
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

Max: A Multicore-Accelerated File System for
Flash Storage

Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu, Department of Computer Science
and Technology, Tsinghua University, and Beijing National Research Center for

Information Science and Technology (BNRist)
https://www.usenix.org/conference/atc21/presentation/liao

Max: A Multicore-Accelerated File System for Flash Storage

Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu∗

Department of Computer Science and Technology, Tsinghua University

Beijing National Research Center for Information Science and Technology (BNRist)

Abstract

The bandwidth of flash storage has been surging in recent

years. Employing multicores to fully unleash its abundant

bandwidth becomes a necessary step towards building high

performance storage systems. This paper presents the de-

sign and implementation of Max, a multicore-friendly log-

structured file system (LFS) for flash storage. With three main

techniques, Max systematically improves the scalability of

LFS while retaining the flash-friendly design. First, we pro-

pose a new reader-writer semaphore to scale the user I/Os with

negligible impact on the internal operations of LFS. Second,

we introduce file cell to scale the access to in-memory index

and cache while delivering concurrency- and flash-friendly

on-disk layout. Third, to fully exploit the flash parallelism, we

advance the single log design with runtime-independent log

partitions, and delay the ordering and consistency guarantees

to crash recovery. We implement Max based on the F2FS in

the Linux kernel. Evaluations show that Max significantly im-

proves scalability, and achieves an order of magnitude higher

throughput than existing Linux file systems.

1 Introduction

The bandwidth of solid-state drives (SSDs) has been quickly

increasing over the past decade [23, 24, 55]. To unleash full

throughput potentials from such improvement, efficiently

utilizing multicores to handle concurrent I/Os becomes a

must. Currently, Non-Volatile Memory Express (NVMe) pro-

tocol [9] and multi-queue block layer [13] have already laid a

multicore-friendly foundation at the driver layer. Additionally,

in the upper software stack, great efforts have been made to

increase the scalability [29, 38, 40, 43, 50, 56].

Nonetheless, an important question is still left unanswered:

whether the log-structured file systems (LFS) atop the flash-

based SSDs adapt well to the scaling of cores. LFS, initially

introduced in Sprite LFS [52], builds on a simple idea: or-

ganizing the address space as an append-only log. This de-

sign essentially converts random writes into sequential ones,

which not only aligns with the I/O preference of legacy hard

∗Jiwu Shu (shujw@tsinghua.edu.cn) is the corresponding author.

disk drive (HDD), but also is a common practice of file sys-

tem for flash storage [35, 37, 49]. First, due to the intrinsic

NAND idiosyncrasies, the sequential performance of most

flash SSDs is still significantly higher than the random perfor-

mance [24–28, 53, 54]. Second, the zoned namespace (ZNS),

an optimized interface for flash SSDs, is available in NVMe

spec and under increasing promotion [4,6,12,58]. ZNS favors

log-structured writes, and existing LFSes (e.g., F2FS [37])

can directly run atop it. Therefore, LFS is a promising archi-

tecture for flash SSD, and understanding its performance in

the multicore context yields great significance.

Hence, we start this paper with a study on file systems (esp.

LFS) throughput under concurrent and independent I/Os (§2).

By increasing the number of CPU cores, we observe that most

file systems scale relatively well on traditional storage devices

(i.e., HDD and SATA SSDs). Surprisingly, the performance

of file systems atop the modern NVMe SSDs suffers greatly

from scaling. Most notably in F2FS, an LFS optimized for

NVMe SSD, the performance peaks at only 18 cores, and a

further scaling to 72 cores causes throughput drop by nearly

30%. The I/O utilization of F2FS on NVMe SSD is only 20%.

Through profiling, we conclude that the unscalable data

structures of the file system cost a considerable amount of

CPU cycles and thus bottleneck the performance. The root

cause of the inefficiency comes from a legacy choice: using

shared data structures to aggregate file operations and I/Os for

high performance. Such philosophy essentially trades CPU

cycles for high device I/O utilization. However, for NVMe

SSD, this trade-off breaks as the CPU cycles are no longer

negligible for high performance drives.

While many research have been conducted to understand

and improve such inefficiency [29, 48, 56], they mostly focus

on journaling file systems (e.g., Ext4 [44]) and therefore can

not directly be applied to LFS due to different designs. For

instance, LFS uses a checkpoint mechanism instead of jour-

naling for persistence and consistency, thereby unable to use

techniques such as parallel journaling for scalability [29, 56].

Hence, we first analyze the root causes inside the LFS.

Here, we decompose the LFS internals from top to bottom

into three levels, the Concurrency Control (CC) level, the In-

Memory Data Structure (IMDS) level and Space Allocation

(SA) level, as shown in Table 1. We find that the lock con-

USENIX Association 2021 USENIX Annual Technical Conference 877

XFS ext4 SpanFS F2FS ideal

0

0.2

0.4

0.6

0.8

cores
0 20 40 60 80

HDD

0

5

10

cores
0 20 40 60 80

SATA SSD

0

100

200

cores
0 20 40 60 80

NVMe SSD
HDD SATA NVMe

56 cores

I/O Utilization at 72 cores

0

20

40

60

80

100

XFS
ext4

SpanFS

F2FS
ideal

K
 o

p
s
/s

e
c

Figure 1: Scalability problem evaluation. We make two major observations: (1) On slow hard disk drive and SATA SSD,

most file systems scale well, and the storage device is almost saturated. (2) In contrast, on high performance NVMe SSD, the

performance of almost all file systems starts to drop after 18 cores, and the device is underutilized. HDD: Seagate ST1000NX0313;

SATA SSD: Samsung 850 Pro; NVMe SSD: Intel DC P3700. Described in §2.

Lock level

Lock type
Shared mode Exclusive mode

Concurrency

Control (CC)

write operations

(e.g., write)

global operations

(e.g.,sync)

In-Memory Data

Structure (IMDS)

index read operations

(e.g., write)

index write operations

(e.g., create)

Lock level

Lock type
Mutual exclusion lock

space allocation (SA) durability operations (e.g.,fsync)

Table 1: Current practices of the file system sharing.

tentions caused by the shared data structures in each level

serialize independent I/Os, and further prevent applications

from taking full advantage of multicore-friendly design of

NVMe and the abundant bandwidth of flash storage.

In this paper, we introduce the following three design prin-

ciples to reduce the lock contentions of each level, and further

scale the multicore performance of LFS for flash storage (§3).

• In CC level, parallelizing the external I/O requests (e.g.,

read and write syscalls) while keeping the internal opera-

tions (e.g., LFS checkpoint) efficient.

• In IMDS level, scaling the IMDS access while delivering

flash- and concurrency-friendly on-disk format for concur-

rent persistence functions (e.g., fsync).

• In SA level, paralleling persistence functions while dele-

gating (some) ordering and consistency to crash recovery.

We implement these ideas in Max (§4), a multicore acceler-

ated file system for high performance flash storage, with a set

of modifications of F2FS. Max replaces a global reader-writer

semaphore (rwsem) of F2FS with a tailored rwsem (§4.1),

reorganizes the IMDS (§4.2) and on-disk layout (§4.3) and

slightly changes the crash recovery procedure (§4.4). During

the development of Max, we surprisingly find some optimiza-

tions of F2FS restrict the multicore performance. We describe

our solutions to maintain these optimizations while offering

better scalability (§4.5). In a nutshell, Max restructures F2FS,

enabling independent I/Os to concurrently enter the file sys-

tem, concurrently access the IMDS and concurrently reach the

persistent storage. We further study Max’s performance (§5).

Under a wide variety of micro- and macro-benchmarks, we

show that Max achieves up to an order of magnitude higher

throughput than existing Linux file systems. Further, evalu-

ation against memory-backed tmpfs [51] indicates that, for

certain file operations (e.g., appending blocks to private files),

the performance of Max almost reaches the upper bound of

VFS (virtual file system).

In summary, we provide three major contributions.

• We perform a study on the multicore scalability of LFS and

demonstrate that the lock contentions from different levels

as the major culprits.

• We propose Max removes unnecessary sharing of different

levels by using a novel reader-writer semaphore, a new

in-memory data structure abstraction and log partitions.

• Our evaluations show that Max outperforms existing Linux

file systems by up to an order magnitude. For some file

operations, Max comes close to the upper bound of VFS.

2 Background and Motivation

2.1 Understanding the Performance

We start with measuring the throughput of 5 file system setups

(XFS [18], Ext4 [44], SpanFS [29], F2FS [37] and ideal)

on three types of storage devices (HDD, SATA SSD and

NVMe SSD). In the ideal setup, we partition the drive and

run an independent F2FS on each partition. This enables each

parallel process to execute in its dedicated file system without

software level contention. As fdisk [2] only allows at most

56 partitions, we do not include performances of ideal setup

beyond that. §5 further describes other details of the testbed.

In the experiment, we attach each core with one process

and scale the number of cores from 1 to 72 (i.e., X axis in

Figure 1). Each process runs for 60 seconds, and executes the

following operations. First, the process creates a file in its

own directory. Then the process issues 4 KB writes, invokes

the fsync on each file and then deletes the file.

