,
along with a discussion on the failure recovery mechanism.

4 Data Consistency and Recovery Protocol
In this study, we say data in a file is consistent if, upon a write
request to that file by an application, the data in the file is
as before the write request or reflects all of the contents of

842 2021 USENIX Annual Technical Conference USENIX Association

Write(K’)

K K

L’

K

L Load

K

L

K

L

Write(K’)

K

Flush

K

L

K

L L

Write(L’)

Flush K

L

K

L

Write(M’)

L

Flush

K K K

K

Copy

K

K’

K

K’

(a) Case 1 (b) Case 2-1

K Load

Step 1

K’

Step 2 Step 1 Step 2 Step 3 Step 4 Step 5

(c) Case 2-2

Step 1 Step 2 Step 3 Step 4

à To Step 1 of

Case 2-1

à To Initial state of

Case 2-1

à To Initial state of

Case 2-2

Initial state Initial state

K

Initial state

Initial state Step 1 Step 2 Initial state Step 1 Step 2 Initial state Step 1 Step 2

(d) Case 3-1 (e) Case 3-2 (f) Case 3-3

K’

Step 3

Write(K’)

K

K’

Write(L’)

K

L’

Figure 3: The figure shows the steps taken based on the initial condition of a slot when a write is requested. The C(V,N) values
on top and below the slot, that is, the two chunks are the status flags associated with each chunk. The changes to these status
flags, denoted by the bold characters, are done atomically.

the issued write. Furthermore, guaranteeing data consistency
means that write requests that have been acknowledged as
having been written are eventually made durable and found
through the underlying file system. In this section, we present
the protocol that FR uses to guarantee data consistency.

4.1 The Basic Components
Figure 2 also shows the inner components of FR. There are a
total of P continuous chunks, where a chunk is the load/store
unit to storage, and P tags, with each tag being associated with
one chunk. The chunks are organized in pairs, which we call
a slot. As will be evident later, both chunks within a slot are
used in full, making full use of the entire PM. The tag consists
of the key, bits to represent the status of the corresponding
chunks, the file size, the inode number, and the timestamp. The
key is a unique number associated with the file slot assigned
to it by FR upon file creation and stored in the inode of the file.
This key is simply a global key maintained by FR, initialized
to 0 and monotonically increased in stride increments upon
every file creation, where the stride is set to reduce collisions,
where a collision is defined as an allocation of two (or more)
files to the same slot. We discuss how the stride is set in
Section 4.3. Thus, the number of files that can be created is
limited by the number of bits used to represent this value. In
our current implementation, we use 56 bits and, for now, we
make no effort to remedy this limitation as we think this is
enough to represent the number of files for a system lifetime.
There are other metadata in the tag, but they are discussed as
the need arises.

4.2 Data Consistency Protocol
With PM, design for consistency must be done with the 8-byte
failure-atomic write supported by the architecture. With tradi-
tional systems, providing durability with consistency becomes
complex as the critical path to durability can be quite long.

However, as we elaborate below, with FR, no allocation algo-
rithm is invoked and only a few bytes are needed to guarantee
data consistency of the file system.
Writes: With FR, it is vital that writes to chunks are done
in an atomic manner, and thus, immediately durable. We now
present the core design of FR that quickly enables durable
in-order semantics of the data written to the file system.

For our discussion, we assume that the key and status flag
in the tag are written with 8-byte failure atomicity guarantee
supported by the hardware, where the status flag contains
2 flags V and N (and other information that we ignore for
now). V distinguishes valid versus invalid and N with value
1 denotes the new, more recently written chunk in the slot.
We denote the flag states of chunk C as C(V,N), and further,
denote the states of the pair of chunks in slot S as S[C1,C2].
We regard S[C1,C2] and S[C2,C1] the same as the algorithm
works in the same way given the two states.

The series of figures in Figure 3 show how an incoming
write is managed. Upon a chunk write, the slot to place the
chunk is determined by (key mod

⌊P
2

⌋
), which designates the

first chunk of the file determined by the key attribute key
assigned to each file upon creation, and its displacement from
the start of the file. The write that is serviced by FR is denoted
Write(X), and X is an object that is of any size, though in our
discussion, for simplicity, we assume that X is smaller than
or equal to the chunk size. (If X is larger, then it simply takes
multiple chunks, which we discuss separately in Section 4.4.)
The pair of chunks in the slot indexed can be in one of three
states, denoted above and below the chunks in Figure 3:

• S[C(0,0),C(0,0)], the slot is empty, that is, both chunks
of the pair contain no data (empty/invalid)

• S[C(1,1),C(0,0)], only one chunk has valid data
• S[C(1,1),C(1,0)], both chunks have valid data.

We now discuss each of the cases in detail.
Case 1: This is when both chunks of the slot are invalid,

that is, S[C(0,0),C(0,0)]. We can choose any chunk of the

USENIX Association 2021 USENIX Annual Technical Conference 843

pair to write to. Upon Write(K’)), if a chunk of the unmodi-
fied K exists in storage, it is first read in to the chunk.1 Then,
K’ is written to the chunk and persisted with the clwb and
sfence operations. Then, the tag C(0,0) is set to C(1,1), and
only after this setting is the request acknowledged.

Note that clwb and sfence operations must be performed
by default for writes to FR for the write to persist. Hence,
we assume that they follow by default unless otherwise men-
tioned and will be omitted in discussions hereafter. We reiter-
ate that, here and throughout our discussion, these flags are
part of the tag and changes to them are done atomically. The
state of the chunk pair in FR before and after Write(K’) is
shown in Figure 3(a).

Case 2: Here one chunk holds a valid object K while the
other is invalid, that is, S[C(1,1),C(0,0)]. There are two cases
to consider here; first is when K is being modified and the
other is when a new object is being written, which can be dis-
tinguished by the uniqueness of the key. When K is updated,
denoted by Write(K’), C(1,1) is first modified to C(1,0), stat-
ing that K is still valid but is no longer the new chunk. Then,
K is copied to the chunk with state C(0,0) and the update is
reflected in this chunk. Then, C(0,0) is modified to C(1,1),
and finally, C(1,0) is changed to C(0,0) to reflect that this
chunk is now invalid. Thereafter, Write(K’) is acknowledged.
This case is depicted as Case 2-1 in Figure 3(b).

Note that K’ cannot be written to the first chunk directly,
but must be overwritten on a copy of the chunk containing
K. This is because the write may be an overwrite and failure
during this write may result in a torn write. Also note that this
case covers consecutive writes to the same chunk of the same
file, and that in such cases all writes are being handled within
the PM without any interaction with the storage device.

