
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

KVIMR: Key-Value Store Aware Data Management
Middleware for Interlaced Magnetic Recording

Based Hard Disk Drive
Yuhong Liang, Tsun-Yu Yang, and Ming-Chang Yang,

The Chinese University of Hong Kong
https://www.usenix.org/conference/atc21/presentation/liang

KVIMR: Key-Value Store Aware Data Management Middleware for
Interlaced Magnetic Recording Based Hard Disk Drive

Yuhong Liang, Tsun-Yu Yang, and Ming-Chang Yang
The Chinese University of Hong Kong

Abstract
Log-Structured Merge-Tree (LSM-tree) based key-value

(KV) store provides write-intensive applications with high
throughput on Hard Disk Drive (HDD). Recently, the emerg-
ing Interlaced Magnetic Recording (IMR) technology makes
the IMR based HDD become another desirable option to con-
struct a cost-effective KV store because of its high areal den-
sity.Nevertheless, we observe that deploying LSM-tree based
KV store on IMR based HDD may suffer noticeable degra-
dation on throughput of incoming reads/writes. Thus, this
paper presents KVIMR, a data management for constructing
a cost-effective yet high-throughput LSM-tree based KV store
on IMR based HDD. KVIMR is architected as a middleware,
interposed between LSM-tree based KV store and IMR based
HDD, to embrace the compatibility for mainstream LSM-
tree based KV store implementations with limited modifica-
tions. Technically, KVIMR adopts a novel Compaction-aware
Track Allocation scheme, which leverages the special proper-
ties behind the compaction process to remedy the throughput
degradation. KVIMR further utilizes a novel Merged RMW
approach to improve the efficiency of persisting a multi-track-
sized file of KV store into IMR tracks with the ensured crash
consistency. Our evaluations on several well-known LSM-
tree based KV store implementations reveal that KVIMR not
only improves the overall throughput by up to 1.55× under
write-intensive workloads but even achieves 2.17× higher
throughput under high space usage of HDD, as compared
with the state-of-the-art track allocation scheme for IMR.

1 Introduction

Persistent key-value (KV) stores have gained popularity
in diverse data-intensive applications, ranging from elec-
tronic commerce [15], internet services [43], to cloud en-
vironments [13, 33], because of its high efficiency in inser-
tions, point and range queries, and deletions. Among various
implementations of KV store, Log-Structured Merge-Tree
(LSM-tree) [38] based KV stores (e.g., BigTable [13], Cassan-
dra [34], LevelDB [21], HBase [26], HyperLevelDB [17] and

(a) CMR (b) SMR (c) IMR
Figure 1: Track Layouts of CMR, SMR, and IMR.

RocksDB [18]) demonstrate its strength in delivering high
write throughput on the mechanical hard-disk drive (HDD).
The reason is that the LSM-tree takes advantage of the se-
quential access strength of HDD [38] by first batching the
inserted KV pairs in memory and then persisting the batched
data from memory into HDD sequentially.

With the explosive growth of data, how to construct a cost-
effective KV store has become another vital challenge. How-
ever, the most common type of HDD, i.e., the Conventional
Magnetic Recording (CMR) based HDD, has reached its bot-
tleneck in providing higher areal density [11] to lower its
cost-per-GB because of the super-paramagnetic effect [37].
Among various novel technologies that can break such areal
density limitation [12, 16, 28, 30–32, 35, 40, 44, 46, 55], Shin-
gled Magnetic Recording (SMR) technology [10, 47] is an
eligible alternative of CMR for offering higher areal density
gain with limited manufacturing changes [49, 51]. Different
from the CMR track layout in which a small guard space is
introduced to every two physically-adjacent tracks (as shown
in Figure 1a), every SMR track is partly overlapped by its
subsequent one(s), making that SMR tracks are placed closer
to each other (as shown in Figure 1b). However, with this
“shingled” track layout, data updates to a single SMR track
may incur the time-consuming track rewrites over a great
amount of subsequent tracks along the shingled direction, so
as to avoid losing any valid data [10,51].Although lots efforts
have been made to tackle the track rewrite issue for SMR
based HDD at different layers [10, 27, 39, 41, 42, 51–53], the
applicability of SMR based HDD is still limited because of
its long write tail-latency [51].

USENIX Association 2021 USENIX Annual Technical Conference 657

More recently, the emerging Interlaced Magnetic Record-
ing (IMR) technology [28] has been validated for being effec-
tive in delivering even-higher areal density with reduced track
rewrite issue than the SMR [22], making the IMR become a
more desirable successor to the CMR. In general, the areal
density gain of IMR is mainly attributed to the linear density
increasing of tracks with different laser currents [22, 23]. As
shown in Figure 1c, IMR embraces a new “interlaced” track
layout to organize tracks into top tracks and bottom tracks,
with each bottom track overlapped partially by two adjacent
top tracks. With this interlaced track layout, any top tracks
can be freely updated without incurring any track rewrites;
whilst updates to a bottom track would only introduce at most
two track rewrites on its two adjacent top tracks. Moreover,
to conduct track rewrites with ensured crash consistency, the
read-modify-write (RMW) approach [25] is presented.

Inspired by the ever-high areal density and the reduced
track rewrite issue of IMR technology, this paper for the first
time, seeks for the possibility in constructing a cost-effective
yet high-throughput LSM-tree based KV store on IMR based
HDD. Nevertheless, we observe that deploying LSM-tree
based KV stores on IMR based HDD may still suffer notice-
able degradation on throughput of incoming reads/writes. The
reason is that the RMW process of IMR based HDD may
amplify the background I/Os introduced by the compaction
process of LSM-tree based KV store, and such amplified
background I/Os may thereby degrade the efficiency of the
compaction process and further slow down the throughput of
incoming reads/writes [9,39,53]. Moreover, none of the exist-
ing designs for managing IMR tracks is able to well remedy
such throughput degradation, because the special software
behavior, hid behind compaction process of the LSM-tree
based KV store, is out of their design considerations.