Figure 1 plots the results. First, we observe that existing

file systems scale poorly on NVMe SSDs. For HDD and

slower SATA SSD, the performance of many file systems

(e.g., F2FS and XFS) is close to that of the ideal setup. For

NVMe SSDs, the throughput of existing file systems is far

from ideal. Instead of benefiting from the scalability, most file

878 2021 USENIX Annual Technical Conference USENIX Association

Operations Lock/Sharing Overhead Lock level Description

write() sbi->cp_rwsem 50.98% CC Mutual exclusion between checkpoint and write operations.

create()

nm_i->nat_tree_lock 3.74% IMDS Protecting a radix tree indexing of inode table.

sbi->inode_lock 3.22% IMDS Protecting a list indexing of dirty inode.

curseg->curseg_mutex 1.84% SA Serializing log-structured space allocation.

nm_i->nid_list_lock 1.09% IMDS Protecting a central ever-increasing inode ID allocator.

unlink()

nm_i->nat_tree_lock 22.68% IMDS Protecting a radix tree indexing of inode table.

im->ino_lock 6.54% IMDS Protecting a list and radix tree indexing of cached inode.

sbi->inode_lock 3.05% IMDS Protecting a list indexing of dirty inode.

node_inode 2.66% IMDS A user-invisible inode structure to trace all inode pages.

sit_i->sentry_lock 2.41% SA Synchronizing concurrent access to segment info table.

fsync()
sbi->writepages 45.76% SA Enforcing the sequential log access.

sit_i->sentry_lock 1.07% SA Synchronizing concurrent access to segment info table.

Table 2: The scalability bottlenecks of F2FS. write(): overwriting blocks of private files, create()/unlink(): creating/deleting

files in private directories, fsync(): invoking fsync on private files. Described in §2.2.

system actually suffer from the increasing number of cores.

For example, F2FS peaks at 18 cores, then starts to decline

and ends up with a 30% performance loss. Further, in the

rightmost plot of Figure 1, we observe that, even at the scale

of 72 cores, most file systems do not efficiently utilize the I/O

bandwidth of NVMe SSD.

The results from this experiment suggest that the perfor-

mance of existing file systems are no longer bounded by the

underlying device or the drive layer. Instead, the file system

itself becomes the bottleneck and can not efficiently exploit

the bandwidth of high performance drives.

2.2 Identifying Root Causes

Next, we investigate the CPU overhead distribution to identify

the root causes of poor scalability in F2FS atop the NVMe

SSDs. We use Linux performance analysis tools perf [8] to

measure the overhead of each function call in terms of CPU cy-

cles. We focus on four representative system calls (i.e., write,

create, unlink and fsync) in a 72-core-scaling setup of

F2FS. We observe that lock contention caused by unscalable

data structure organization is a major source of overhead.

Hence, we single out expensive lock operations, and identify

their levels. Table 2 shows the overall results.

Lock cache coherence at CC level. The operations of LFS

can be broadly classified into three categories: user read opera-

tions (e.g., read and stat), user write operations (e.g., write

and create) and LFS internal operations (e.g., checkpoint).

Most Linux file systems (FS) control the concurrency among

user read operations and write operations by a relatively sim-

ple way: using a file-level inode reader-writer semaphore 1.

The concurrency control among independent writes and the

global checkpoint is more complicated; as shown in Table 1,

LFS usually employs a traditional reader-writer lock (e.g.,

cp_rwsem of F2FS and ns_segctor_sem of NILFS2 [35])

at CC level to grant access for writes and checkpoint. Inde-

pendent writes can concurrently update disjoint parts of the

1In early Linux versions, the inode lock is implemented using a mutex.

FS image, and thus hold the reader-writer lock in the shared

mode 2. As the checkpoint requires a consistent and quiescent

FS image, it holds the lock in exclusive mode to prevent other

writes from modifying the FS.

For write, we can see that more than half (50.98%) of

CPU cycles are used on grabbing locks for accessing the

file system. Exclusive-mode lock only allows exclusive ac-

cess and thus yields expensive overhead due to serialization.

Yet, global operations (i.e., checkpoint) are invoked by OS-

wide sync syscall or periodically (e.g., 30s), which is usually

less frequent, and hence do not significantly influence the

throughput. The shared-mode lock, on the other hand, permits

concurrent accesses, but its counter is shared among cores. As

concurrent writes (i.e., shared-mode lock) are prevalent, the

cache coherence on the lock counter value can be increasingly

severe with the scaling, resulting in a considerable slowdown.

Serialization at IMDS level. After entering the file system

through CC level, the process needs to access and update

IMDS (i.e., the in-memory indexing and data cache). Typ-

ically, LFS tends to split IMDS into different regions (e.g.,

inode table, inode and data) based on functionality. F2FS man-

ages each region via a radix tree, and uses a reader-writer lock

on each tree for correct concurrent execution. As shown in

Table 1, for file modification operations, such as create and

unlink, they require a exclusive-mode lock as they may alter

the indexing. Unlike CC level, writers can be quite popular at

IMDS level. With an increasing amount of concurrent writers,

serialization in accessing the three radix trees becomes severe

and further leads to performance drop. From Table 2, we can

see that lock operations at IMDS level are the most expensive

ones with 9.89% and 37.34% in total respectively, for both

create and unlink.

Serialization at SA level. Finally, to persist the data blocks

in a crash safe manner, the process needs to allocate space

and submit the I/O requests in the correct order. LFS typically

2In this paper, to avoid confusing the FS reader/writer with the lock

reader/writer, we refer to the shared-mode lock as the reader lock and the

exclusive-mode lock as the writer lock.

USENIX Association 2021 USENIX Annual Technical Conference 879

uses only one logical space allocator to avoid overlapping

allocation (i.e., concurrent writes on the same address). The

space allocator uses mutually-exclusive locks for granting ac-

cess. In this case, concurrent writes converge on the allocator,

and wait to be scheduled in a serialized fashion before being

sent to the device, which limits the overall throughput.

F2FS extends the single log schema into multi-head log-

ging for data temperature separation. Specifically, for inode

and data region, F2FS statically defines up to 3 types of tem-

perature and employs multiple logs (6 log heads in total) on

disk, each mapped to each temperature. However, from Ta-

ble 2, lock contention at SA level can consume nearly half

(i.e., 46.83%) of CPU cycles.

This is because the intrinsic dependencies among the tem-

perature logs serialize the data persistence. In particular, for

the crash consistency of F2FS, the data blocks must be durable

before inode blocks and the file inode must be durable before

the directory data blocks. As a result, in face of a fsync, these

logs are almost processed serially although F2FS has multiple

logs. Hence, the multi-head logging design of F2FS has little

effect on scaling the I/O throughput.

3 Max Design Principle

To exploit the benefits of multicore architecture and modern

NVMe SSD, we formulate the following Max design princi-

ples and describe the intuition behind them.

Principle 1: In the CC level, using OS scheduler-assisted con-

sensus to efficiently coordinate the external I/O requests (e.g.,

user writes) and internal operations (e.g., LFS checkpoint).

LFS coordinates writes and checkpoint using traditional

reader-writer lock. Recall that our study in §2.2 shows that

the major overhead at CC level comes from cache coherence

on the shared lock counter. Thus, a straightforward solution

can be setting a local reader lock counter for each core, like

scalable locks with per-core reader counters [41,42]. A writer,

to guarantee exclusive access, can simply block all further

readers, and then either aggressively query the per-core coun-

ters or await until all on-going readers finish (i.e., all counters

reduced to zero). While this naïve solution successfully min-

imizes the cache coherence among readers, the writer may

either cause excessive overhead by aggressive querying or

high latency due to the lazy waiting. For instance, the inter-

processor interrupt-based aggressive query [42] is likely to

interfere the latency-critical tasks on other cores, e.g., increas-

ing the user-visible latency of read syscall. The lazy waiting

approach [41] may experience periodical OS scheduling inter-

val (e.g., 1-10 ms) and further increase the checkpoint latency.

The millisecond-scale latency may be tolerable for HDD and

SATA SSD, but is unacceptable for NVMe SSDs with ten to

hundreds of microsecond latency.

On the other hand, an outstanding advantage of the kernel

FSes is that they run on the OS control plane. This has not

been exploited to assist concurrency control of LFS. For ex-

ample, to guarantee process fairness, the process in the kernel

mode frequently invokes the OS scheduler for scheduling. A

typical case is the exit of FS syscall, implying the end of I/O.

Max uses a new reader-writer semaphore namely Reader

Pass-through Semaphore (RPS) for concurrency control. The

RPS uses per-core counters to reduce cache coherence over-

head, and introduces scheduler-assisted consensus to coordi-

nate the external and internal operations with less overhead.

Principle 2: In the IMDS level, the IMDSes are partitioned

by the file inode ID for concurrent file-level in-memory in-

dexing and caching. Further, the IMDSes of the same file are

repacked to avoid page-level (e.g., 4 KB) false sharing, so as

to facilitate the concurrent file-level persistence functions.

Earlier in § 2.2 we showed that serialization of access-

ing indexing trees at IMDS level is expensive. A feasible

way to accommodate concurrent writers is to split the trees

into multiple ones, similar to the non-volatile main memory

FS [57]. Partitioning the memory-based storage system is

relatively flexible due to fine-grained access granularity (e.g.,

byte-scale) of the main memory. However, such a partition

method can not be directly applied to block-based SSD FS due

to different and coarse access granularity. Traditionally, the FS

for block storage often stitches small-sized file metadata and

file system metadata into a shared block, which introduces

extra contention. Therefore, scaling the IMDS while deliver-

ing flash- and concurrency-friendly on-disk layout remains a

challenge for Max.

In Max, we propose a new IMDS abstraction, file cell, to

repack data and metadata to allow multiple indexing entities,

thereby lowering the chance of serialization. Additionally, we

realize SSD- and concurrency-friendly on-disk format for file

cell by setting a dedicated page for each inode and stitching

the small unaligned flushes as pages. In this way, Max can

access the IMDS and write the buffered pages to the persistent

storage with less contention.

Principle 3: In the SA level, the drive space is divided into

multiple independent logs; independent file operations can

allocate space and be distributed to minor logs concurrently.

The ordering and consistency of dependent file operations

among multiple logs are delegated to crash recovery.