The second case within Case 2 is when a new object L’ is
written to the same slot as the chunk containing object K as
in Figure 3(c). This will happen only when a different file is
allocated to the same slot, that is, upon collision. Starting from
the same initial state, C(1,1) is first modified to C(1,0) as this
chunk will no longer be the new chunk in this slot. If L’ is an
overwrite of a chunk in storage, then the chunk containing L
must first be read into the chunk with state C(0,0), unto which
object L’ is written. Finally, C(0,0) is modified to C(1,1) as
object L’ is now valid and new.

Case 3: The final case is when both chunks in the slot are
valid, that is, S[C(1,1),C(1,0)], and a different valid chunk
needs to be put into this slot. The initial states of such cases are
shown in Figures 3(d)∼(f). Let us assume the initial situation
in these figures, where chunks containing K and L occupy the
slot, with L being the newer of the two chunks. Note that this
situation can arise only when a collision has already occurred
as K and L must be of different files. Let us also assume for
now that both K and L are dirty. There are three cases to

1Note that if the write size is equal to the chunk size, then it need not be
read from storage. Here, we are considering the worst case. This holds for
subsequent discussions as well.

consider. The first two are updates of an existing object K or
L. In these cases, the chunk containing the object that is not
being updated is first flushed. This is to synchronize the dirty
chunk with that in storage, which has the effect of making the
chunk clean. Figures 3(d) and (e) depict these cases.

For Case 3-1 (and Case 3-2) where the older chunk K (the
newer chunk L) is being overwritten, the other chunk L (K)
is flushed and awaits the acknowledgement that the flush has
completed. Once it arrives, C(1,1) (C(1,0)) is changed to
C(0,0), which results in a state identical to the initial state of
Case 2-1. Thus, from here, the steps are the same as Case 2-1.
Note that all flushes in FR are done by writing in Direct I/O
mode (to be specific, with the write_iter() call).

Finally, the third case is when a new object is written to FR.
This would be another collision with a new file on this slot.
Case 3-3 in Figure 3(f) depicts this situation with Write(M’).
Similarly to the previous two cases, we must flush a chunk,
and for this, we choose to flush the older chunk. Hence, in
our example, the chunk containing K is flushed. Once the
acknowledgement of the flush is received, C(1,0) is changed
to C(0,0). This results in the same initial state as Case 2-2.
Thus, we proceed in the same steps as Case 2-2.

Note that, as described, Case 3 always incurs a flush to the
storage device, which can be a source of overhead as the lock
to the slot must be held until the acknowledgement for the
flush is returned. Such flushes occur when a collision occurs
and the chunk to be flushed is valid and dirty. However, note
that if that chunk is either invalid or clean, the chunk need
not be flushed. Fortunately, FR minimizes such flushes by
design; the first source, that is, collision, is remedied by dy-
namically and judiciously assigning the stride value, while
the second source, that is, dirty chunks, is remedied by period-
ically flushing the chunks in the background to make chunks
clean, which we discuss in more detail in the next section.
But first, we discuss how reads are handled.

Reads: Reads are similar to writes. First, the key is used
to find the relevant slot. Then, a read hit is trivial as they are
simply serviced out from FR. Upon a miss, we need to bring
in data from storage. This case is similar to writes in that the
invalid chunk will be used or if there is no invalid chunk, the
old valid and dirty chunk will first be flushed out to a clean
chunk. Then, the data requested will be brought in overwriting
the clean chunk. The process of flushing, atomically changing
the tag values, and loading follow similar steps as writes.

4.3 Strides, Periodic Flushing, and Metadata
Stride Setting: In FR, as a file is created, it is assigned
a unique key, whose value is used to designate a fixed slot
location in FR. Ideally, the files will be assigned as shown
in Figure 2 with no overlap to avoid collisions. However,
this is difficult to achieve as we need prior knowledge of the
files that are created, even for those that may be appended
to later on. If estimated to be too small, then collisions will
occur, possibly incurring forced flushes. If estimated too large

844 2021 USENIX Annual Technical Conference USENIX Association

(for example, f0 in Figure 2), then internal fragmentation
may occur leading to quicker wrap-around, for example, fi in
Figure 2. A wrap-around forces collision that could lead to
forced flushes, leading to degraded performance.

We take an empirical approach in setting the stride. The
basis of our approach is that file sizes are, in general, rela-
tively homogeneous depending on the workload. For example,
files in scientific workloads are small ranging in the few tens
to hundreds of kilobytes [1, 28, 39], while files in database
workloads are quite large being in the tens of MB to tens of
GB range [29,44]. Taking this observation, we create a Stride
Table with <file size, file count> pairs where the ‘file size’ is
a set of fixed numbers, and ‘file count’ is the number of files
that are smaller but closest to ‘file size’. When a new file is
created, we select the next larger ‘file size’ of the entry with
highest ‘file count’ value as the stride value. The next larger
one is selected as a larger value will lead to less possibility of
collisions. As actual writes occur, the Stride Table is updated,
possibly, decrementing one entry while incrementing another.
Maintaining this table take only minimal memory, which in
our implementation is 32KB.
Periodic Flush: While stride setting is one aspect of avoid-
ing collision, periodic flushing is an active measure to avoid
forced flushing due to collisions. Recall that forced flushing
could have a negative effect on performance. To minimize
this effect, we choose to periodically flush the dirty valid
chunks to make them clean. Note that periodic flushing has
no bearing on the consistency of data as FR is simultaneously
storage and a cache. Thus, the period, p, can be set to 0 or to
any value lower than the time to wrap around.

In selecting p, we take hints from Equation 1. For a suffi-
ciently large Cs value such as 128GB or more, the t f value
may be sufficiently small to satisfy Equation 1 even under
severely high request rates. Thus, a reasonable value that will
not overload the underlying file system may be chosen. For
our study, we choose to use p = 10 milliseconds as the default
as this is the value that is generally used for the page cache.
Metadata: The discussion so far primarily focused on data
and maintaining its consistency. As data is flushed to the un-
derlying file system in periodic intervals, the metadata that is
also maintained in the file system will only be synchronized
within interval bounds. To remedy this, FR can take two mea-
sures. The first is regarding the time-related metadata such
as atime or mtime. For this, FR keeps the actual timestamp
for these metadata in the FR tag and flushes them as flushes
occur, whether periodically or by forced flushes. The second
measure is to modify metadata reading calls such as stat()
to first flush the relevant chunks, and then, read the metadata.
In FR, we have implemented the first measure, but only the
stat() call for the second measure.