With the goal of alleviating the noticeable throughput degra-
dation caused by the IMR technology, this paper presents
KVIMR, a data management middleware for constructing a
cost-effective yet high-throughput LSM-tree based KV store
on IMR based HDD. In particular, KVIMR is architected
as a middleware, sitting between LSM-tree based KV store
and IMR based HDD, in order to facilitate 1) the support
for various existing implementations of LSM-tree based KV
store with limited modifications and 2) the direct and efficient
management on IMR based HDD.

To make KVIMR be aware of the software behaviour of
LSM-tree based KV store with limited overhead, the most key
semantic information (i.e., the “level” information) regarding
the data of LSM-tree is passed to KVIMR along with data
writes. Given the “level” information as a clue, KVIMR in-
troduces a novel Compaction-aware Track Allocation scheme
to allocate tracks for data of LSM-tree KV store according
to the “level” information. This scheme effectively remedies
the throughput degradation and improves the compaction effi-
ciency by 1) minimizing the time-consuming RMWs when
persisting data files (i.e., SSTables) of LSM-tree based KV

store and 2) efficiently accessing the data files of LSM-tree
based KV store during the compaction process. To further
improve the compaction efficiency when the time-consuming
RMWs are inevitable, KVIMR employs a novel Merged RMW
approach to efficiently persist a multi-track-sized data file of
LSM-tree based KV store into IMR tracks. Its key idea is to
re-order the multiple “track-by-track” RMWs into a single
“merged” RMW while still nicely ensure the crash consistency.
With this approach, KVIMR significantly reduces the number
of required sync-like functions, which have adverse effects
on I/O performance of HDD [2, 24, 45], and avoids redundant
track rewrites caused by the track-by-track RMW approach.

KVIMR is developed in C++ and provides a POSIX com-
plaint interface for the existing LSM-tree KV store implemen-
tations to interact with IMR based HDD. Specifically, we mod-
ify three well-known LSM-tree KV stores, i.e., RocksDB [18],
LevelDB [21], and HyperLevelDB [17], by replacing the na-
tive file operations with a similar set of file operations pro-
vided by KVIMR to access the data files in an emulated
IMR based HDD. Our evaluations on these three LSM-tree
based KV store implementations reveal that KVIMR not only
improves the overall throughput by up to 1.55× under write-
intensive workloads but even achieves 2.17× higher through-
put under high space usage of HDD, as compared with the
state-of-the-art track allocation scheme for IMR.

The rest of this paper is organized as follows: Section 2
presents the background and motivation regarding this work.
Section 3 introduces the design of KVIMR. Then, Section 4
provides the implementation details and demonstrates the
evaluation results. Finally, Section 5 presents relevant studies
and Section 6 concludes this work.

2 Background and Motivation

2.1 LSM-Tree based KV Store
Because of the strength in delivering high write through-
put on the mechanical HDD, Log-Structured Merge-Tree
(LSM-tree) [38] inspires many well-known key-value (KV)
stores, such as RocksDB [18], LevelDB [21], and Hyper-
LevelDB [17]. In general, these LSM-tree based KV stores
embrace a similar design concept, borrowed from LSM-tree,
on managing KV pairs in the HDD, and support a similar set
of KV operations such as put, get and delete operations.

The put operation is for inserting KV pairs into the KV
store. To deliver high throughput of put operations on HDD,
LSM-tree based KV store first batches all the inserted KV
pairs in an in-memory sorted skiplist namely Memtable.
When the Memtable exceeds its size limit (e.g., 64 MB in
RocksDB [18]), LSM-tree based KV store creates a new
Memtable to keep accommodating new KV pairs, while the
old Memtable is converted to an immutable in-memory sorted
skiplist namely Immutable Memtable. In the background,
an important thread takes over the Immutable Memtable

658 2021 USENIX Annual Technical Conference USENIX Association

and persists it into HDD as an in-disk sorted string table
(SSTable). In addition, all the SSTables in the disk are orga-
nized into multiples levels (i.e., L0∼Ln), similar to the mul-
tiple in-disk components of the LSM-tree [38], and the size
limit of each level increases exponentially by a factor (e.g., 10
in both LevelDB [21] and RocksDB [18]) from L1 to larger
level(s). Moreover, the SSTable converted from the Immutable
Memtable is usually placed at L0 first; then, once the total
size of SSTables of any level Li exceeds its size limit, the
background thread keeps performing the compaction process
in a cascading way to compact the KV pairs from smaller lev-
els to larger levels, until all levels are within their size limits.
Specifically, the compaction process 1) picks one SSTable in
Li, 2) merges it with all SSTables with overlapped key ranges
in L(i+1), 3) creates new SSTable(s) into L(i+1), and finally
4) deletes all stale SSTables from the KV store sooner or later.

Besides of the put operation, LSM-tree based KV store
also supports the get operation to read out the value associ-
ated with the given key. Specifically, to find out the latest ver-
sion of value, LSM-tree based KV store searches the requested
key-value pair(s) from Memtable, Immutable Memtable, and
SSTables from smaller levels to larger levels in order. More-
over, LSM-tree based KV store also supports the delete
operation to remove specific KV pair(s) from the KV store.

2.2 Interlaced Magnetic Recording

Interlaced Magnetic Recording (IMR) [28] is a new disk tech-
nology that adopts the “interlaced” track layout to increase
the areal density by shortening the distance between adjacent
tracks. As shown in Figure 1c, tracks of IMR based HDD
are organized into top tracks and bottom tracks, and each
bottom track (e.g., Track #2) is overlapped partially by two
adjacent top tracks (e.g., Tracks #1 and #3). However, with
this interlaced track layout, writing data into any bottom track
will destroy the (valid) data stored in the two adjacent top
tracks. Thus, in order to protect the (valid) data of top tracks
against data loss on writing data into bottom tracks, the read-
modify-write (RMW) approach [25] is introduced; specifically,
it ensures the crash consistency by quarantining that the fol-
lowing sequence of “read-modify-write” can be enforced: 1)
“Read”: Backing up the valid data of the two adjacent top
tracks in a backup region; 2) “Modify”: Writing the updated
data properly to the bottom track; and 3) “Write”: Re-writing
the backed-up valid data back to the adjacent top tracks.