Our study in §2.2 shows that having only one space alloca-

tor for each type of data can introduce considerable overhead

for concurrent writers. Max addresses this issue by partition-

ing the log space, like other log-based storage systems [10,57].

Log partitioning introduces challenges to maintain the concur-

rency and crash consistency over multiple minor logs (mlog).

For concurrency control, leveraging the file interfaces and

semantics of FS, Max distributes complete file operations

(not simply data blocks) to a mlog. In other words, when

persisting files (e.g., fsync, or write a file with O_SYNC

flag), Max submits the data blocks that need to be persisted

atomically to the same mlog. This avoids concurrency control

over multiple mlogs and brings higher concurrency.

880 2021 USENIX Annual Technical Conference USENIX Association

file cell radix tree

inode
page

inode
table entry

data page
radix tree

file cell In-Memory

Data Structure

… Space

Allocation

…core 1

reader
counter

Concurrency

Control
Max

core 0

reader
counter

core n

reader
counter

Reader Pass-througph

Semaphore

core 1

F2FS
core 0 core n

reader-writer
counter

inode table
radix tree

inode
table entry

inode
radix tree

inode
page

per-inode
data radix tree

data
page

SIT

validity bitmaps GC

free bitmaps alloc.

Meta

…

SIT

validity bitmaps GC

free bitmaps alloc.

mlog cell

Meta

data segment

inode segment

…
mlog 1 mlog N

file cell radix tree

inode
page

inode
table entry

data page
radix tree

file cell

SIT

validity bitmaps GC

free bitmaps alloc.

mlog cell

inode + data log

…

Figure 2: A comparison of F2FS and Max. Max introduces Reader Pass-through Semaphore (RPS) (§4.1) at CC level, file cell

(§4.2) at IMDS level and mlog cell (§4.3) at SA level for higher concurrency.

For crash consistency, each mlog keeps its localized con-

sistency just like traditional LFS. In Max, the same file of

different versions can be distributed to different mlogs. Max

embeds a global version number in each inode block to record

the ordering across multiple independent mlogs, and finds the

newest file during crash recovery using the global version.

By persisting independent file operations to independent

mlogs and delaying the persistence ordering to recovery, Max

enables highly concurrent persistent functions.

4 Max Implementation

We implemented Max by modifying F2FS. Figure 2 shows a

side-by-side comparison between Max and F2FS.

4.1 Reader Pass-through Semaphore

Max replaces the traditional reader-writer semaphore of F2FS

(i.e., cp_rwsem) with Reader Pass-through Semaphore (RPS).

We use Figure 3 (referred by arrow numbers) and Algorithm 1

(referred by line numbers) to elaborate the RPS control flow.

Concurrent readers. RPS borrows the idea of per-core

reader lock counter. With a private counter for each core,

concurrent readers can independently increase or decrease the

counter value without cache coherence from different cores

(lines 1-8). The major overhead (i.e., 50.98% in Table 2) at

the CC level is thus removed.

Exclusive writer. RPS introduces a “Scheduler Free Rides”

mechanism to avoid high overhead and latency for exclusive-

mode lock. The key idea is to leverage the CPU scheduler to

efficiently check the counter value of each core. The original

design goal of the CPU scheduler is to coordinate processes,

which lets it frequently access the cores. Scheduling itself

searches several queues, so adding RPS logic (i.e., check the

reader counter) atop it costs extra little. Hence, the counter

values of different cores are frequently retrieved with low

overhead, thereby taking the free rides of the scheduler.

Specifically, the pending writer first locks wsem (i.e., Linux

writer semaphore) on each core to block all further incoming

readers and writers (line 15, arrows 1 and 4). The writer

sets the per-core notification flags, and then goes to sleep and

waits for all flags cleared (i.e., readers on all cores have left

the critical section, lines 16-19). Next, the on-going readers

continue as usual except the last reader on each core finishes

by yielding the execution to the CPU scheduler (lines 9-10,

arrow 2). The CPU scheduler then clears the per-core notifi-

cation flag, which indicates that the on-going readers of that

core are all finished. For cores with no on-going readers, the

RPS utilizes the opportunity of kernel preemption to let the

scheduler check the counter value and clear the notification

flag (lines 27-28, arrow 5). With all notification flags cleared,

the scheduler can then wake up the writer and let it start to

execute (lines 18-19 and 29, arrow 8).

WCore 6

Core 3 S

Sleep
W

R3

W

Core 2 S

SCore 5 R1

Ri

Reader

W
Writer

S
CPU

scheduler

time

W

Core 4 R2

R3

R2

Core 1 S

R3

R2

W

1 2 3 6

6 6

7 8

Ri

Migratory

reader

4 5 5

Figure 3: “Scheduler Free Rides” mechanism of RPS. De-

scribed in §4.1.

Corner cases. In our original RPS design, there are two cor-

ner cases: late preemption and task migration. First, in the

“Scheduler Free Rides” mechanism, the scheduler relies on

opportunities of kernel preemption to check the reader lock

counter on zero-reader cores. While preemptions are usually

frequent, a worst-case scenario can take up to 10 ms (i.e., tick

USENIX Association 2021 USENIX Annual Technical Conference 881

Algorithm 1: RPS Pseudo-code

1 def read_lock (rps):

2 while rps.wsem , FREE do

3 wait(rps.wsem == FREE) /* woken up by line 25 */;

4 this_cpu_inc(rps.percore_reader);

5 def read_unlock (rps):

6 readers← this_cpu_read(rps.percore_reader) ;

7 if readers > 0 then

8 readers← this_cpu_dec_return(rps.percore_reader);

9 if rps.wsem , FREE and readers == 0 then

10 yield();

11 else if readers == 0 then /* migration reader exists */

12 if atomic_dec_test(rps.migration_cnt) then

13 wake_up_writer();

14 def write_lock (rps):

15 lock(rps.wsem);

16 for core ∈ get_online_cpu() do

17 per_cpu_set(rps.noti_flag, core, 1);

18 for core ∈ get_online_cpu() do /* wait for all flags cleared */

19 wait_timeout(per_cpu(rps.noti_flag, core) == 0, TIMEOUT);

20 if timeout then

21 cores_unfinished← check_notification_flags();

22 send_ipi(cores_unfinished);

23 wait(atomic_read(rps.migration_cnt) == 0) /* woken up by line 13*/ ;

24 def write_unlock (rps):

25 unlock(rps.wsem);

26 def schedule (core, task):

27 if this_cpu(rps.percore_reader) == 0 then

28 this_cpu_set(rps.noti_flag, core, 0);

29 wake_up_writer();

30 def migrate_task (task, src, dst):

31 /* Tasks holding RPS are off the src and dst CPU now, so it’s safe to

modify the per-core reader counter */;

32 per_cpu_dec(task.rps.percore_reader, src);

33 atomic_inc(task.rps.migration_cnt);

preemption interval) for the scheduler to check all counters.

This delay is unbearable for high performance SSDs and can

cause a long writer latency. To handle this, RPS sets the writer

to wake up periodically. Then the writer actively invokes inter-

processor interrupts to check reader counters of unfinished

cores (lines 20-22, arrow 6). Note that the wake-up interval

is configurable in RPS (100 us by default).

The second corner case is the task migration. In the mul-

ticore execution environment, a reader on one core can be

migrated to another core (arrows 3 , 7). Therefore, RPS sets

up a global migration counter. Upon task migration, the RPS

decreases the local counter of source core by one and also

increases the global migration counter by one (lines 31-33).

The migrated reader therefore decreases the global migration

counter instead of the local one when finishes (lines 11-12).

Thus, the pending writer needs to wait until both local coun-

ters and the migration counter all decreased to zero before

accessing (line 23, arrow 8).

4.2 File Cell

As shown in Figure 2, Max organizes the IMDSes using the

file cells and indexes them by multiple trees. This subsection

describes the indexing and the format of file cell in details.

File Cell indexing. Each file cell encompasses the inode table

entry, inode page 3, and data page of a single file. Max then

divides the file cells into multiple groups and indexes each

group using a radix tree. Max places each file cell to a tree

by hashing the inode ID of the file (i.e., inode ID modulo

the number of trees). Each radix tree accepts the inode ID

as key and outputs associated file cell. Note that the number

of indexing entities (i.e., radix trees) is configurable. Having

more trees yields a lower chance of serialization but can also

lead to high memory consumption. We set the number as half

of the number of cores as we observe that setting more trees

beyond that does not lead to better performance (see § 5.4

for details). Thus, Max lowers the chances of serialization as

well as the number of indexes.

File Cell data format. Max uses a dedicated page for the

inode of each file. To reduce memory consumption, we use

the following approach. If the unaligned data can fit in the

inode page, Max appends that to the end of the inode page. If

not, the inode owns the entire page. For example, consider a

file with 6 KB data and a 256 B inode. Max sets two pages

for that file cell. The first one is a 4 KB data page. The second

one is the inode page that contains the 256 B inode plus the

2 KB unaligned data.

Unlike the journaling FS that inodes are placed in a pre-

determined location, inodes of LFS are updated in an out-of-

place manner, thereby forcing the inode table to be placed in a

fixed on-disk location for indexing. Additionally, information

similar to the inode table entries must be persisted simulta-

neously to locate the newest inode. However, the inode table

entry is extremely small (e.g., 9 B). This brings challenges for

LFSes to achieve high concurrency, low write amplification

without breaking the fixed-location property.

Max realizes high concurrency and persistence of inode

table entries using two representations. For in-memory repre-

sentation, with the byte-addressability of DRAM, Max parti-

tions the inode table, and distributes the inode table entries

to each file cell. All operations, except checkpoint, access

or modify the inode table entries inside the file cell only in

the memory. Second, we reuse the classic representation (i.e.,

compacting different entries in pages) on disk to guarantee

entries are always stored in the pre-determined locations. We

rely on the periodical checkpoint to persist entries. Note that,

in this design, updates on inode table entries since the most

recent checkpoint can be lost in the face of a sudden crash.