4.4 Multi-chunk Writes
While we have described writes for a single chunk, in reality
writes may be composed of multiple chunks. We refer to such

writes as multi-chunk writes, which we now describe.
Fundamentally, multi-chunk writes are the same as single

chunk writes. The key difference is that we provide a means to
act upon the multi-chunks in an atomic manner. As accesses
to chunks are controlled through individual locks, we acquire
locks for each of the chunks in sequence from the first chunk
to the last. Writes to chunks happen along with the acquiring
of the locks. On writing the first chunk, the not-complete
flag (another bit in the status flag byte in the tag) of this
chunk is set to designate that the multi-chunk write has not
yet completed. Then, the subsequent chunks are written to,
along with the timestamp tag, where the timestamp of the
first chunk is written. This timestamp plays a vital role in
identifying all the chunks written from the same write()
call when recovering from a failure. When all the chunks
have been written to, the not-completed flag is reset, the write
requesting application is notified, and the locks for all chunks
are released, in this order.

4.5 Failure Recovery
The contents of FR are always recoverable from faults, be it
hardware or software faults. The only exception is recovery
from PM device failure where PM content is irrecoverable
due to media failures or partial or full data corruption. Due
to space, we only give the gist of recovery from single chunk
write failure, which is that, for all faults occurring at any step
in Figures 3(a)∼(f), the recovered state will either be one of
the initial states of the figures (in terms of the tags, specifically,
C(V,N) values of the chunks) or have already completed the
intended write. For example, if a failure occurs during Step 1
of Case 3-2, that is, while waiting for the synchronous flush of
chunk K to complete, when FR recovers, it will simply return
to the initial state S[C(1,0),C(1,1)] of Case 3-2.

Recovery from multi-chunk write failures is more involved,
the key to the solution being the use of the not-complete bit
to make sure recovery is done for all. However, we omit the
detailed description as well as the experimental validation
results, which we conducted, due to space.

5 Performance Evaluation
In this section, we evaluate the effects of FR on Ext4 perfor-
mance, which we implement in Linux kernel version 4.18. A
total of ∼3000 lines of code were added; ∼2900 for the FR
module, ∼70 in the VFS layer, and the rest in the Ext4 file
system.

In the implementation, we modify five system calls, two
of which are major and three are minor changes. In particu-
lar, minor changes are made to creat(), to assign the key,
fsync(), to bypass the page cache, and unlink(), to clear
the tag values once the chunks of the file to be deleted are
found using the key. Major changes are made to read(), to
make use of the key and Direct I/O in reading, and write(),
to implement the consistency protocol, described in Section 4,
with Direct I/O. One limitation of our current implementa-
tion of FR is that it does not support mmap(). This is because

USENIX Association 2021 USENIX Annual Technical Conference 845

Table 2: System configuration
Description

CPU Intel(R) Xeon(R) Gold 6242 CPU @ 2.80GHz (16 cores)
DRAM Samsung 32GB 2666MHz DDR4 RDIMM×4 (128GB)
PM Intel Optane DC Persistent Memory (512GB)
Storage Samsung V-NAND SSD 860 EVO (1TB)
OS Linux Ubuntu 18.04.3 LTS (64bit) kernel v4.18

mmap() is supported upon the page cache, but FR bypasses
it. Thus, the semantics of a file simultaneously opened and
accessed via mmap() and FR does not conform to POSIX. Re-
solving this issue is left for future work. The chunk size is set
to 4KB and the 7-byte key, which contains the unique number
assigned to the file upon file creation that is also stored in
the inode, and the 1-byte status flag, which contains the V, N,
the dirty, and not-complete bits, comprise the 8 bytes that are
written in failure atomic manner.

5.1 Experiment Platform and Benchmarks
Table 2 lists the specifications of the basic experimental plat-
form that we use. Our system is equipped with an Intel Xeon
Gold 6242 CPU with 16 physical cores with 128GB DRAM
and an underlying SATA SSD with 1TB capacity. The 512GB
Intel Optane DC PMM is run on App Direct fsdax mode [14].
To format FR to the device and control the PM size used, we
use ioremap(). Thus, all storage I/O occurs through this
ioremapped FR region. For FR, as default, we make use of
128GB of the 512GB as storage, and periodic flushing occurs
every 10ms as mentioned previously (denoted FR-10m or
simply FR). We make use of a synthetic workload derived
with the FIO tool as well as two sets of benchmarks that we
describe in detail later.

5.2 PM as a Cache
In a typical storage setting, the underlying file system man-
ages a large storage device. Also, typically, this storage is not
in full use, filled with data only to some capacity, which we
refer to as the dataset. Of this dataset, a fraction of it would
be accessed at any given time, which will be the working set.
This working set will grow and shrink as time evolves as files
being accessed will come and go, and access intensities to
them will also vary with time. The role of an effective cache
is to hold the working set in the cache.

To evaluate FR as a cache on a general workload, we make
use of synthetic workloads generated, in the following man-
ner, using FIO [9], which is an I/O testing tool. Using FIO, we
generate 21 distinct files using the characteristics shown in
Table 3, whose dataset size is the aggregate of all the file sizes,
that is, 154GB. The files themselves all have distinct access
characteristics that are randomly selected from the bounds
shown in the table. For example, one file will be 2GB in size,
the file accessed in 8KB units with Pareto 0.1 distribution,
with a read:write ratio of 95:5 of which 2% of the writes are
synchronized, with a request interval of 1 microsecond, which

Table 3: Characteristics of the 21 files used to generate the
synthetic workload. Numbers in brackets are number of files
in the particular mix. N: Normal, R: Random.

Description

File size 1∼14GB [whole numbers only: 1 to 2 files of each]
Distribution Pareto 0.1/0.5 [2/2], Zipf 0.2/1.2 [5/1], N [6], R [5]
IO unit 4KB [14], 8KB [7]
Read:Write 1:0 [4], 19:1 [9], 1:1 [8]
Fsync 0∼5% [whole numbers only: 2 to 5 files of each]
Intensity Request interval: 1µs∼1ms (randomly distributed)

(a) Working set (b) Performance Results

Figure 4: (a) Changing of the working set with time for the
synthetic workload, only showing the first 900 of a 1300
second run. (b) Performance comparison between FR and
Ext4 for light and heavy synthetic workloads.