Since the RMW is time-consuming [48], most existing stud-
ies for IMR based HDD focus on how to minimize the proba-
bility of incurring the RMWs. Specifically, some propose to
reduce RMWs via track allocation (i.e., how IMR tracks are
allocated to accommodate the written data). For example, Gao
et al. present a three phase track allocation to allocate tracks
based on three phases of disk space usage [19,20]: In the first
phase, data are placed into bottom tracks only until all the
bottom tracks are full of data (i.e., 0%∼ 50% space usage); in

the second phase, data are placed into every other top tracks
until half of the top tracks are used (i.e., 50% ∼ 75% space
usage); and in the third phase, data are placed into the rest of
top tracks (i.e., 75% ∼ 100% space usage). As a result, the
first phase would not incur any RMW(s), while the second
phase (resp. to the third phase) ensures at most one (resp. to
two) top track(s) will be re-written on writing data into any
bottom track. Based on the three phase track allocation, Wu
et al. further propose a zigzag track allocation to reverse the
track allocation order in the second phase, making every other
top tracks be allocated from inner tracks to outer tracks, for
better preserving data locality [48, 50].

Another series of studies tries to minimize the probability
of incurring the RMWs by considering the update frequencies
of data. Notably, in the literature, the frequently-updated data
(resp. to less-frequently-updated data) are also referred to
as the hot data (resp. to cold data). For example, Wu et al.
propose a top buffer design to exploit a few top tracks as
“write buffer” to place the hot data, and a block swap method
to exchange the hot data in bottom tracks with the cold data
in top tracks, so as to reduce the RMWs caused by updating
hot data in bottom tracks [48, 50]. More recently, Hajkazemi
et al. propose three new track-level techniques, namely track
flipping, selective track caching, and dynamic track, to reduce
the amount of writes to bottom tracks by moving hot data to
top tracks and cold data to bottom ones in different ways [25].
However, please note that, although time-consuming RMWs
can be indeed reduced by considering the update frequencies
of data, not all sorts of applications can be benefited from this
series of studies. For example, the data of LSM-tree based
KV stores (i.e., SSTable), which is our target application, are
written once but never updated before being deleted.

2.3 Motivation: Degradation on Throughput
and Compaction Efficiency

In order to investigate how serious the performance of
LSM-tree based KV store would be degraded by the time-
consuming RMW process of IMR technology, we deploy
the widely used RocksDB on an 100 GB, emulated IMR
based HDD. In particular, in order to reasonably allocate
IMR tracks for accommodating SSTables, we implement the
classical sequential allocation scheme [41] (denoted as Seq),
and the state-of-the-art, IMR based three-phase allocation
scheme [19, 20, 50] (denoted as 3Phase). Moreover, to fairly
compare and demonstrate that how the performance of IMR
based three-phase allocation is affected by the RMW process,
we also deploy RocksDB on an 100 GB CMR based HDD
and adopts three-phase allocation scheme to allocate CMR
tracks for accommodating SSTables (denoted as CMR). More
details about the implementations can be found in Section 4.1.

Figure 2a shows the performance of randomly load-
ing/inserting 75 millions of 1 KB KV pairs, generated by
YCSB [14], into RocksDB, where the x-axis denotes different

USENIX Association 2021 USENIX Annual Technical Conference 659

(a) Throughput (b) Compaction
Efficiency

(c) Total Time of
Persisting SSTables

Figure 2: Performance of Loading 75 Millions of KV Pairs
into RocksDB under Different Track Allocation Schemes.

schemes of track allocation and the y-axis shows the through-
put (i.e., the number of I/Os per second). It can observed that,
although the IMR based 3phase indeed effectively achieves
1.53 × higher throughput than the classical Seq, there still
exists a large room for improvement since the IMR based
3phase also suffers 38.97% degradation on throughput as
compared to that of CMR. Since it is known that the write
throughput of a LSM based KV store could be significantly
affected by the compaction process [9, 39, 53], Figure 2b fur-
ther shows the compaction efficiency, which is regarded as
the average time required by a compaction process, achieved
by different track allocation schemes. It can be observed that,
as compared with CMR, Seq and 3phase require 2.59× and
1.68× longer time to complete a compaction process on aver-
age, and result in the observed the degradation on throughput.

Furthermore, based on our investigation, the observed com-
paction efficiency degradation of Seq and 3phase can be
mainly attributed to the time-consuming RMW process of
IMR technology. The reason is that the compaction process in-
volves persisting SSTables into HDD, and the time-consuming
RMW process could be thereby frequently triggered during
the compaction process. Thus, to explicitly demonstrate how
the compaction efficiency is affected by the RMW process,
Figure 2c shows the total time of persisting SSTables (dur-
ing the compaction processes) required by different track
allocation schemes and indicates the portion of time spent
on rewriting top tracks during the RMW process. It can be
observed that, when compared with CMR, the total time of
persisting SSTables required by Seq and 3phase is notice-
ably lengthen by around 4.42× and 2.24× respectively. The
reasons is that Seq and 3phase entail 25145.76 and 9681.21
seconds on rewriting top tracks during the RMW process,
which account for 76.13% and 57.74% of their respective
total time of persisting SSTables. Motivated by such observed
degradation on throughput and compaction efficiency, a novel
middleware KVIMR is proposed in Section 3 to deliver high
throughput on IMR based HDD with limited changes to the
well-known LSM-tree based KV store implementations.

3 KVIMR
3.1 System Architecture
As shown in Figure 3, KVIMR is architected as a middleware
between LSM-tree based KV store and IMR based HDD, so
as to facilitate 1) the support for various LSM-tree based KV
store implementations with limited modifications and 2) the
direct and efficient management on IMR based HDD.