We further discuss how Max uses roll-forward recovery to

reconstruct inode table entries in §4.4.

4.3 Mlog

Max extends the multi-head logging of F2FS by splitting

the larger log into minor logs (mlogs), as shown in Figure 2.

Each mlog keeps the data and inode logs each with up to three

3In this paper, we use the commonly-used inode table entry and inode to

refer the specific node address table (NAT) and node structure of F2FS.

882 2021 USENIX Annual Technical Conference USENIX Association

temperatures as in F2FS. The number of mlogs is configurable.

Ideally, the number of mlogs can be the same as the number

of cores to achieve the highest concurrency. However, for

small capacity drives, having too many mlogs makes it hard

to accommodate large files due to limited capacity per mlog.

We further evaluate and discuss how to choose the appropriate

number of mlogs in §5.4.

Mlog cell. To support mlog, Max splits the allocation-related

IMDSes, forming individual mlog cells. Following the design

of F2FS, Max uses segment info table (SIT), validity bitmaps

and free bitmaps for space allocation. Yet, different from

F2FS, Max splits and co-locates the table with the two kinds

of bitmaps in mlog cells, as shown in Figure 2.

The SIT maintains the validity of all blocks for the corre-

sponding mlog. The free bitmap records the free 4 KB blocks.

Upon data flushing (e.g., fsync), Max selects a mlog cell in

a round-robin fashion and searches the free bitmap for free

blocks. Then, Max sends the data to the corresponding mlog.

Garbage collection. Each mlog cell performs garbage collec-

tion (GC), i.e., victim selection and block identification and

migration, independently. As GC performs at the granularity

of the section (consecutive 2 MB segments), Max keeps the

validity bitmaps to record both the dirty segments that need

GC, and the valid blocks per segment in the section.

For each mlog cell, Max uses existing victim selection poli-

cies [32,52] and the slack space recycle (SSR) [37] technique

of F2FS; Max always performs GC for inode log and we ex-

plain this in §4.4 by Figure 5. Since the data/inode blocks can

be spread across different mlogs, Max identifies not only the

valid block in the mlog, but also the freshness of that block

among all mlogs, by comparing the address of the block (in

the mlog) with the newest address of the file data/inode; Max

migrates only the valid and newest block. If a space allocation

can not find enough space in all mlog cells (e.g., the used disk

volume is higher than 95%), Max turns back to the single log-

ging as in F2FS. While, in this case, the SA level concurrency

is sacrificed, Max avoids severe fragmentation.

4.4 Consistency

Concurrency Consistency. In traditional Linux file systems,

the concurrency consistency is mostly handled by the Virtual

File System. The actual file system only needs to lock on

the target file(s). Therefore, with VFS remains intact, Max

simply locks on the file cells of the target files to ensure

correct execution order.

Crash Consistency. After a crash (e.g., power outage), Max

recovers the state by the following two steps: (1) roll back

to the latest consistent checkpoint; (2) perform roll-forward

recovery on all mlogs.

Here, we use an example in Figure 4 to present the roll-

forward of Max. First, for each mlog, starting from the latest

checkpoint, Max rebuilds the inode log and forms lists of

inode blocks (b.1). Next, Max merges the per-mlog inode list.

mlog1
A/a, i=3
v=1, p=1

mlog2
A/b, i=4
v=1, p=1

B/b, i=4
v=2, p=2

lba=1 lba=2

lba=11
A/a, i=3
v=1, p=1

B/b, i=4
v=2, p=2

lba=1 lba=2

inode 3 4

lba 1 2

addr. 1 2 11

valid 1 1 0

create(A/a);fsync(a);create(A/b);fsync(b);rename(A/b,B/b);fsync(b);crash!

(a) An example execution sequence before crash.

(b.1) roll-forward (b.2) merge

A
a

B

i-table

s-bitmap

b
d-tree

(b.3) update FS

i=1
i=2

(b) Crash recovery procedure.

Figure 4: An example of Max’s crash recovery. lba: logi-

cal block address, for recovering space bitmap (s-bitmap); i:

inode number, for recovering inode table (i-table); v: global

version, for merging; p: parent’s inode number, for recon-

structing the FS directory tree (d-tree). Described in §4.4.

S0.init S1.delete(A/a) S2.create(c)

a

a b

S4.delete(c)

a

a

A

b

b

a

A c

b

b

a

A d

b

S5.create(d)

lost A

undeleted a

mlog1

mlog2

a

a

A

b

c

S3.write(b)

b

a

A c

b

Figure 5: Performing inode GC in SSR mode.

Recall that Max uses round-robin placement to writes. There-

fore, outdated versions of an inode may still exist. For exam-

ple in Figure 4(a), the file b is modified twice; create(A/b)

is located in mlog2, and rename(A/b,B/b) is distributed to

mlog1. Such different versions can bifurcate the merged inode

list. To overcome this, Max embeds a global version number

(v) inside the inode block during each flush, and uses it to

identify the latest inode block during recovery (b.2) if needed.

Finally, Max updates the inode table, the space bitmap and

the directory tree with the merged inode list (b.3).

The inode list can also be affected by the GC policy. For

example, using SSR, a state-of-the-art space allocation pol-

icy, can lead to an inode loop, causing consistency issues.

Specifically, in Figure 5, the user deletes file a in directory A.

Now, the inode of a is invalidated, and its parent inode A is

updated (S1). Later when there are no more clean segments,

Max switches to SSR mode and directly reuses the obsolete

blocks (e.g., b of S3). In this case, an inode loop is formed,

and a further inode update may bifurcate original inode list,

resulting in updates loss (S5). In S5, the latest A is lost, and

the deletion of a is lost as well. During next roll forward, the

invalid a in mlog2 would be considered valid. Therefore, in

SSR mode, Max still uses common GC for the inode log.

4.5 Other Important Implementations

This subsection describes how Max’s approach retains other

aspects of the design of F2FS while improving concurrency.

Extent cache. F2FS uses bitmaps to record the addresses of

the data blocks for a file. A bitmap-based approach is efficient

for lookups of a specific point in a file but unfriendly when

scanning continuous ranges of addresses. Thus, F2FS uses

USENIX Association 2021 USENIX Annual Technical Conference 883

per-inode extent cache to speed up address lookup (esp. range

lookup). However, the per-inode extent cache is indexed by a

global radix tree (extent_tree_root) protected by a mutex

(extent_tree_lock), similar to the single inode radix tree.

Max splits the extent cache to each file cell for concurrent

extent cache access.

Inode table journal. As we mentioned in §4.2, the inode

table entry of F2FS is extremely compact (9 B). Directly

updating the inode table entry to its original location is likely

to incur many small I/Os, which is not friendly to performance

and lifetime of flash storage. Therefore, F2FS employs an

inode table journal in the spare space of the Meta region.

To quickly find the dirty inode table entries that need to be

journaled, F2FS uses a global linked list guarded by a spinlock

(nat_list_lock). This introduces significant contention on

the shared list when the number of threads is large. Max only

links the inode table entries for each file cell group to alleviate

the contention on the list. During checkpoint, Max scans the

per-group linked list to generate the inode table journal.

Resource counters. Similar to many FSes, F2FS uses de-

layed allocation techniques to postpone resource alloca-

tion until the data blocks are finally sent to the per-

sistent storage. F2FS uses many resource counters (e.g.,

total_valid_block_count) to pre-reserve FS resources

for incoming I/Os. These counters are shared globally under

the protection of a spinlock (stat_lock), and become scala-

bility bottlenecks in the multicore environment. Actually, the

FS only requires the approximate value of these counters, i.e.,

only needs to determine whether the incoming request fits

in the FS. Hence, Max replaces these counters with scalable

approximate counters (percpu_counter [33]).

These modifications made by Max do not change the write

ordering, the consistent metadata format or crash recovery

logic, and thus do not impact consistency.

5 Evaluation

We first evaluate Max against state-of-the-art Linux file sys-

tems on file operations (§5.1) and applications (§5.2). Then,

we perform experiments of Max under high volume utiliza-

tion (§5.3). Next, we study the performance contributions of

individual design aspects of Max (§5.4). Finally, we examine

the memory consumption by running Max (§5.5).

Testbed. The testbed is equipped with 4 Intel Xeon Gold 6140

CPU processors; each CPU has 18 physical cores (totally

72 cores) running at 2.30 GHz. The platform has 250 GB

DRAM, but only 10% DRAM (i.e., 25 GB, the Linux default

configuration) is used for page cache. The experiments in this

section are performed on a flash-based Intel DC P3700 SSD,

whose performance is presented in Table 3.

File systems setups. We compare Max with four Linux file

systems (ext4 [44], SpanFS [29], XFS [18] and F2FS [37])

in Linux kernel version 4.19.11. Ext4 and XFS are popular

journaling FSes used by many Linux distributions and storage

Type Model Seq. Bandwidth Rand. IOPS

NVMe
Intel DC

P3700 2TB

Read: 2800 MB/s

Write: 1900 MB/s

Read: 450K

Write: 175K

Table 3: SSD Specifications.

backends. SpanFS is a recent scalable journaling FS built on

Ext4. We set the number of the parallel journals of SpanFS to

72, the same as the number of physical cores. All tested FSes

are mounted with default options. The numbers of file cell

radix trees and mlog cells are set to 36 and 8 respectively. For

upper bound comparison, we use an alternative Max-mem by

disabling the fsync and page cache writeback functions of

Max to avoid duplicated copy.

Workloads. FxMark [48] is used to test multicore scalability.