is the request intensity of the Alibaba workload [47]. Note
that the request interval of 1 millisecond would be the inten-
sity of the Snowflake workload [49], so overall, the intensity
is quite high. 21 files, each with a unique set of characteristics
are generated. Then, we control the working set by controlling
the number of files that are accessed in parallel. Figure 4(a)
shows how the working set changes, where the y-axis repre-
sents the files accessed (by accessed offsets within the file),
accumulated by the file access order from bottom to top, with
time on the x-axis. The maximum number of files accessed
in parallel at any point in time is set to 6, for light workload
(FIO-6), and 12, for heavy workload (FIO-12), periodically
starting new file accesses to meet this number. The working
set of the light workload tops at roughly 50GB, while for the
heavy workload, it is roughly 100GB. As all the 21 files finish
off its accesses, the same 21 files are once again accessed
repeatedly, but in random order starting another round of ac-
cesses. The second round of activities are shown to start just
before the 500 second mark in the x-axis in Figure 4(a), and
we observe that the access order is now changing. We also
observe that the same files are being accessed much longer
in the second round. For example, for the file marked File Z,
which is a read-only file, the bar length, which represents time,
is much longer on the second round than the first. (The height
of the bar represents the file’s footprint.) This is because, it
turns out, the number of files being accessed together is larger
than at the first round, taking it longer to execute. While to
the naked eye, the coloring of the bars look the same, when
observed more closely, the longer right bar is considerably
more sparse than that on the left meaning that it is taking
longer to execute the same set of requests. To fully stress the

846 2021 USENIX Annual Technical Conference USENIX Association

Table 4: Average latency for managing FR for various index-
ing and management policies. The average latency for FR
static indexing is 67ns while for hashed indexing it is 75ns. (*
Insert includes mechanism to find empty blocks.)

Activity Radix-tree + LRU Hash + LRU

Hashing - 78ns
Radix-tree Search 35ns 162ns

/ Hash Insert∗ 19µs 19µs
Delete 190ns 43ns

LRU
Touch 161ns 153ns
Add 73ns 65ns

Remove 88ns 82ns

system, we repeat this rounding two more times for a total of
four rounds of accesses, randomly selecting the files to exe-
cute as time progresses. The total I/O for these experiments
was around 575GB, and it is similar for both workloads as
they are essentially making requests with the same character-
istics. For FR the number of wrap-arounds took place about
19 times. To access individual files in parallel, each sequence
of accesses to a file is generated by a separate thread run on
a separate physical core. As the number of files accessed for
these experiments is small, instead of the stride size to be that
based on the most often seen file size, the size of the largest
file seen is used. This has the negative effect of increasing the
number of wrap-arounds, thereby increasing collisions.

Figure 4(b) compares the results of Ext4 and FR, the left
bars showing the aggregated throughput of all the file accesses
and the right bars showing how long the experiments took to
finish. Note that we use the exact same file access sequence
for the two cases, by monitoring the file access sequence
when first executing with FR and then using that to execute
Ext4. The results show that FR provides more than 9× higher
aggregate throughput and ended over 3× faster than Ext4,
despite the fact that FR is providing immediately durable
in-order semantics. Note that write synchronization is light,
with only relatively low write requests of which the sync rate
is a maximum of 5%. We find that slight increase to sync
rates to be bounded to 10% (which we believe is still light)
diminishes Ext4 performance by roughly another 10-fold.
Finally, we emphasize again that NOVA and DAX could not
execute because the dataset was larger than the PM size.
PM Management Overhead: Another important aspect re-
garding the cache is its management. One could argue that
instead of the rather radical static placement approach that
FR uses, a more intelligent scheme based on sophisticated re-
placement algorithms could benefit FR. We briefly mentioned
earlier that this would be too heavy when used with PM. Or,
if it is going to use a static scheme, why not just use hashing?
To check this, we implement multiple variations for manag-
ing PM such as hashing with LRU replacement, a file-based
Radix tree just like that used in the Linux page cache along
with the LRU replacement policy as well as just hashing for
static indexing without a replacement policy. For the hash-

ing function, we found several open sourced ones and out of
those used djb2 [57], which showed the best performance. All
other code, except for the LRU policy, which was an in-house
implementation, were taken from Linux. Table 4 shows the
average overhead of the various components for managing
the FR layer with the various schemes, when run with the
Fileserver benchmark (whose characteristics are presented in
the next section). We observe that the overhead can be orders
of magnitude higher than our approach.

We conducted experiments using these data structures with
the Fileserver workload and found that they were around 13×
slower compared to FR. (The benchmarks and the execution
platform are described in the next section.) When simple
hashing alone is used for placement, the overhead itself is low
at 75ns, but we find that too many FR collisions (not hash
collisions) occur incurring too much overhead for it to be a
feasible approach.

5.3 Smaller than Cache Size Workloads
To compare FR performance with state-of-the-art PM file
systems such as NOVA or DAX, we need to reduce the dataset
size. In this section, we discuss the results for such a setting.
Along with baseline Ext4, we also compare with Ext4 with
PM DM-WriteCache (denoted DM-WC). However, it must
be noted that DM-WC uses double the resources of the other
schemes as it makes use of the entire DRAM as the page
cache as well as 128GB of PM for the DM cache. Finally, we
also attempted to compare with Assise [4]. Unfortunately, it
would only run stably with a single thread and only for the
workloads that the authors provided, that is, Fileserver and
Varmail. As of this writing, other workloads did not execute
properly even for single threaded execution. Multi-threading
also was not supported. Thus, we do not include their results.
Benchmarks: As we can make use of traditional benchmarks
in this setting, we make use of two benchmarks for our ex-
periments whose characteristics are summarized in Table 5.
The first is the Filebench benchmark, but of these we use only
the Fileserver (F), Varmail (V), and OLTP (O) benchmarks.
While it may be considered inappropriate to select particular
workloads out of a benchmark suite, as FR supports in-order
file system semantics these three benchmarks represent the ex-
treme ends of the spectrum of workloads. Varmail and OLTP
are workloads that have a considerable number of fsync()
calls, while Fileserver is one that does not have any such calls.

The second benchmark is YCSB [6], which is generally
used to evaluate NoSQL database systems, with the under-
lying database server being RocksDB. YCSB-A (YA) and
YCSB-F (YF) are write heavy workloads (1:1 reads/writes),
YCSB-B (YB) and YCSB-D (YD) are read intensive, YCSB-
C (YC) is read-only, and YCSB-E (YE) is a range query work-
load. We follow the execution sequence recommended by the
original YCSB authors [56] including the loading phases, but
do not report the results for the load phases. All experiments
are performed in async mode, thus data loss may occur for

USENIX Association 2021 USENIX Annual Technical Conference 847

Table 5: Characteristics of benchmarks. Request distribution
for YCSB-D (YD) is Latest, while all others are Zipfian.