Figure 3: The System Architecture of KVIMR.
To realize this objective, KVIMR provides a POSIX com-

plaint interface [5] so that the upper LSM-tree based KV store
can easily access its SSTables through a similar set of common
file operations (i.e., kvread/kvwrite/kvsync/kvunlink op-
erations) on IMR based HDD with very limited modifications.
Besides, to make the KVIMR be aware of the special com-
paction behaviour behind the LSM-tree based KV store, we
promote to pass the “level” information of SSTables along
with the kvwrite file operation on writing SSTables. Notably,
since the level information is one of key design principles of
the LSM-tree, it can be widely found in the mainstream LSM-
tree based KV store implementations, such as RocksDB [18],
LevelDB [21] and HyperLevelDB [17]. Thus, we argue that
the attempt to pass down the level information will not limit
the applicability but instead increase the generality and com-
patibility of KVIMR. It is also worth noting that, based on
our experience in integrating KVIMR with the three afore-
mentioned LSM-tree based KV store implementations, the
modifications of replacing POSIX interface (with file opera-
tions provided by KVIMR) and passing level information to
KVIMR are just about 100 lines of codes for each KV store
implementation.

On the other hand, in our implementation, by employing
the existing pread/pwrite/fdatasync system calls with the
O_DIRECT flag, KVIMR directly manages the data of files
(e.g., SSTables) and performs the RMW approach [25] on
tracks of the emulated IMR based HDD (please see Sec-
tion 4.1 for details). Please note that recent researches have
demonstrated that the host-managed HDD model and the
libzbc interface [4] can simplify and facilitate the direct
management on SMR based HDD [52, 53]. We envision
such host-managed HDD model and library (referred to as

660 2021 USENIX Annual Technical Conference USENIX Association

IMRLib in Figure 3) will also be available for IMR based
HDD with the provision of fundamental functions (such as
reading/writing/syncing data and exposing track information),
so that a unified application programming interface (API)
can be offered for the development of KVIMR. We leave the
IMRLib extension to KVIMR in the future.

If we take a closer look at Figure 3, the core KVIMR
engine maintains an SSTable-to-Track Map and allocates
a Write Buffer in the DRAM space of the host sys-
tem, and incorporates four Handlers to take over the
kvread/kvwrite/kvsync/kvunlink file operations from the
upper LSM-tree based KV store respectively. Their main
functionalities and interactions are summarized as follows:
• SSTable-to-Track Map (or S2TMap) maintains the one-
to-many relationship between an SSTable and multiple IMR
tracks allocated for it, because the SSTable size in the main-
stream LSM-tree based KV store implementations is usually
larger than the IMR track size (which is 2 MB [25, 50]). We
implement S2TMap as map<sstable id, track list> and
only allocate an IMR track for a single SSTable file for sim-
plicity. Notably, since S2TMap is the key metadata of KVIMR,
how to maintain and promise the crash consistency of S2TMap
will be discussed in detail in Section 3.4.
•Write Handler is responsible for temporarily buffering the
written SSTable in the Write Buffer (in the DRAM space)
whenever the background thread (i.e., compaction process)
of KV store invokes kvwrite operations to pass down the
SSTable data into middleware, so that the entire SSTable
can be later persisted into the IMR based HDD by the Sync
Handler in one shot. Notably, at runtime, the Write Buffer of
KVIMR only holds a few SSTables at any given time, since
each compaction process/thread only creates one SSTable at
a time and will persist it into the storage by the Sync Handler.
That is, once an SSTable is persisted, KVIMR immediately
releases the corresponding DRAM space to keep low demand
of Write Buffer.
• Sync Handler is in charge of persisting the buffered
SSTable into IMR tracks (based on different track allocation
schemes) whenever the background thread (i.e., compaction
process) of KV store needs to ensure the SSTable data are
persisted in HDD by invoking kvsync operation. In addition,
during the process of SSTable persisting, the Sync Handler
also performs the RMW approach to rewrite tracks (if needed)
to ensure the crash consistency of written data, and builds
the relationship between the specified SSTable and the allo-
cated tracks in S2TMap to facilitate the subsequent accesses
to persisted SSTables. Moreover, at runtime, to efficiently
determine whether the RMW approach is needed, KVIMR
also maintains a bitmap in the DRAM space to keep track of
the allocation status of tracks. However, this bitmap does not
have to be persisted in HDD since it can be easily rebuilt by
scanning S2TMap.
• Read Handler fetches the requested part of an SSTable
from the corresponding track(s) of the IMR based HDD by

looking up the S2TMap whenever the KV store needs to read
the content of SSTable by invoking kvread operation (e.g.,
upon performing the compaction process or servicing get
operations).
• Unlink Handler is to remove an SSTable from HDD and
label the corresponding track(s) as free tracks (i.e., tracks con-
taining no valid data) by resetting the corresponding entries
in S2TMap whenever the background thread (i.e., compaction
process) of KV store invokes kvunlink operation to delete
an SSTable from HDD.

Among these four handlers, the Sync Handler plays the
most critical role to affect the throughput of incoming
reads/writes, since how SSTables are persisted into tracks
of IMR based HDD may largely affect the number of incurred
time-consuming RMWs and the efficiency of the background
compaction process. Thus, in the following sections, we shall
mainly focus on the design of the Sync Handler.

3.2 Compaction-aware Track Allocation

Given the level information of SSTables as a clue, this sec-
tion explores how to leverage the special behavior behind
compaction process to properly allocate the two-tier IMR
tracks for accommodating the multi-level SSTables. Specif-
ically, Section 3.2.1 first introduces two special properties,
namely compaction frequency and compaction locality, ex-
tracted from the compaction process. Then, based on the
observed properties and the level information of SSTables,
Section 3.2.2 introduces a novel Compaction-aware Track
Allocation scheme to alleviate the throughput degradation by
1) minimizing the time-consuming RMWs and 2) efficiently
accessing the SSTables during the compaction process.

3.2.1 Special Properties of Compaction Process

Compaction Frequency. In an LSM-tree based KV store,
SSTables of different levels usually have different frequencies
of being compacted (i.e., compaction frequency) by the com-
paction process. The reason is twofold: First, as introduced in
Section 2.1, the compaction process usually takes place in a
cascading way, from smaller levels to larger levels; second,
the size limits of different levels increase exponentially along
with the levels. As a result, the SSTables of smaller levels are
more likely to be compacted frequently than that of larger
levels [29, 54]. In other words, the lifespan of SSTables of
larger levels tends to be longer than that of smaller levels.