FxMark concurrently and repeatedly executes individual file

operations or application processes. All tests last for at least

30 seconds and issue over 50 GB data.

5.1 Microbenchmark

5.1.1 File Operations Evaluation

Overwrite. Figure 6a shows the results of DWOL workload

of FxMark. Max achieves nearly 56× speedup at 72 cores

for overwrite operations. Max outperforms F2FS and SpanFS

(the second-best) by 35× and 2× at 72-cores respectively. The

key contributing factor to Max’s overwriting performance is

the RPS. Overwrite operations are performed in parallel by

updating individual data pages and hence do not frequently

trigger page cache flushes. Thus, the major overhead occurs at

the CC level. While F2FS is bounded by the CC level reader

cache coherence, Max achieves high concurrency with per-

core counters in the RPS. SpanFS and XFS use multiple in-

memory journal buffers, and thus serve concurrent overwrites

in parallel. Nonetheless, the journaling process adds extra

overhead compared to Max.

Append write. Figure 6b reports the results of DWAL work-

load of FxMark. We find that Max delivers the best perfor-

mance, and achieves almost 2× the throughput of F2FS. The

major contributing techniques here are the file cell and the

mlog. As append writes quickly fill the page cache and trigger

flushes, the I/O becomes the major bottleneck. Specifically,

append writes require new data pages and new inode pages,

resulting in insertions into the indexing trees. Such operations

of the traditional FS incur frequent serialization at IMDS level.

Max reorganizes the IMDS with file cells and uses multiple

indexing trees. Hence, the chance of serialization becomes sig-

nificantly lower. Moreover, at SA level, Max allocates space

from individual mlog cells, and flushes new blocks to individ-

ual mlogs. In F2FS, the NVMe SSD is however underutilized

due to the single sequential log allocation and access.

File creation. Figure 7a presents the results of MWCL work-

load of FxMark. We observe that, on file creation operations at

72 cores, Max achieves 2.8× higher performance than SpanFS

(the second-best) and 18.6× higher than F2FS. File creations

884 2021 USENIX Annual Technical Conference USENIX Association

(a) Overwrite, Low, NVMe SSD

0

50

100

150

cores
0 20 40 60 80

(b) Append, Low, NVMe SSD

0.2

0.4

0.6

0.8

cores
0 20 40 60 80

XFS ext4 SpanFS F2FS Max

M
 o

p
s
/s

Figure 6: Data scalability with FxMark. ((a): overwriting

blocks of private files, (b): appending blocks to private files.)

(a) Create, Low, NVMe SSD

0

0.2

0.4

0.6

0.8

cores
0 20 40 60 80

(b) Unlink, Low, NVMe SSD

0

0.5

1.0

1.5

cores
0 20 40 60 80

XFS ext4 SpanFS F2FS Max

M
 o

p
s
/s

Figure 7: Metadata scalability with FxMark. ((a)-(b): cre-

ating or deleting empty files in private directories.)

(a) Checkpoint, NVMe (b) Read, NVMe

C
P

 L
a

te
n

c
y
 (

m
s
)

rwsem

prwlock

RPS

percpu-rwsem

Data size KB

1

10

40 400 4000

read stat readdir

L
a

te
n

c
y
 i
n

c
re

.
(%

)

0

50

100

0

200

400

99th 99.9th

Figure 8: Checkpoint and read latency with different lock

techniques. (a): Checkpoint latency with different data size

and locks. (b): Read long tail caused by IPIs.

(a) Append, Low, DRAM

Max-mem

tmpfs

0

10

20

cores
0 20 40 60 80

(b) Create, Low, DRAM

0

1

2

cores
0 20 40 60 80

M
 o

p
s
/s

Figure 9: Upper bound evaluation with FxMark. ((a): ap-

pending blocks to private files, (b) creating empty files in

private directories.)

mainly consist of three steps: allocating file inode, growing

directory data/inode blocks and writing back data/inode page.

Max scales well in all steps. First, file inode allocation in

Max includes the file cell allocation and insertion. Max em-

ploys a per-core inode ID allocator and multiple file cells

radix trees, thereby avoiding contention on the inode and file

cell allocations; multiple radix trees also lower the chance of

serialization at insertion operations to the indexing. Second,

directory data and inode block grow concurrently in all tested

file systems without hurting the concurrency. Third, when

dirty pages are evicted from the page cache, mlog cells of

Max enable the threads to allocate space concurrently, and to

distribute the dirty inode blocks to individual mlogs.

File deletion. Figure 7b shows results of MWUL workload

of FxMark. Max achieves 11.5× and 6.1× performance at 72-

cores against F2FS and SpanFS (the second-best) respectively.

The reasons for Max’s good scalability on file deletion are

similar to that of file creation. In Max, directory entries and

inode pages are truncated independently in file cells. Also,

mlog cells reclaim disk space in parallel. We observe that

Max’s throughput declines since 54 cores. Further analysis

suggests that the root cause is the page cache lock contention

(i.e., i_wb_list) from VFS.

Checkpoint. We replace traditional rwsem in F2FS with sev-

eral alternatives, and then collect the latencies when check-

pointing variable-sized data. Figure 8a shows the results; we

observe that prwlock [42] and RPS hardly affect the check-

point latency. However, Linux percpu rwsem slows the check-

point significantly, as its exclusive-mode lock requires RCU-

based quiescence detection, where all cores have done a con-

text switch and executed a full memory barrier.

File read. We co-run multiple foreground tasks, i.e., reading

files (read), listing file attributes (stat), reading directories

(readdir), which are conflict-free and pinned to cores, with

a background task which triggers checkpoint periodically. We

then re-run the above scenario without the background task

and compare the results. We find that the foreground tasks

are almost unaffected by percpu rwsem or RPS. However, we

observe that the foreground tasks are susceptible to the inter-

processor interrupts (IPIs) of prwlock. Figure 8(b) shows

a performance decline: the 99.9th latency increases by up

to 486%. The reason behind the long tail is that these read-

dominate tasks mostly complete in a short time by hitting

cache or accessing memory, which are easily affected by the

forced context switch caused by IPIs.

Comparison with SpanFS. Through the aforementioned

tests, we note that SpanFS scales well on single-file oper-

ations (i.e., overwrite, append write), but yields suboptimal

performance on multiple-files operations (i.e., create, unlink).

This is because of the global consistency maintenance across

multiple journaling services. For instance, the newly created

files can be distributed to a different journaling service from

its parent, and the connection between the new file and its

parent’s directory entry (dentry) must be established which is

quite expensive. Max, due to the out-of-place update nature

of LFS, can directly dispatch the newly created file along with

the dentry to an arbitrary free mlog.

5.1.2 Max-mem Performance Evaluation

We use Max-mem to measure the performance improvement

led by a sufficiently large bandwidth (i.e., using memory as

backend). For comparison, we adopt tmpfs, a simple wrapper

of VFS, as the theoretical upper bound [48]. Figure 9a reports

USENIX Association 2021 USENIX Annual Technical Conference 885

(a) Varmail, NVMe SSD

0

200

400

600

cores
0 20 40 60 80

(b) Dbench_client, NVMe SSD

0

5

10

cores
0 20 40 60 80

(c) Exim, NVMe SSD

0

20

40

60

80

cores
0 20 40 60 80

(d) RocksDB, Overwrite, NVMe

10

20

30

cores
0 20 40 60 80

XFS ext4 SpanFS F2FS Max

K
 o

p
s
/s

Figure 10: Macrobenchmark. The workloads are write-intensive and stress underlying device. Described in §5.2.

Workload
Average

file size
of files

Directory

width
I/O size R/W ratio

Fileserver 128 KB 10K 20 1 MB 1:2

Varmail 16 KB 1K 1M 1 MB 1:1

Dbench client.txt, default configuration

Exim split spool directory, smtp_accept_max = 500

RocksDB overwrite, value_size=8k, disable compression

Table 4: Application workload characteristics.

the results of append write operations. The throughput of both

Max and tmpfs scale linearly. The little gap is caused by the

overhead of supporting block storage and pre-checking the

availability of FS resources (e.g., the number of data blocks).

Figure 9b indicates that the throughput of file creations

of Max-mem comes close to tmpfs. Max-mem does not

continue to scale mainly due to the VFS-wide spinlock

s_inode_list_lock that serializes new inode insertions

into the s_inodes list. We also notice the huge gap be-

tween Max-mem and tmpfs at 18-core. Tmpfs only stores

in-memory states. While in Max, the dentry and inode also

contain information for on-disk states, such as the dentry hash

table and data block indexes. This introduces significant costs

for create operation. However, when the VFS-wide spinlock

kicks in, the gap becomes much smaller.

5.2 Macrobenchmark

We use Filebench [46], Dbench-client [7], RocksDB [22] and

Exim [1] from FxMark to evaluate Max’s scalability under

applications workloads. Table 4 summarizes the characteris-

tics of these workloads. The main rationale for choosing these

four workloads is that they are both write- and I/O-intensive

and can thus stress the multicore scalability.

Varmail. Varmail contains frequent metadata operations and

fsync. Figure 10a shows the results of Varmail. Max outper-

forms SpanFS by 2.9× and F2FS by 1.1×. For independent

file operations, Max updates the in-memory file cells con-

currently with 36 indexing groups. When fsync is invoked,

Max chooses a free mlog cell and persists the inode pages and

data pages of the file cells. In contrast, F2FS uses only three

shared radix trees and need to serialize concurrent threads for

space allocation. Notably, SpanFS performs even worse than

F2FS due to its inefficiency in handling the file creation and

deletion followed by a fsync.