Filebench R:W Mean # of Key-value Records R:Wfile size files store Aggregated

Fileserver 1:2 128KB 200K YA, YF 4GB 1:1
Varmail 1:1 32KB 800K YB, YD, YE 4GB 19:1
OLTP 1:1 1.5GB 20 YC 4GB 1:0

(a) Filebench (b) YCSB

Figure 5: Filebench and YCSB throughput normalized to FR,
with its absolute performance numbers shown.

Ext4 and DM-WC, while for DAX, NOVA, and FR, which
provide in-order semantics, no loss will occur.

For all the workloads, we employ 16 threads as our system
has 16 physical cores, except for OLTP, which employs 10
write threads and 20 read threads. For the Filebench work-
loads, the file size and number of files are set so that the
dataset amounts to roughly 32GB. During execution, files are
constantly being created and deleted, but overall the dataset
does not deviate much from 32GB. For the YCSB workloads,
we set the recordcount to 4 million, the fieldcount to 10,
and the fieldsize to 100 bytes for records aggregated to
4GB. With these setting, the number of files created is around
450 and the average file size is roughly 80MB resulting in the
dataset being in the 32GB vicinity. Our observations while
these workloads are running on these datasets show that the
maximum use of the page cache (for Ext4) at any time is
roughly 10GB. Note that this setting allows the native file sys-
tem to perform at its peak as the entire workload will fit into
the page cache throughout its execution. All results reported
are the averages of at least five runs each. We note beforehand
that in multiple occasions, we only present partial results for
particular discussions, unfortunately, due to space.
Filebench Performance: Figure 5(a) shows the performance
results for the Filebench workloads. All results hereafter, un-
less otherwise mentioned, are shown relative to FR with the
absolute values of FR indicated. For Fileserver, the results
show that FR performs worse than Ext4 and DM-WC, while
compared to DAX and NOVA, it does better. The reason
Ext4 and DM-WC does better is that they provide the best
environment for Fileserver as nearly all reads and writes are
occurring in DRAM. This is because Fileserver does not make
any fsync() calls (thus lacking durable in-order file system
semantics). In contrast, for FR all access are at PM. PM read
is roughly 3 times slower [17] and one-third of the workload
are reads, and with the added peculiarities of PM [53], Ext4
and DM-WC should do better. In contrast to Fileserver, we see
that for the Varmail and OLTP workloads, which are fsync()

Table 6: Various characteristics of workload execution. (M:
million, WA: wrap-arounds)

Flush/
Access

Mem
cpys

of
files

Average
stride×4KB

Footprint
(GB)

of
WA

F 1M/70M 35M 1M 614KB 572 9
V 0.6M/64M 52M 4M 410KB 1536 24
O 0/19M 22M 21 1.6GB 32 0.5

YA 100/25M 25M 450 268MB 112.5 2

Figure 6: YCSB 99th, 99.9th, and 99.99th percentile tail la-
tency as reported by YCSB normalized to FR. Numbers point-
ing to FR bars are absolute latency for FR in microseconds.

heavy, performance of FR is, respectively, roughly 94× and
8× better than Ext4 and roughly 4.5× and 1.5× better than
DM-WC. Compared to NOVA and DAX, FR performance is
slightly lower than NOVA, while DAX suffers for Varmail.
YCSB Performance: Figure 5(b) shows the results for
YCSB. We observe that FR, NOVA, and DAX show simi-
lar performance, while Ext4 and DM-WC do the worst for
the YCSB-A, YCSB-B, and YCSB-C workloads, while for
YCSB-D, YCSB-E, and YCSB-F they are comparable or do
better. However, we emphasize once more that neither Ext4
nor DM-WC guarantee in-order semantics. Note, in particular,
the results for YCSB-C. As this is a read-only workload, one
would expect Ext4 to perform similar to or better than FR
as the entire dataset should be accessed from the page cache.
However, we observe the contrary. This is because we run the
workload with RocksDB, which issues around 50 fsync()s
to manage a small number of files and perform compaction
(movement between levels). In contrast, in terms of collisions
in FR, YCSB-C is ideal as none occurs. Nuances of the effect
of media are also observed when we compare the YCSB-C
results from Figure 5(b) and Figures 9(a) and 9(b) that uses
faster NVMe SSD and slower HDD media. We observe that
the results for FR are the same for all three media, while
for Ext4, performance is proportional to media performance,
specifically, 436KOPS, 174KOPS, 153KOPS for NVMe SSD,
SATA SSD, and HDD, respectively.

As YCSB also reports tail latency numbers we report them
in Figure 6. The results show that Ext4 does worst in many
cases. NOVA and FR are comparable but overall, FR does
better, especially at the 99.99 tail.
Sources of Forced Flushing: We now analyze the sources of
the performance differences. As FR works with large PM and
the default periodic flushing is 10ms, one should expect FR
to be free of any forced flushing. This is not what we observe.

848 2021 USENIX Annual Technical Conference USENIX Association

(a) Filebench (b) Varmail

(c) YCSB-A (d) YCSB-B

Figure 7: Performance results for PM size of 2xGB, where x
is value of points in x-axis, normalized to the performance of
FR when x = 7.

To help understand, we make use of Table 6, which shows
how the workloads execute.

The ‘Flush/Access’ column shows the total chunk accesses
of the workloads of which ‘Flush’ are the forced flush counts,
while the next column shows the total number of copies that
occurred between chunks within slots. The next two columns
show the number of files and average space allocated for
the files as calculated by the stride multiplied by chunk size.
These are different from those of Table 5, whose numbers
are settings to run the workload, while here, they are those
observed during execution, counting all files that were created.
The final two columns show the footprint of the files within
FR obtained by multiplying the values of the previous two
columns and how many times the workload wrapped around,
respectively, during the entire execution of the workload.

As observed from the ‘Flush/Access’ column, forced flush-
ing occurs for around 1% of the accesses. There are two
sources of forced flushes. The first is stride mis-estimation.
While strides are set dynamically based on request size, it
cannot foresee files that will grow. Hence, as files grow,
overlap between neighboring files can occur, resulting in
forced flushes. Detailed analysis (not shown) show that for
the Filebench workloads, these situations are rare, but for
YCSB-A, they account for all 100 flushes. The second source
is wrap-around, as files are allocated in sequence in FR. We
find that most of the forced flushes for Fileserver and Varmail
are due to this. We observe from Table 6 that over a million
files are being created, and the last two columns show that
each slot is being shared by many files. Thus, collisions occur,
possibly forcing flushes and resulting in performance loss.