Compaction Locality. Based on our investigation, there ex-
ists a very special access locality, namely compaction locality,
among different rounds of compaction process in LSM-tree
based KV store. Specifically, as introduced in Section 2.1,
a single round of compaction process merges the victim
SSTable and the existing SSTables with overlapped key ranges
into new SSTables with close key ranges. Moreover, since
these newly generated SSTables are composed of KV pairs of

USENIX Association 2021 USENIX Annual Technical Conference 661

close key ranges, they (or part of them) are more likely to be
involved (specifically, read and unlink) in the latter round(s)
of compaction process as compared to other SSTables with
far key ranges. That is, there exists a special access tendency
that the SSTables generated by a round of compaction process
are likely to be involved in the latter round(s) of compaction
process, and we refer it as compaction locality.

3.2.2 Design of Compaction-aware Track Allocation

Based on the two observed special properties, this section
presents the design of the Compaction-aware Track Alloca-
tion scheme, which comprises two major steps, namely Step 1)
Level based Bi-Tiering and Step 2) Relaxed-Sequential Track
Allocation, in allocating tracks for an SSTable.
Step 1) Level based Bi-Tiering The first step determines
which tier of tracks (i.e., either top tier of tracks or bottom
tier of tracks) should be used to accommodate an SSTable
based on its level information.

Based on the property of compaction frequency, the lifes-
pan of SSTables of larger levels tends to be longer than that of
smaller levels. Such property inspires us that, if bottom tracks
can be allocated to accommodate SSTables with larger levels
(rather than smaller levels), the bottom tracks will be occupied
by SSTables with longer lifespan and will not be frequently
re-allocated by other SSTables with shorter lifespan. That is,
the key idea of the first step is to allocate bottom tracks to
accommodate SSTables of larger levels, so that the probability
of incurring the RMWs on allocating bottom tracks could be
thereby minimized.

As shown in Figure 4, in our implementation, we propose
to allocate the bottom tracks only for SSTables of the “cur-
rent largest” level (e.g., L5), while allocate the top tracks
for SSTables of the non-largest levels (e.g., L0∼L4). This is
because, given that the total capacity of bottom tracks and top
tracks in IMR based HDD are roughly the same [19,20] while
the size limits among levels in LSM-tree based KV store in-
crease exponentially by a factor (which is usually larger than
2 [17, 18, 21, 36]), the bottom tracks would be fully allocated
by SSTables of the largest level when the LSM-tree grows.

Allocated Bottom

L4 L4 L5 L5 L5 L5 L5

L0 L1 L2 L3 L4 L4
L5 L5 L5 L5

L4L3

Allocated Top Unallocated

IMR based HDD

LSM-Tree based KV Store

L5

ted

L4 L
L0

L0
L1

L2
L3

L4

L5

sst
compaction

(largest)

(non-
largest)

Figure 4: The Level based Bi-Tiering (Step 1).
Moreover, as astute readers may have noticed, when the

LSM-tree keeps growing, the size limit of the largest level

may become larger than the total capacity constituted by all
bottom tracks; as a result, accommodating all the SSTables
of the largest level in bottom tracks may become impossible.
However, we argue that this situation will not contradict the
design concept of the first step. The reason is that, although we
have no choice to accommodate some SSTables of the largest
level in top tracks, all the bottom tracks can still be allocated
only by SSTables of the largest level, so that the probability
of incurring the RMWs on allocating bottom tracks can be
still effectively minimized.

Step 2) Relaxed-Sequential Track Allocation The second
step further determines which tracks in the specific tier (that
is decided by the Level based Bi-Tiering (i.e., Step 1)) should
be allocated to accommodating an SSTable.

The design principle of the second step is inspired by the
following two observations. First, according to the property
of compaction locality, the SSTables generated by a round
of compaction process are likely to be involved in the latter
round(s) of compaction process. Second, since IMR based
HDD adopts the similar rotational disk mechanisms of CMR
based HDD, accessing data sequentially is also much efficient
than accessing it randomly in IMR based HDD. Thus, we
argue that it may be beneficial to accommodate the SSTables
generated by a round of compaction process into tracks “as
sequential as possible”. The reason is that the SSTables gen-
erated by a round of compaction process can be sequentially
written into tracks with high sequential write performance,
and also be sequentially compacted by the latter round(s) of
compaction process with high sequential read performance.

However, in order to comply with the proposed Level based
Bi-Tiering (i.e., Step 1) and avoid any data migrations or
RMWs, a Relaxed-Sequential Track Allocation is instead
adopted to relax the degree of sequentiality on track allocation
from two aspects: First, since all the SSTables generated in
a round of compaction process must belong to same level,
the proposed Level based Bi-Tiering would suggest accom-
modating all of these SSTables in the same tier of tracks (i.e.,
either bottom tracks or top tracks). Thus, instead of allocating
the tracks in the strictly-sequential order (i.e., one bottom
track followed by the adjacent top track), we propose to allo-
cate bottom tracks and top tracks separately to accommodate
SSTables in the relaxed-sequential order (i.e., one bottom
track followed by the adjacent bottom track, or one top track
followed by the adjacent top track). Second, when allocating
tracks in the relaxed-sequential order, we propose to further
relax the degree of sequentiality by “skipping” the track(s)
which are currently allocated by other SSTables or may incur
the time-consuming RMWs if possible. However, if none of
the unallocated/free bottom tracks can be allocated without in-
curring RMWs, we propose to allocate the nearest unallocated
bottom track to best preserve the degree of sequentiality.

662 2021 USENIX Annual Technical Conference USENIX Association

3.3 Merged Read-Modify-Write

To further improve the compaction efficiency when the time-
consuming RMWs are inevitable, this section explores how
to improve the efficiency of persisting the buffered SSTable
from the Write Buffer into the allocated tracks. Specifically,
Section 3.3.1 first introduces the process of persisting the
buffered SSTable when the Naïve RMW approach [25] is
employed. Then, Section 3.3.2 reveals the potential ineffi-
ciency of the Naïve RMW approach and introduces a novel
Merged RMW approach which re-orders multiple RMWs into
a “merged RMW” with the improved persisting efficiency and
the ensured crash consistency.