Dbench-client. Figure 10b shows the results of Dbench. Max

(a) Fileserver, NVMe SSD

0

0.5

1.0

cores
0 20 40 60 80

(b) Varmail, NVMe SSD

0.2

0.4

0.6

cores
0 20 40 60 80

Max-97.5% Max-90% F2FS-97.5% F2FS-90%

M
 o

p
s
/s

e
c

Figure 11: Performance under high disk volume utiliza-

tion. The number next to the file system is volume utilization.

performs best among all tested file system. F2FS stops to

scale at 36 cores while Max continues to. This is because

the Dbench-client performs a sequence of read, write, create,

unlink, stat, rename and sync operations. For non-durable

operations, such as write, create and unlink, Max delivers

higher concurrency by executing operations inside each cell.

Exim. Exim focuses on small files creation and deletion. Here,

we use the scalability-friendly version of Exim from the Fx-

Mark, where create and delete are performed almost in private

directories. However, Figure 10c shows that only Max scale

well in this modified version, outperforming F2FS by 6×. The

reason for Max’s good scalability is the same as file creation

and deletion in §5.1.1.

RocksDB. RocksDB introduces multi-threaded flush and

compaction to boost performance. We use db_bench, which

runs four client threads to put keys in a single RocksDB

instance atop a native FS. Then, we increase flush and com-

paction threads up to 72 threads. Figure 10d shows the result.

Max outperforms its peers. Note that the throughput of Max

starts to decline after 18 cores. We assume this can be caused

by the following three reasons. First, RocksDB frequently

invokes durability functions and hence occupies a large frac-

tion of the device bandwidth, lowering throughput of user

requests. Second, scaling over 18 cores (maximum cores of a

single CPU) incurs Non-Uniform Memory Access and PCI

bus routing. This throttles IOPS due to the inefficiency of

remote access. Third, RocksDB manages all its files includ-

ing metadata files and SSTable files under the same directory,

causing a medium level contention on the shared directory.

5.3 High Volume Utilization Evaluation

We evaluate the performance under high file system volume

utilization and high GC overhead in this subsection. We for-

886 2021 USENIX Annual Technical Conference USENIX Association

(a) Overwrite, Low, NVMe SSD

0

50

100

150

cores
0 20 40 60 80

(b) Create, Low, NVMe SSD

0

0.2

0.4

0.6

0.8

cores
0 20 40 60 80

(c) Create, Low, NVMe SSD

Max-1tree
Max-4trees

Max-16trees
Max-36trees

0

0.5

cores
0 20 40 60 80

(d) Varmail, NVMe SSD

Max-1mlog
Max-2mlogs

Max-4mlogs
Max-8mlogs

0.2

0.4

0.6

cores
0 20 40 60 80

Baseline
Max w/o fcell

Max w/o RPS
Max w/o mlog

Max

M
 o

p
s
/s

Figure 12: Performance contributions. Described in Section 5.4.

mat the 2 TB NVMe SSD and create a 200 GB partition for

the test. This ensures that the device GC rarely occurs during

the test. After filling up the tested file systems with two utiliza-

tion ratios (90%, 97.5%), we issue another 200 GB of random

overwrites to make the file system further fragmented.

Figure 11 plots the results of Fileserver and Varmail work-

load with FxMark. At 90%, Max outperforms F2FS by 4.4×

and 2.1×, in Fileserver and Varmail, respectively. In this case,

both Max and F2FS switch to the SSR mode. In SSR mode,

besides concurrent access to file cells, Max still offers concur-

rent space allocation. However, in this case, the inode updates

need cleaning. The serialized checkpoint after each cleaning

limits the further performance increase of Max.

The 97.5%-utilization Max, at 72-cores, outperforms F2FS

by 3.5× and 36% in Fileserver and Varmail, respectively. We

observe that the throughput of Max starts to decline after 18

cores in Varmail. This is because Max regresses to single

logging under high volume utilization ratio. In this scenario,

as RPS and file cell continue to contribute, Max survives

greater performance drop due to the single log access.

5.4 Understanding the Performance

We individually analyze the contribution of file cell, mlog and

RPS to the performance of Max. We setup Max with different

configurations (the left half of Figure 12): (1) F2FS (baseline),

(2) Max without file cell (Max w/o fcell), (3) Max without

mlog (Max w/o mlog), (4) Max without RPS (Max w/o RPS),

(e) full-fledged Max (Max). The tests are the same as that in

§5.1.1 and §5.2, i.e., DWOL, MWCL and Varmail.

Figure 12a-d show that, compared to the baseline, all three

techniques improve the performance. Specifically, RPS has a

greater boost on overwrite operations, as heavy cache coher-

ence takes up to several milliseconds but in-memory updates

only cost hundreds of nanoseconds. The file cell is more ef-

fective for complex create operations as modifying IMDS

is (e.g., inode initialization and hash calculation) expensive.

Mlog cell does not exhibit significant impact on Figure 12a-b

because these tests are not I/O intensive.

We also study the sensitivity of Max to the number of

IMDS radix trees and the number of mlogs. Figure 12c-d

plot the results of varying the number of trees and mlogs. We

choose create operation for trees as it frequently modifies the

indexing structure, and Varmail for mlogs due to its heavy

fsync. We observe that Max does not gain improvement

after more than 36 trees. The major reason is that the bottle-

neck, after 36 trees, has shifted from file system to the VFS.

For write intensive workload, 8 mlogs have almost saturated

the throughput. This is because Max, following the design

of F2FS, performs checkpoint to shrink cached entries (e.g.,

inode table, inode). In current single-threaded checkpoint de-

sign that blocks all write operations, assigning each CPU two

logs in our platform is enough currently.

5.5 Memory Consumption

We examine the extra memory consumption introduced by

deploying Max. We measure the peak memory usage for each

workload when running 72 processes. Table 5 reports the

result. The memory usage is categorized into two sets: (1)

static: memory used by the data structures of each file system,

and (2) cache: memory used by page cache. We find that Max

does not introduce much memory overhead for static memory

use. At CC level of Max, the single RPS keeps two per-core

counters. At IMDS level, Max has to maintain 36 file cell

radix trees. At SA level, the segment info table and all bitmaps

are physically partitioned and distributed to mlog cells, which

requires no extra memory. Hence, we assume that the extra

static memory usage from three levels is acceptable.

For page cache, Max consumes more memory than F2FS at

peak. This is because with file cell, the dirty pages aggregate

faster to the page cache (i.e., increase memory consumption).

Meanwhile, the mlog cells can also write back dirty pages

faster (i.e., decrease memory consumption). As a result, extra

page cache memory consumption is tolerable.

Workload
Static (MB) Cache (MB)

F2FS Max Incre. F2FS Max Incre.

Varmail 24.90 24.97 0.3% 1411 1484 5.2%

Dbench 24.90 24.97 0.3% 310 345 11.3%

RocksDB 24.90 24.97 0.3% 15 18 20%

Table 5: Peak memory consumption during workload ex-

ecution. Static: data structures, cache: page cache.

6 Related Work

File system scalability study. Multiple studies have dis-

cussed the scalability issues in the FSes [14, 15, 17, 48]. Fx-

USENIX Association 2021 USENIX Annual Technical Conference 887

Mark [48] argues that file system scalability does not depend

much on the storage media (i.e., Figure 1 of [48]) which is

different from our observation in §2. The root cause is that,

in FxMark, file operations are performed in memory with no

fsync. Yet, when cache has little effect on absorbing I/O traf-

fic, file system scalability does depend on the storage media.

Such scenarios include: (1) file operations in Direct I/O mode

(e.g., QEMU none cache mode [3]); (2) applications contain

frequent fsync or fdatasync calls (e.g., SQLite [5]); (3)

frequent cache eviction (e.g., high memory pressure).

File system scalability improvement. Another group of

prior work focus on improving the file system scalability.

Commuter [17] and ScaleFS [11] employ scalable software

design by connecting scalability to interface commutativity.

Both Commuter and ScaleFS target on a more scalable ker-

nel (i.e., sv6) with relaxed POSIX semantics. Max studies

the multicore scalability on mature, widely-used Linux and

POSIX interface. Park et al. [50] and Son et al. [56] improve

the scalability of journaling. Max focuses on LFS instead.

File system partition. SpanFS [29] and IceFS [43] partition

the journaling FS. SpanFS distributes files and directories

under each domain for scalability. IceFS partitions the file

system into directory subtrees called cubes for failure isola-

tion. Unfortunately, IceFS and SpanFS can incur significant

overhead from maintaining the global hierarchical namespace

(e.g., sharing a single physical journal in IceFS and coordina-

tion across journals in SpanFS). Max partitions the file system

at the granularity of file operations, where the file operations

to mlogs are totally independent of each other.

Scalable NVMM FS. Some non-volatile main memory

(NVMM) file systems [36,57] employ per-core or per-process

data structures, which seem to be the direct solutions to SSD-

based FS. The major difference of the scaling SSD-based

and NVMM-based FS lies in the access granularity. NVMM

FS can partition the FS at a finer granularity (e.g., 8 bytes);

for example, NOVA [57] atomically updates the 8 B inode

pointer to ensure the persistence and consistency of a file

write operation. Such fine-grained partitioning is unfriendly

to SSD FS with block access granularity (e.g., 4 KB). If Max

directly isolates the inode pointer (i.e., inode table entry) for

each file and directly persists each pointer to SSD, Maxwould

suffer from huge write amplification and extra PCIe round

trips. Hence, Max introduces the file cell to repack the data

structures to align the block granularity as well as to scale the

file-level performance.

For concurrent space allocation, NVMM FS can partition

the drive space with finer granularity, e.g., per-file log. Such

fine-grained partitioning is unnecessary, or even inefficient for

SSD FS. Fine-grained partition trades scalability for fragmen-

tation. In Max, we take a sensitivity study to find the appropri-

ate number of logs in §5.4. Further, NVMM FS such as NOVA

uses a journal to maintain consistency over multiple log parti-

tions. Max takes a different and more SSD-friendly approach:

distributing the atomic operation to a coarse-grained log par-

tition without spanning. To maintain the consistency over

multiple log partitions, Max embeds a global version number

in each inode block instead of using a journal.