5.4 Other Factors

Effect of PM Size: Figure 7 shows the performance of a se-
lect group of workloads (again, for clarity) when we vary the

(a) FFT (b) Btrfs

Figure 8: (a) YCSB executed with FFT modules taking up
108GB of DRAM capacity and (b) FR applied to Btrfs.

PM size, reducing it by half for each point to the left, for the
various schemes. For DM-WC, both the DRAM and PM size
is reduced by halves. All performance numbers are normal-
ized to the 128GB FR results. There are two observations
that can be made. First, the overall trend for FR, Ext4, and
DM-WC are similar, though the drop in performance for FR
is slightly greater. FR is performing similarly to the other
two caching methods as the cache size gets tight. Second, for
NOVA and DAX, there is barely any performance drop with
the size drop. However, as PM drops beyond 32GB/16GB,
they are not able to execute. This is the same situation as the
synthetic workload experiments where the dataset exceeds
the PM size at which point they are not able to execute. This,
again, shows the limitations of PM based file systems.
Compensating for Extra PM: In our system configuration,
PM is extra cost, but FR frees up DRAM used for the page
cache. To evaluate this effect, we set up an environment where
we have a memory intensive application, the FFT workload of
Splash2x in the Parsec version 3.0 benchmark suite [34] set
to use 12GB of memory, to run concurrently with the original
workloads. Nine of these modules are invoked to take up
108GB of memory. The results are shown in Figure 8(a).

Overall, the results show that, while the absolute perfor-
mance drops compared to those shown in Figure 5, the per-
formance gap between FR over Ext4 and DM-WC grows. In
particular, for Fileserver, we now see FR performing consid-
erably better than both Ext4 and DM-WC. These results show
that FR can effectively segregate I/O and memory intensive
workloads relieving DRAM capacity for other use.
Btrfs: To show that FR is applicable to other file systems, we
present results for FR with Btrfs [41], where changes are made
to roughly∼30 LOC. As shown in Figure 8(b), the results are
similar to FR-Ext4, with many cases performing better when
FR is deployed, despite the fact that Btrfs is not providing
durable in-order semantics. Notable differences compared to
Figure 5 are that 1) FR-Btrfs does better even for Fileserver
compared to Btrfs though in terms of absolute throughput,
Btrfs does considerably worse than Ext4, 2) performance
improvements with DM-WC are large, and 3) for YCSB-A
and YCSB-D, Btrfs does better than FR-Btrfs.
Effect of Storage Media: We consider how FR is affected
when the underlying storage media is changed to a higher-
end Samsung 1TB V-NAND 970 PRO NVMe SSD and a

USENIX Association 2021 USENIX Annual Technical Conference 849

(a) NVMe SSD (b) HDD

Figure 9: Performance with different storage devices.

lower-end Seagate 1TB Barracuda SATA3/7200/64M HDD.
Figure 9(a) shows that with the NVMe SSD, the absolute
throughput of FR improves benefiting more the Filebench
workloads. More interestingly, we see that the stock Ext4 ben-
efits considerably especially for the YCSB workloads. This
is due to the bandwidth of the media. That is, FR is physi-
cally organized using a single PM chip with a throughput of
0.58GB/s, while the NVMe SSD throughput is 2.7GB/s. In
some cases, Ext4 is able to exploit this, resulting in perfor-
mance surpassing FR as exemplified by some of the YCSB
results. Note again, however, that FR is providing immediate
durability, while Ext4 and DM-WC are not, and that DM-WC
uses double the resources. Note also that FR still shows su-
perior performance for applications where synchronization is
prevalent as shown by the Varmail and OLTP results. Another
implication of these results is that we may not need to move to
these more expensive devices if PM is deployed appropriately.
The YCSB results shown in Figures 5 and 9 show that they
are all similar irrespective of the underlying storage media be
it an SSD or an HDD. However, the Filebench results forbid
us from generalizing so easily. The reasoning behind these
discrepancies are left for future work.

For the experiments with HDD, the periodic flushes for
FR is set to 1.5 seconds to accommodate the slow HDDs.
If set to the default 10ms, we find that performance drops
considerably because the HDD cannot sustain service for such
heavy I/O. (We have studied the sensitivity of period setting
on performance, but omit them due to space.) The results show
that 1) even with the large period, for Fileserver and Varmail,
the request rate is too high for the HDD to hide and thus,
we see drops in throughput from 194KOPS to 12KOPS and
832KOPS to 37KOPS for Fileserver and Varmail, respectively,
when the media is changed from NVMe SSD to HDD, and
2) for other workloads, we see performance that is similar to
that of FR when using the SATA SSD (Figure 5).

Let us now focus on DM-WC that takes on the best of both
worlds by using DRAM as a read cache and PM for the write
cache (though, using double the resources). We observe in
Figure 9(b), with HDD, how DM-WC is almost always su-
perior over Ext4 and even sometimes performing better than
FR. Interestingly, as we move to a faster device (SATA SSD
in Figure 5), the improvements diminish, sometimes even
resulting in performance worse than Ext4. Then, with the
fastest device (NVMe SSD in Figure 9(a)), we see the effect

of DM-WC diminishing further, with the majority performing
worse than Ext4. There are two reasons for this degradation.
One is device performance. DM-WC was devised to take
advantage of superior device performance (PM, in this case),
which is evident with the HDD results. However, for SATA
SSD (0.52GB/s bandwidth), its performance is similar to that
of PM (0.58GB/s). Thus, using PM should bring only a small
improvement if any, meaning that, for example, for YCSB-A
and YCSB-F, the write intensive ones in Figure 5, we should
see comparable or slightly better performance for DM-WC
compared to Ext4. However, we observe that DM-WC per-
forms worse than Ext4. This is because of the second reason
for performance degradation, that is, management overhead.
DM-WC goes through an elaborate sequence of calls within
(omitting the details, it goes through eight or so function calls).
This incurs considerable overhead of around 35 microseconds
of which the majority is overhead for indexing. This is pure
overhead and is compounded as more writes are issued. Thus,
write intensive workloads YCSB-A and YCSB-F are taking
the blow. These results are evidence of the need for light
management mechanisms such as that we propose. Finally,
with the NVMe SSD, Ext4 performs better because the SSD
has higher bandwidth (2.7GB/s vs 0.58GB/s). However, the
added capacity does help DM-WC for some workloads.