3.3.1 SSTable Persisting with Naïve RMW

Algorithm 1 shows the process of SSTable Persisting with
Naïve RMW, which persists the buffered SSTable (denoted as
SST) from the Write Buffer into the allocated track(s) (denoted
as TrackList) when the Naïve RMW approach [25] is em-
ployed. Notably, the notations SST[i] and TrackList[i]
denote that the ith track-size content of the SST should be
persisted into the ith allocated track in TrackList.

First of all, the content of the buffered SSTable are per-
sisted into the allocated tracks on a track-by-track basis (i.e.,
at the granularity of a track [25]) (Lines 1∼14). Specifi-
cally, if track rewrite(s) are incurred when writing SST[i]
into Tracklist[i], the Naïve RMW is performed as follows
(Lines 4∼ 12): First, it performs back-up (Lines 5∼6), fol-
lowed by invoking a sync-like function to ensure the valid
data of the adjacent top track(s) are safely persisted into Back-
upRegion (Line 7); Second, it writes the content of SST[i]
into the Tracklist[i] (Line 8), followed by invoking a
sync-like function to ensure SST[i] is safely persisted into
the IMR based HDD (Line 9); Thirdly, it performs move-back
(Lines 10∼11), followed by invoking a sync-like function to
ensure the backed-up valid data are safely persisted into adja-
cent top tracks (Line 12). Otherwise, if track rewrite(s) are not
incurred when writing SST[i] into Tracklist[i], SST[i]
are directly written into the Tracklist[i] (Lines 13∼14).
Finally, a sync-like function is invoked to ensure that the en-
tire SST is safely persisted into the IMR based HDD (Line 15).

Please be noted, in general, the sync-like function (e.g.,
sync [2, 7], fdatasync [3], flush [4]) is used to ensure that
the data previously written by the write-like function(s) can
be safely persisted into the storage device such as HDD. That
is, the sync-like functions invoked during the naïve RMWs
(i.e., Lines 7, 9 and 12) are actually served as critical write
barriers to ensure that the correct sequence of “read-modify-
write”, as described in [25], can be enforced. This also ex-
plains why for most of cases, there is no need to invoke a sync-
like function after writing the SST[i] into Tracklist[i]
which does not incur any track rewrite(s) (i.e., Lines 13∼14).
However, if there exist un-synced track(s) which are adjacent
to the to-be-written TrackList[i], a sync-like function may

Algorithm 1: SSTable Persisting with Naïve RMW
Input: SST : the content of an SSTable to be persisted.
Input: TrackList: the list of the allocated tracks for SST .

1 for i← 0 to TrackList.size do
2 if any adjacent tracks of TrackList[i] is unsynced then
3 sync; // ensure valid data are persisted

4 if writing to TrackList[i] incurs top track rewrite(s) then
/* -- Naïve RMW Begin -- */

5 read the valid data from adjacent top track(s);
6 write the valid data into BackupRegion;
7 sync; // ensure valid data are persisted
8 write SST [i] to TrackList[i];
9 sync; // ensure SST[i] is persisted

10 read the valid data from BackupRegion;
11 write back the valid data into adjacent top track(s);
12 sync; // ensure valid data are persisted

/* -- Naïve RMW End -- */

13 else
14 write SST [i] to TrackList[i];

15 sync; // ensure the entire SST is persisted

be invoked to ensure the valid data of un-synced tracks are
persisted into HDD by a correct sequence (Lines 2∼3).

3.3.2 SSTable Persisting with Merged RMW

Although the process of SSTable Persisting with Naïve RMW
(i.e., Algorithm 1) looks simple and elegant, nevertheless,
based on our investigation, there exist two sources of ineffi-
ciency hid behind it when the size of an SSTable is (much)
larger than the size of an IMR track. First, although the sync-
like functions ensure the Naïve RMW approach against unex-
pected crashes, they also bring severe performance degrada-
tion to the whole process. The rationale behind this is that the
sync-like functions have adverse effects on I/O performance
of HDD [2,24,45]. Second, since Naïve RMW approach must
be performed on a track-by-track basis, the valid data of some
top tracks are actually backed up and written back redundantly,
resulting in the doubled read, write and sync workloads.

Thus, in order to further improve the efficiency of persisting
the buffered SSTable from the Write Buffer into the allocated
track(s) when the RMWs are incurred, this section introduces
a novel Merged RMW approach. Its key idea is to re-order
multiple track-by-track naïve RMWs into a single “merged
RMW”, so as to significantly reduce the number of required
sync-like functions and avoid redundant track rewrites while
still ensure the crash consistency.

Algorithm 2 depicts the process of SSTable Persisting with
Merged RMW, which persists the buffered SSTable (denoted
as SST) from the Write Buffer into the allocated track(s)
(denoted as TrackList) by employing the newly proposed
Merged RMW approach. First of all, different from the pro-
cess shown in Algorithm 1, this process firstly performs the

USENIX Association 2021 USENIX Annual Technical Conference 663

Algorithm 2: SSTable Persisting with Merged RMW
Input: SST : the content of an SSTable to be persisted.
Input: TrackList: the list of the allocated tracks for SST .
// The parts of SST incurring track rewrites

1 if persisting SST incurs track rewrites then
/* -- Merged RMW Begin -- */

2 for i← 0 to TrackList.size do
3 if writing to TrackList[i] incurs track rewrites then
4 read the valid data from adjacent top track(s);
5 write the valid data to BackupRegion;

6 sync; // ensure valid data are persisted
7 for i← 0 to TrackList.size do
8 if writing to TrackList[i] incurs track rewrites then
9 write SST [i] to TrackList[i];

10 sync; // ensure SST[i] is persisted
11 for i← 0 to TrackList.size do
12 if writing to TrackList[i] incurs track rewrites then
13 read the valid data from BackupRegion;
14 write back the valid data into adjacent top

track(s);

15 sync; // ensure valid data are persisted
/* -- Merged RMW End -- */

// The rest parts of SST w/o track rewrites
16 for i← 0 to TrackList.size do
17 if SST[i] is un-written && TrackList[i] is a bottom then
18 write SST [i] to TrackList[i];