Scalable lock designs. Myriad work [16,19,21,30,31,34,39,

41, 42, 45, 47] devise scalable locks. One category [19–21, 30,

31, 39] employ distributed reader indicators (e.g., per-NUMA

node reader indicators) or similar designs to reduce the cache

coherence traffic across NUMA nodes or CPU cores in the

common case, which is similar to RPS. RPS uses per-core

reader indicators for optimal reader-reader scalability, and

uses a different “scheduler free rides” mechanism to soften the

impact on the exclusive-mode lock. This mechanism aims to

leverage the CPU scheduler to increase the responsiveness of

the lock writers while reducing the impact (e.g., forced context

switch) on other CPU cores, which we found very effective for

the LFS concurrency control. RCU [47] and its extensions [34,

45] allow readers just for read-only traversals. Hence, they

can not be directly used in the LFS concurrency control, as

readers need to perform updates. RPS maintains the number

of readers in per-core reader counters, the same as in [16, 41,

42]. RPS differs from them in the writer procedure. Before

updating protected data structures, the writer of Linux percpu

rwsem [41] must wait a significantly long grace period [42].

The writer of prwlock [42] actively broadcasts IPIs to check

reader status, which causes unnecessary context switches of

the on-going readers. RPS leverages the CPU scheduler to

retrieve reader status; the last reader of RPS voluntarily yields

cores to the CPU scheduler, which enables the writer to check

readers efficiently without affecting readers.

7 Conclusion

The bandwidth of SSDs has been surging over the last decade.

However, through a performance study, we notice that modern

Linux file systems do not offer enough multicore scalability

and hence can not fully exploit the abundant bandwidth of

high performance drives. We propose Max, a multicore file

system to effectively alleviate the lock contention of the file

system. Max introduces reader pass-through semaphore for

efficient concurrency control, file cell for scalable in-memory

data structures and mlog for concurrent space allocation.

Through evaluation, we show that Max outperforms mod-

ern Linux file systems with the scaling of cores. The source

code of Max is available at github.com/thustorage/max.

8 Acknowledgement

We sincerely thank our shepherd Ric Wheeler and the anony-

mous reviewers for their valuable feedback. This work is

supported by the National Key Research & Development

Program of China (Grant No. 2018YFB1003301), and the

National Natural Science Foundation of China (Grant No.

62022051, 61832011, 61772300).

888 2021 USENIX Annual Technical Conference USENIX Association

http://github.com/thustorage/max

References

[1] Exim. https://www.exim.org/.

[2] Fdisk. https://en.wikipedia.org/wiki/Fdisk.

[3] Kvm disk cache modes. https://

documentation.suse.com/sles/11-SP4/html/

SLES-kvm4zseries/cha-qemu-cachemodes.html.

[4] Nvm express specification. https://nvmexpress.

org/developers/nvme-specification/.

[5] Sqlite. https://www.sqlite.org/index.html.

[6] Zoned namespaces (zns) ssds. https:

//zonedstorage.io/introduction/zns/.

[7] Dbench. https://dbench.samba.org/, 2008.

[8] Linux perf. https://perf.wiki.kernel.org/

index.php/Main_Page, 2015.

[9] NVMe. https://nvmexpress.org/

white-papers/, 2018.

[10] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber,

Ming Wu, Vijayan Prabhakaran, Michael Wei, John D.

Davis, Sriram Rao, Tao Zou, and Aviad Zuck. Tango:

Distributed data structures over a shared log. SOSP ’13,

page 325–340, New York, NY, USA, 2013. Association

for Computing Machinery.

[11] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements,

M. Frans Kaashoek, and Nickolai Zeldovich. Scaling

a file system to many cores using an operation log. In

Proceedings of the 26th Symposium on Operating Sys-

tems Principles, SOSP ’17, pages 69–86, New York, NY,

USA, 2017. ACM.

[12] Matias Bjørling. From open-channel ssds to zoned

namespaces. https://www.usenix.org/sites/

default/files/conference/protected-files/

nsdi19_slides_bjorling.pdf.

[13] Matias Bjørling, Jens Axboe, David Nellans, and

Philippe Bonnet. Linux block io: Introducing multi-

queue ssd access on multi-core systems. 07 2013.

[14] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yan-

dong Mao, Frans Kaashoek, Robert Morris, Aleksey

Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang,

and Zheng Zhang. Corey: An operating system for

many cores. In Proceedings of the 8th USENIX Con-

ference on Operating Systems Design and Implementa-

tion, OSDI’08, pages 43–57, Berkeley, CA, USA, 2008.

USENIX Association.

[15] Silas Boyd-Wickizer, Austin T. Clements, Yandong

Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Mor-

ris, and Nickolai Zeldovich. An analysis of linux scala-

bility to many cores. In Proceedings of the 9th USENIX

Conference on Operating Systems Design and Imple-

mentation, OSDI’10, pages 1–16, Berkeley, CA, USA,

2010. USENIX Association.

[16] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco,

Virendra J. Marathe, and Nir Shavit. Numa-aware

reader-writer locks. In Proceedings of the 18th ACM

SIGPLAN Symposium on Principles and Practice of Par-

allel Programming, PPoPP ’13, pages 157–166, New

York, NY, USA, 2013. ACM.

[17] Austin T. Clements, M. Frans Kaashoek, Nickolai Zel-

dovich, Robert T. Morris, and Eddie Kohler. The scal-

able commutativity rule: Designing scalable software

for multicore processors. In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Princi-

ples, SOSP ’13, pages 1–17, New York, NY, USA, 2013.

ACM.

[18] Jonathan Corbet. Xfs: the filesystem of the future?

https://lwn.net/Articles/476263/, 2012.

[19] Dave Dice and Alex Kogan. Bravo—biased locking for

reader-writer locks. In 2019 USENIX Annual Technical

Conference (USENIX ATC 19), pages 315–328, Renton,

WA, July 2019. USENIX Association.

[20] Dave Dice and Alex Kogan. Compact numa-aware locks.

In Proceedings of the Fourteenth EuroSys Conference

2019, EuroSys ’19, pages 12:1–12:15, New York, NY,

USA, 2019. ACM.

[21] David Dice, Virendra J. Marathe, and Nir Shavit. Lock

cohorting: A general technique for designing numa

locks. ACM Trans. Parallel Comput., 1(2):13:1–13:42,

February 2015.

[22] FaceBook. Rocksdb. https://github.com/

facebook/rocksdb.

[23] Intel. Breakthrough performance for de-

manding storage workloads. https:

//www.intel.com/content/dam/www/

public/us/en/documents/product-briefs/

optane-ssd-905p-product-brief.pdf.

[24] Intel. Intel ssd p4618 serial. https://ark.

intel.com/content/www/us/en/ark/products/

series/192575/intel-ssd-dc-p4618-series.

html.

[25] Intel. Intel R© ssd 760p series. https://www.

intel.com/content/www/us/en/products/

memory-storage/solid-state-drives/

USENIX Association 2021 USENIX Annual Technical Conference 889

https://www.exim.org/
https://en.wikipedia.org/wiki/Fdisk
https://documentation.suse.com/sles/11-SP4/html/SLES-kvm4zseries/cha-qemu-cachemodes.html
https://documentation.suse.com/sles/11-SP4/html/SLES-kvm4zseries/cha-qemu-cachemodes.html
https://documentation.suse.com/sles/11-SP4/html/SLES-kvm4zseries/cha-qemu-cachemodes.html
https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-specification/
https://www.sqlite.org/index.html
https://zonedstorage.io/introduction/zns/
https://zonedstorage.io/introduction/zns/
https://dbench.samba.org/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://nvmexpress.org/white-papers/
https://nvmexpress.org/white-papers/
https://www.usenix.org/sites/default/files/conference/protected-files/nsdi19_slides_bjorling.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/nsdi19_slides_bjorling.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/nsdi19_slides_bjorling.pdf
https://lwn.net/Articles/476263/
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf
https://ark.intel.com/content/www/us/en/ark/products/series/192575/intel-ssd-dc-p4618-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/192575/intel-ssd-dc-p4618-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/192575/intel-ssd-dc-p4618-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/192575/intel-ssd-dc-p4618-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/7-series/ssd-760p-series/760p-series-1-024tb-m-2-80mm-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/7-series/ssd-760p-series/760p-series-1-024tb-m-2-80mm-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/7-series/ssd-760p-series/760p-series-1-024tb-m-2-80mm-3d2.html

consumer-ssds/7-series/ssd-760p-series/

760p-series-1-024tb-m-2-80mm-3d2.html.

[26] Intel. Intel R© ssd d7-p5600 series. https://www.

intel.com/content/www/us/en/products/

memory-storage/solid-state-drives/

data-center-ssds/d7-series/

d7-p5600-series/d7-p5600-3-2tb-2-5in-3d3.

html.

[27] Intel. Intel R© ssd dc p3700 series. https://ark.

intel.com/content/www/us/en/ark/products/

series/79628/intel-ssd-dc-p3700-series.

html.

[28] Intel. Intel R© ssd dc p4510 series.

https://www.intel.com/content/www/

us/en/products/memory-storage/

solid-state-drives/data-center-ssds/

d7-series/dc-p4510-series/

dc-p4510-15-3tb-e1-l-18mm.html.

[29] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu,

Lian Du, Shuai Ma, and Jinpeng Huai. Spanfs: A scal-

able file system on fast storage devices. In Proceedings

of the 2015 USENIX Conference on Usenix Annual Tech-

nical Conference, USENIX ATC ’15, pages 249–261,

Berkeley, CA, USA, 2015. USENIX Association.