6 Conclusion
In this paper, we presented First Responder (FR), a means
to exploit the beneficial features of PM. While FR shares
the goal of all PM based file systems in exploiting the per-
formance benefits of PM as a storage device, its approach is
unique in that it allows the use of existing modern file systems.
Conceptually, FR is much like a buffer cache, but we showed
that much more is involved as consistency had to be main-
tained under failure while providing light management. Built
at the VFS layer, while the rest of the I/O stack, including the
specific file system layer, remained largely unchanged, FR
was able to provide immediate response to users from this
layer. In experimental evaluations with the Intel DC PMM,
we showed, with the FIO synthetic workload, FR, when used
in cache form, can outperform Ext4 by more than 9×, while
providing durable in-order file system semantics. Using the
Filebench and YCSB benchmarks, we also showed that FR,
when used as part of a typical file system, performs compara-
bly with the default Ext4, Ext4 with DM-WriteCache, NOVA,
and DAX, while also providing durable in-order semantics.

Acknowledgements
We thank our shepherd Professor Sasha Fedorova and the
anonymous reviewers for their invaluable comments. We also
thank Choulseung Hyun, Sunghwan Kim, Se Kwon Lee, and
our colleagues from the NECSST lab for their numerous dis-
cussions that helped shape this research. This work was sup-
ported by Samsung Research Funding Centre of Samsung
Electronics under Project Number SRFC-IT1402-52.

850 2021 USENIX Annual Technical Conference USENIX Association

References

[1] Nitin Agrawal, William J. Bolosky, John R. Douceur,
and Jacob R. Lorch. A Five-Year Study of File-System
Metadata. In Proceedings of the USENIX Conference
on File and Storage Technologies (FAST), 2007.

[2] Thomas Alexander and Gershon Kedem. Distributed
Prefetch-buffer/cache Design for High Performance
Memory Systems. In Proceedings of the IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), 1996.

[3] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K. Aguilera, Au-
rojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can
Far Memory Improve Job Throughput? In Proceed-
ings of the European Conference on Computer Systems
(EuroSys), 2020.

[4] Thomas E. Anderson, Marco Canini, Jongyul Kim, De-
jan Kostić, Youngjin Kwon, Simon Peter, Waleed Reda,
Henry N. Schuh, and Emmett Witchel. Assise: Per-
formance and Availability via Client-local NVM in a
Distributed File System. In Proceedings of the USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2020.

[5] Btrfs. Btrfs. https://github.com/torvalds/linux/tree/mast-
er/fs/btrfs.

[6] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the
ACM Symposium on Cloud Computing (SoCC), 2010.

[7] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and Protection in the ZoFS
User-space NVM File System. In Proceedings of
the ACM Symposium on Operating Systems Principles
(SOSP), 2019.

[8] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rahesh Sankaran,
and Jeff Jackson. System Software for Persistent Mem-
ory. In Proceedings of the European Conference on
Computer Systems (EuroSys), 2014.

[9] Freecode. fio. http://freecode.com/projects/fio.

[10] Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon, Tianyu
Cheng, Vijay Chidambaram, and Emmett Witchel.
TxFS: Leveraging File-System Crash Consistency to
Provide ACID Transactions. In Proceedings of the
USENIX Annual Technical Conference (ATC), 2018.

[11] Jian Huang, Moinuddin K. Qureshi, and Karsten
Schwan. An Evolutionary Study of Linux Memory
Management for Fun and Profit. In Proceedings of the
USENIX Annual Technical Conference (ATC), 2016.

[12] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable Transient Inconsistency
in Byte-Addressable Persistent B+-Tree. In Proceed-
ings of the USENIX Conference on File and Storage
Technologies (FAST), 2018.

[13] Intel. Intel 64 and IA-32 Architectures Soft-
ware Developers Manual Combined Volumes.
https://software.intel.com/en-us/articles/intel-sdm.

[14] Intel. Intel Optane DC Persis-
tent Memory Quick Start Guide.
https://www.intel.com/content/dam/support/us/en/docu
ments/memory-and-storage/data-center-persistent-
mem/Intel-Optane-DC-Persistent-Memory-Quick-
Start-Guide.pdf.

[15] Intel. Memory Optimized for Data-Centric Workloads.
https://www.intel.com/content/www/us/en/architecture-
and-technology/optane-dc-persistent-memory.html.

[16] Joseph Izraelevitz, Terence Kelly, and Aasheesh
Kolli. Failure-Atomic Persistent Memory Updates via
JUSTDO Logging. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2016.

[17] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic Performance Measurements of
the Intel Optane DC Persistent Memory Module. Tech-
nical report, Computer Science Engineering, University
of California, San Diego, 2019.

[18] Song Jiang and Xiaodong Zhang. LIRS: An Efficient
Low Inter-reference Recency Set Replacement Policy
to Improve Buffer Cache Performance. In Proceed-
ings of the ACM Special Interest Group on Performance
Evaluation (SIGMETRICS), 2002.

[19] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Tae-
soo Kim, and Kolli Aasheesh. SplitFS: Reducing Soft-
ware Overhead in File Systems for Persistent Memory.
In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2019.

[20] Kernel Documentation. Writecache target.
https://www.kernel.org/doc/html/latest/admin-
guide/device-mapper/writecache.html.

USENIX Association 2021 USENIX Annual Technical Conference 851

[21] Hyojun Kim and Seongjun Ahn. BPLRU: A Buffer
Management Scheme for Improving Random Writes in
Flash Storage. In Proceedings of the USENIX Confer-
ence on File and Storage Technologies (FAST), 2008.

[22] Emre Kultursay, Mahmut Kandemir, Anand Sivasubra-
maniam, and Onur Mutlu. Evaluating STT-RAM as an
Energy-Efficient Main Memory Alternative. In Proceed-
ings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2013.

[23] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A Cross Media File System. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
2017.

[24] Eunji Lee, Hyokyung Bahn, and Sam H. Noh. Union-
ing of the Buffer Cache and Journaling Layers with
Non-volatile Memory. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST),
2013.

[25] Eunji Lee, Hyokyung Bahn, and Sam H. Noh. Union-
ing of the Buffer Cache and Journaling Layers with
Non-volatile Memory. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST),
2013.

[26] Eunji Lee, Hyokyung Bahn, Seunghoon Yoo, and Sam H.
Noh. Empirical Study of NVM Storage: An Operating
System’s Perspective and Implications. In Proceed-
ings of the IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS), 2014.

[27] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok
Nam, and Sam H. Noh. WORT: Write Optimal Radix
Tree for Persistent Memory Storage Systems. In Pro-
ceedings of the USENIX Conference on File and Storage
Technologies (FAST), 2017.

[28] Andrew W. Leung, Shankar Pasupathy, Garth Goodson,
and Ethan L. Miller. Measurement and Analysis of
Large-Scale Network File System Workloads. In Pro-
ceedings of the USENIX Annual Technical Conference
(ATC), 2008.