19 sync; // ensure data to bottom are persisted
20 for i← 0 to TrackList.size do
21 if SST[i] is un-written && TrackList[i] is a top then
22 write SST [i] to TrackList[i];

23 sync; // ensure the entire SST is persisted

Merged RMW approach to handle all the allocated bottom
track(s) that would incur top track rewrite(s) on a batch basis
as follows (Lines 1∼15): First, it backs up the valid data of all
the involved adjacent top track(s) into the BackupRegion in
a batch (Lines 2∼5) before invoking the first sync-like func-
tion to ensure all of these valid data are safely persisted into
the IMR based HDD (Line 6); Second, it writes the content of
SST into all the involved bottom tracks in a batch (Lines 7∼9)
before invoking the second sync-like function to ensure these
written parts of SST are safely persisted into the IMR based
HDD (Line 10); Thirdly, it moves back all the backed-up valid
data from the BackupRegion into the involved adjacent top
track(s) in a batch (Lines 11∼14) before invoking the third
sync-like function to ensure these backed-up valid data are
safely persisted into the IMR based HDD (Line 15).

Next, this process persists the remaining parts of SST,
which would not incur top track rewrite(s), into the corre-
sponding tracks (Lines 16∼23) as follows: First, this pro-
cess gives the highest priority to write the un-written parts

of SST into their corresponding bottom tracks in a batch
(Lines 16∼18). This is because, if the un-written parts of
SST are written into top tracks first, the subsequent writes to
adjacent bottom tracks may instead incur extra track rewrites
over those “just-written” top tracks. Then, a sync-like func-
tion should be invoked (Line 19) to ensure the data writes to
bottom tracks (if any) are persisted into HDD. Finally, this
process writes the un-written parts of SST into their corre-
sponding top tracks in a batch, followed by invoking a sync-
like function to ensure the entire SST are safely persisted into
HDD (Lines 20∼23).

Compared with the SSTable persisting process with Naïve
RMW approach (i.e, Algorithm 1), the SSTable persisting pro-
cess with the Merged RMW approach not only significantly
minimizes the number of required sync-like functions (specif-
ically, at least 1 and at most 5), but also avoids the redundant
backup and write-back of top tracks (since the involved top
tracks are only backed up and written back once). Moreover,
the Merged RMW approach nicely ensures the crash consis-
tency for the SSTable by backing up the parts of SSTable
residing in top tracks into the BackupRegion, before writ-
ing any data into bottom tracks that would incur top track
rewrites. However, it is worth noting that the Merged RMW
approach requires a larger BackupRegion than the Naïve RMW
approach, in order to back up the valid data of all the involved
adjacent top track(s) in a batch. Specifically, the size of the
BackupRegion required by the Merged RMW approach is just
twice as the size of an SSTable, which should be a negligible
storage overhead compared with the total capacity of HDD.

Notably, as astute readers may have noticed, an alterna-
tive approach, which organizes all tracks into “regions” of
a fixed number of consecutive tracks, is also able to reduce
the numbers of track rewrites and sync-like functions as does
KVIMR. That is, this approach may always write a whole
SSTable into a fixed-sized region by writing all the bottom
tracks then all the top tracks in the region. Although such ap-
proach looks simple and effective indeed, however, we argue
that it might inevitably waste the disk space (since the actual
sizes of SSTables are not fixed and could be smaller than the
fixed SSTable size limit in the mainstream LSM-tree based
KV store implementations). Thus, KVIMR adopts a more flex-
ible Compaction-aware Track Allocation and Merged RMW
to avoid such space waste issue while reduce the numbers of
track rewrites and sync-like functions.

3.4 Crash Consistency

Since the proposed KVIMR does not introduce significant
changes to the core design of LSM-tree based KV stores, the
crash consistency mechanisms of different LSM-tree based
KV stores still remain and work nicely in the same way.

KVIMR further ensures the crash consistency regarding
its key metadata (i.e., SSTable-to-Track Map (S2TMap)) as
follows: First, to avoid incurring the time-consuming RMW

664 2021 USENIX Annual Technical Conference USENIX Association

processes over IMR tracks, we propose to persist the track-
level S2TMap into a few reserved top tracks of IMR based
HDD or other persistent storage device, which can be freely
updated, in the system. Second, to better manage the persist-
ing overhead, we propose to persist S2TMap whenever the
LSM-tree based KV store persists their key metadata (e.g.,
the manifest file) after each successful compaction process.
This ensures that the metadata of KVIMR can always be con-
sistent with that of the LSM-tree based KV store, so that both
LSM-tree based KV store and KVIMR can be recovered to a
consistent state successfully after unexpected system crashes.

4 Evaluation

4.1 Evaluation Setup

In this section, we evaluate the effectiveness of the pro-
posed KVIMR middleware. Since there is no available real
products of IMR based HDDs to date, we follow the em-
ulation approach suggested in [39] to emulate an 100 GB
IMR based HDD with a real CMR based HDD (model no.
ST500DM002 [1]) so that the evaluated results can accurately
reflect actual performance of the disk internal activities. Partic-
ularly, we split the LBA range into 2 MB tracks as suggested in
[25, 50], organize the tracks by the interlaced track layout of
IMR, and read/write to tracks with IMR-like restrictions [28].
In addition, we architect the KVIMR as a middleware as intro-
duced in Section 3.1 and develop KVIMR in the user-space us-
ing C++, and employ the existing pread/pwrite/fdatasync
system calls with the O_DIRECT flag to directly manage SSTa-
bles and perform the RMW approach over tracks of the emu-
lated IMR based HDD. Moreover, the following schemes are
implemented and integrated with the KVIMR middleware for
evaluation purposes:
• Seq allocates all tracks in a sequential order (i.e., one track
followed by the subsequent one(s)) but skips tracks that have
been allocated by other SSTables; and it adopts the Naïve
RMW approach [25] to perform track rewrites.
• 3Phase allocates the unused tracks in the following or-
der: bottom tracks, every other top tracks, and the rest of top
tracks [19, 20]; and it adopts the Naïve RMW approach [25]
to perform track rewrites.
• KVIMR-N denotes the proposed Compaction Aware Track
Allocation scheme (presented in Section 3.2) with the Naïve
RMW approach [25].
• KVIMR-M denotes the proposed Compaction Aware Track
Allocation scheme (presented in Section 3.2) with the pro-
posed Merged RMW approach (presented in Section 3.3).