[30] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng, Chang-

woo Min, and Taesoo Kim. Scalable and practical lock-

ing with shuffling. In Proceedings of the 26th Sympo-

sium on Operating Systems Principles, SOSP ’19, 2019.

[31] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim.

Scalable numa-aware blocking synchronization primi-

tives. In 2017 USENIX Annual Technical Conference

(USENIX ATC 17), pages 603–615, Santa Clara, CA,

2017. USENIX Association.

[32] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Mo-

toda. A flash-memory based file system. In USENIX,

1995.

[33] Linux Kernel. Percpu counter. https:

//elixir.bootlin.com/linux/v4.19.11/

source/include/linux/percpu_counter.h.

[34] Jaeho Kim, Ajit Mathew, Sanidhya Kashyap, Mad-

hava Krishnan Ramanathan, and Changwoo Min. Mv-

rlu: Scaling read-log-update with multi-versioning. In

Proceedings of the Twenty-Fourth International Confer-

ence on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS ’19, pages

779–792, New York, NY, USA, 2019. ACM.

[35] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi

Hifumi, Seiji Kihara, and Satoshi Moriai. The linux

implementation of a log-structured file system. SIGOPS

Oper. Syst. Rev., 40(3):102–107, July 2006.

[36] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon

Peter, Emmett Witchel, and Thomas Anderson. Strata:

A cross media file system. In Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP ’17,

page 460–477, New York, NY, USA, 2017. Association

for Computing Machinery.

[37] Changman Lee, Dongho Sim, Joo-Young Hwang, and

Sangyeun Cho. F2fs: A new file system for flash storage.

In Proceedings of the 13th USENIX Conference on File

and Storage Technologies, FAST’15, pages 273–286,

Berkeley, CA, USA, 2015. USENIX Association.

[38] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy

Zwaenepoel. Kvell: The design and implementation of

a fast persistent key-value store. In Proceedings of the

27th ACM Symposium on Operating Systems Principles,

SOSP ’19, page 447–461, New York, NY, USA, 2019.

Association for Computing Machinery.

[39] Yossi Lev, Victor Luchangco, and Marek Olszewski.

Scalable reader-writer locks. In Proceedings of the

Twenty-first Annual Symposium on Parallelism in Al-

gorithms and Architectures, SPAA ’09, pages 101–110,

New York, NY, USA, 2009. ACM.

[40] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu. Write

dependency disentanglement with HORAE. In 14th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI 20), pages 549–565. USENIX

Association, November 2020.

[41] Linux. Linux percpu_rwsem. http://lxr.

freeelectrons.com/source/include/linux/

percpurwsem.h, 2012.

[42] Ran Liu, Heng Zhang, and Haibo Chen. Scalable

read-mostly synchronization using passive reader-writer

locks. In Proceedings of the 2014 USENIX Conference

on USENIX Annual Technical Conference, USENIX

ATC’14, pages 219–230, Berkeley, CA, USA, 2014.

USENIX Association.

[43] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. Physical disentanglement in a container-based

file system. In Proceedings of the 11th USENIX Con-

ference on Operating Systems Design and Implementa-

tion, OSDI’14, pages 81–96, Berkeley, CA, USA, 2014.

USENIX Association.

890 2021 USENIX Annual Technical Conference USENIX Association

https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/7-series/ssd-760p-series/760p-series-1-024tb-m-2-80mm-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/7-series/ssd-760p-series/760p-series-1-024tb-m-2-80mm-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d7-series/d7-p5600-series/d7-p5600-3-2tb-2-5in-3d3.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d7-series/d7-p5600-series/d7-p5600-3-2tb-2-5in-3d3.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d7-series/d7-p5600-series/d7-p5600-3-2tb-2-5in-3d3.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d7-series/d7-p5600-series/d7-p5600-3-2tb-2-5in-3d3.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d7-series/d7-p5600-series/d7-p5600-3-2tb-2-5in-3d3.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d7-series/d7-p5600-series/d7-p5600-3-2tb-2-5in-3d3.html
https://ark.intel.com/content/www/us/en/ark/products/series/79628/intel-ssd-dc-p3700-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/79628/intel-ssd-dc-p3700-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/79628/intel-ssd-dc-p3700-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/79628/intel-ssd-dc-p3700-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d7-series/dc-p4510-series/dc-p4510-15-3tb-e1-l-18mm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d7-series/dc-p4510-series/dc-p4510-15-3tb-e1-l-18mm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d7-series/dc-p4510-series/dc-p4510-15-3tb-e1-l-18mm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d7-series/dc-p4510-series/dc-p4510-15-3tb-e1-l-18mm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d7-series/dc-p4510-series/dc-p4510-15-3tb-e1-l-18mm.html
https://elixir.bootlin.com/linux/v4.19.11/source/include/linux/percpu_counter.h
https://elixir.bootlin.com/linux/v4.19.11/source/include/linux/percpu_counter.h
https://elixir.bootlin.com/linux/v4.19.11/source/include/linux/percpu_counter.h
http://lxr.freeelectrons.com/source/include/linux/percpurwsem.h
http://lxr.freeelectrons.com/source/include/linux/percpurwsem.h
http://lxr.freeelectrons.com/source/include/linux/percpurwsem.h

[44] Avantika Mathur, Mingming Cao, Suparna Bhat-

tacharya, Andreas Dilger, Alex Tomas, and Laurent

Vivier. The new ext4 filesystem: current status and

future plans. In Proceedings of the Linux symposium,

volume 2, pages 21–33, 2007.

[45] Alexander Matveev, Nir Shavit, Pascal Felber, and

Patrick Marlier. Read-log-update: A lightweight syn-

chronization mechanism for concurrent programming.

In Proceedings of the 25th Symposium on Operating Sys-

tems Principles, SOSP ’15, pages 168–183, New York,

NY, USA, 2015. ACM.

[46] Richard McDougall and Jim Mauro. Filebench.

http://www.nfsv4bat.org/Documents/

nasconf/2004/filebench.pdf, 2005.

[47] Paul E. McKenney. Kernel korner: Using rcu in the linux

2.5 kernel. Linux J., 2003(114):11–, October 2003.

[48] Changwoo Min, Sanidhya Kashyap, Steffen Maass,

Woonhak Kang, and Taesoo Kim. Understanding many-

core scalability of file systems. In Proceedings of the

2016 USENIX Conference on Usenix Annual Technical

Conference, USENIX ATC ’16, pages 71–85, Berkeley,

CA, USA, 2016. USENIX Association.

[49] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-

Won Lee, and Young Ik Eom. Sfs: Random write con-

sidered harmful in solid state drives. In Proceedings

of the 10th USENIX Conference on File and Storage

Technologies, FAST’12, page 12, USA, 2012. USENIX

Association.

[50] Daejun Park and Dongkun Shin. ijournaling: Fine-

grained journaling for improving the latency of fsync

system call. In Proceedings of the 2017 USENIX Confer-

ence on Usenix Annual Technical Conference, USENIX

ATC ’17, pages 787–798, Berkeley, CA, USA, 2017.

USENIX Association.

[51] Christoph Rohland. tmpfs. https://www.kernel.

org/doc/Documentation/filesystems/tmpfs.

txt, 2010.

[52] Mendel Rosenblum and John K. Ousterhout. The design

and implementation of a log-structured file system. ACM

Trans. Comput. Syst., 10(1):26–52, February 1992.

[53] Samsung. Samsung 980pro ssd. https:

//www.samsung.com/semiconductor/minisite/

ssd/product/consumer/980pro/.

[54] Samsung. Samsung 983 dct datacenter ssd.

https://www.samsung.com/semiconductor/

minisite/ssd/product/data-center/983dct/.

[55] Samsung. Ultra-low latency with samsung z-nand

ssd. https://www.samsung.com/us/labs/pdfs/

collateral/Samsung_Z-NAND_Technology_

Brief_v5.pdf.

[56] Yongseok Son, Sunggon Kim, Heon Young Yeom, and

Hyuck Han. High-performance transaction processing

in journaling file systems. In Proceedings of the 16th

USENIX Conference on File and Storage Technologies,

FAST’18, pages 227–240, Berkeley, CA, USA, 2018.

USENIX Association.

[57] Jian Xu and Steven Swanson. Nova: A log-structured

file system for hybrid volatile/non-volatile main mem-

ories. In Proceedings of the 14th Usenix Conference

on File and Storage Technologies, FAST’16, pages 323–

338, Berkeley, CA, USA, 2016. USENIX Association.

[58] ZDNet. Zoned flash: The next big thing in en-

terprise ssds. https://www.zdnet.com/article/

zoned-flash-is-coming/.

USENIX Association 2021 USENIX Annual Technical Conference 891

http://www.nfsv4bat.org/Documents/nasconf/2004/filebench.pdf
http://www.nfsv4bat.org/Documents/nasconf/2004/filebench.pdf
https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/data-center/983dct/
https://www.samsung.com/semiconductor/minisite/ssd/product/data-center/983dct/
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.zdnet.com/article/zoned-flash-is-coming/
https://www.zdnet.com/article/zoned-flash-is-coming/

	Introduction
	Background and Motivation
	Understanding the Performance
	Identifying Root Causes

	Max Design Principle
	Max Implementation
	Reader Pass-through Semaphore
	File Cell
	Mlog
	Consistency
	Other Important Implementations

	Evaluation
	Microbenchmark
	File Operations Evaluation
	Max-mem Performance Evaluation

	Macrobenchmark
	High Volume Utilization Evaluation
	Understanding the Performance
	Memory Consumption

	Related Work
	Conclusion
	Acknowledgement