[29] Bunjamin Memishi, Raja Appuswamy, and Marcus
Paradies. Cold Storage Data Archives: More Than Just
a Bunch of Tapes. In Proceedings of the 15th Interna-
tional Workshop on Data Management on New Hard-
ware (DaMoN), 2019.

[30] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. Find-
ing Crash-Consistency Bugs with Bounded Black-Box

Crash Testing. In Proceedings of the USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2018.

[31] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H.
Noh, and Beomseok Nam. Write-Optimized Dynamic
Hashing for Persistent Memory. In Proceedings of the
USENIX Conference on File and Storage Technologies
(FAST), 2019.

[32] Matheus Almeida Ogleari, Ethan L. Miller, and Jishen
Zhao. Steal but No Force: Efficient Hardware
Undo+Redo Logging for Persistent Memory Systems.
In Proceedings of the IEEE International Symposium
on High Performance Computer Architecture (HPCA),
2018.

[33] Jiaxin Ou, Jiwu Shu, and Youyou Lu. A High Perfor-
mance File System for Non-Volatile Main Memory. In
Proceedings of the European Conference on Computer
Systems (EuroSys), 2016.

[34] PARSEC. PARSEC.
https://parsec.cs.princeton.edu/index.htm.

[35] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch.
Memory Persistency. In Proceedings of the Annual
International Symposium on Computer Architecuture
(ISCA), 2014.

[36] Phoronix. XFS Will Get DAX
Support In The Linux 4.2 Kernel.
https://www.phoronix.com/scan.php?page=news_it
em&px=XFS-Linux-4.2-DAX-And-More.

[37] Thanumalayan Sankaranarayana Pillai, Ramnatthan Ala-
gappan, Lanyue Lu, Vijay Chidambaram, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Appli-
cation crash consistency and performance with CCFS.
In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), 2017.

[38] Simone Raoux, G. W. Burr, M. J. Breitwisch, C. T. Ret-
tner, T. C. Chen, R. M. Shelby, M. Salinga, D. Krebs,
S. H. Chen, H. L. Lung, and C. H. Lam. Phase-Change
Random Access Memory: A Scalable Technology. IBM
Journal of Research and Development, 52(4.5):465–479,
2008.

[39] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gib-
son. IndexFS: Scaling File System Metadata Perfor-
mance with Stateless Caching and Bulk Insertion. In
Proceedings of the ACM/IEEE International Conference
for High Performance Computing, Networking, Storage
and Analysis (SC), 2014.

852 2021 USENIX Annual Technical Conference USENIX Association

[40] Alexander van Renen, Viktor Leis, Alfons Kemper,
Thomas Neumann, Takushi Hashida, Kazuichi Oe,
Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. Man-
aging Non-Volatile Memory in Database Systems. In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD), 2018.

[41] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:
The Linux B-Tree Filesystem. ACM Transactions on
Storage (TOS), 2013.

[42] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
and Andrea C. Arpaci-Dusseau. All File Systems Are
Not Created Equal: On the Complexity of Crafting
Crash-Consistent Applications. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

[43] Yizhow Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A Disseminated, Distributed OS for
Hardware Resource Disaggregation. In Proceedings of
the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2018.

[44] Juan Sillero and Javier Jiménez. Editorial opinion: pub-
lic dissemination of raw turbulence data. Journal of
Physics: Conference Series (JPCS), April 2016.

[45] Hyunsub Song, Young Je Moon, Se Kwon Lee, and
Sam H. Noh. PMAL: Enabling Lightweight Adaptation
of Legacy File Systems on Persistent Memory Systems.
In Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software (IS-
PASS), 2017.

[46] Strata. Strata: A Cross Media File System.
https://github.com/ut-osa/strata.

[47] TECHPP. Alibaba Singles’ Day 2019 had
a Record Peak Order Rate of 544,000 per Sec-
ond. https://techpp.com/2019/11/19/alibaba-singles-
day-2019-record/.

[48] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating Persistent Memory and Controlling Them
Remotely: An Exploration of Passive Disaggregated
Key-Value Stores. In Proceedings of the USENIX An-
nual Technical Conference (ATC), 2020.

[49] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan
Truong, Ashish Motivala, and Thierry Cruanes. Building
An Elastic Query Engine on Disaggregated Storage. In
Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2020.

[50] Carl A. Waldspurger, Trausti Saemundsson, Irfan Ah-
mad, and Nohhyun Park. Cache Modeling and Optimiza-
tion using Miniature Simulations. In Proceedings of the
USENIX Annual Technical Conference (ATC), 2017.

[51] Qingsong Wei, Chundong Wang, Cheng Chen, Yechao
Yang, Jun Yang, and Mingdi Xue. Transactional NVM
Cache with High Performance and Crash Consistency.
In Proceedings of the ACM/IEEE International Con-
ference for High Performance Computing, Networking,
Storage and Analysis (SC), 2017.

[52] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. NOVA-Fortis: A
Fault-Tolerant Non-Volatile Main Memory File System.
In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2017.

[53] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An Empirical Guide
to the Behavior and Use of Scalable Persistent Memory.
In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), 2020.

[54] Jisoo Yang, Dave B. Minturn, and Frank Hady. When
Poll is Better Than Interrupt. In Proceedings of the
USENIX Conference on File and Storage Technologies
(FAST), 2012.

[55] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
and Khai Leong Yong. NV-Tree: Reducing Consistency
Cost for NVM-based Single Level Systems. In Proceed-
ings of the USENIX Conference on File and Storage
Technologies (FAST), 2015.

[56] YCSB. Core Workloads.
https://github.com/brianfrankcooper/YCSB/wiki/Core-
Workloads.

[57] York University. Hash Functions.
http://www.cse.yorku.ca/ oz/hash.html.

[58] Shengan Zheng, Morteza Hoseinzadeh, and Steven
Swanson. Ziggurat: A Tiered File System for Non-
Volatile Main Memories and Disks. In Proceedings of
the USENIX Conference on File and Storage Technolo-
gies (FAST), 2019.

[59] Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and
High-Performance Hashing Index Scheme for Persistent
Memory. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2018.

USENIX Association 2021 USENIX Annual Technical Conference 853

	Introduction
	Related Work
	First Responder: The Design
	Basic Architecture and Design Choices

	Data Consistency and Recovery Protocol
	The Basic Components
	Data Consistency Protocol
	Strides, Periodic Flushing, and Metadata
	Multi-chunk Writes
	Failure Recovery

	Performance Evaluation
	Experiment Platform and Benchmarks
	PM as a Cache
	Smaller than Cache Size Workloads
	Other Factors

	Conclusion