On the other hand, we modify three well-known imple-
mentations of LSM-tree based KV store, i.e., RocksDB [18],
LevelDB [21], and HyperLevelDB [17], so that they can ac-
cess its SSTables through a set of POSXI complaint file op-
erations provided by the KVIMR middleware as presented
in Section 3.1. The metadata (e.g., manifest, WAL) of these

LSM-tree based KV store implementations are currently kept
in an SSD alongside (like GearDB’s implementation [53]).
However, since the size of metadata is relatively small, these
metadata can also be managed in a few IMR tracks with little
performance impact. Notably, because of limited page length,
we mainly demonstrate the evaluation results collected from
RocksDB. In addition, we adopt the default settings [18] (e.g.,
the SSTable size is 64 MB, the size limit of level 1 is 256 MB,
kL0_SlowdownWritesTrigger and kL0_StopWritesTrigger are
20 and 36 respectively) to configure RocksDB, but further
set the compaction_readahead_size to 2 MB (as suggested
in [6]) and bloom_bits to 10 (as suggested in [6]) to have
better performance on HDD. Moreover, we revise the bench-
mark tool db_bench released with RocksDB, LevelDB, and
HyperLevelDB, so as to evaluate the performance of different
schemes under various workloads generated by YCSB [14].
All the experiments are conducted on a workstation PC, which
is equipped with two Intel(R) Xeon(R) E5-1630 v4 @ 3.70
GHz processors and 16 GB DDR4 DIMM memory, where the
operating system is 64-bit Ubuntu 14.04.1 LTS with Linux
kernel version 3.13.0.

4.2 Evaluation Results

4.2.1 Overall Load Performance

This section investigates the overall performance under dif-
ferent schemes by randomly loading/inserting 75 millions
of 1 KB KV pairs into RocksDB. Figure 5 shows the over-
all performance results, where the x-axis of each sub-figure
denotes different schemes and the y-axis of each sub-figure
shows the results from different performance metrics. For
ease of the comparison, the throughput of adopting three-
phase allocation scheme to allocate CMR tracks for accom-
modating SSTables (denoted as CMR as in Section 2.3) is
also plotted in Figure 5 as a horizontal dashed line. From Fig-
ure 5a, we can firstly observe that both KVIMR-N and KVIMR-M
achieve significant throughput improvements when compared
with Seq and 3Phase. Specifically, KVIMR-N achieves 1.44×
and 2.21× higher throughput than that of Seq and 3Phase.
Moreover, it can be also observed that KVIMR-M further im-
proves the throughput by 7.0% as compared to KVIMR-N, be-
cause of the improved compaction efficiency contributed by
the proposed Merged RMW approach. More encouragingly,
KVIMR-M achieves a comparable throughput as compared to
CMR with only about 5.5% degradation.

To better demonstrate the compaction efficiency of differ-
ent schemes, Figures 5b and 5c respectively demonstrate the
number of compactions and the sum of execution time of
compactions (or cumulative compaction time [18]) during
the loading process. It can be clearly observed from Fig-
ure 5b that all the schemes share similar number of com-
pactions. This is because all the schemes are implemented
as middleware (similar to the proposed KVIMR), and the de-
sign regarding how RocksDB performs compaction processes

USENIX Association 2021 USENIX Annual Technical Conference 665

(a) Throughput (b) #Compactions (c) Cum. Compaction Time (d) #Top Track Rewrites (e) #Sync Calls

Figure 5: Overall Performance Results of Loading 75 Millions of KV Pairs into RocksDB.

is not changed. However, from Figure 5c, we can observe
that, KVIMR-N and KVIMR-M effectively reduce the cumulative
compaction time required to complete a similar numbers of
compactions, and thereby greatly improve the compaction
efficiency (i.e., the average time required to perform a com-
paction process). Specifically, KVIMR-N largely reduces the
cumulative compaction time by 55.61% and 31.69% as com-
pared to Seq and 3Phase. Moreover, KVIMR-M further reduces
the cumulative compaction execution time by 7.67% as com-
pared to KVIMR-N.

Based on our investigation, the improvement on the overall
throughput and the reduction on the cumulative compaction
time (achieved by KVIMR-N and KVIMR-M) can be mainly
attributed to the prevention of time-consuming RMW pro-
cesses, which may incur additional track rewrites and sync
calls to slow down the efficiency of persisting SSTables. Fig-
ures 5d and 5e reveal the numbers of (top) track rewrites
and the numbers of sync calls incurred by different schemes
during the loading process. It can be firstly observed that,
KVIMR-N and KVIMR-M significantly reduce the numbers of
top track rewrites and sync calls as compared to Seq and
3phase. Specifically, KVIMR-N decreases the number of top
track rewrites by 91.11% and 68.14% and diminishes the num-
ber of sync calls by 94.99% and 77.32% as compared to Seq
and 3phase, respectively. The main reason behind such reduc-
tions is that, KVIMR-N leverages the compaction frequency to
allocate the IMR tracks for accommodating SSTables, so as to
minimize the occurrence of time-consuming RMW processes.
It is also worthy to see that, compared to KVIMR-N, KVIMR-M
further reduces the numbers of top track rewrites and sync
calls by 37.53% and 64.55%. The is because KVIMR-M adopts
the proposed Merged RMW to cleverly circumvent the redun-
dant top track rewrites and bound the number of sync calls,
when the time-consuming RMWs cannot be fully avoided by
the proposed Compaction-aware Track Allocation.

4.2.2 Load Performance Changes
Besides the overall performance results presented in Figure 5,
it is also valuable to investigate how the throughput and other
performance metrics actually change along the whole loading
process. Figures 6a, 6b and 6c respectively show the through-
put, the number of incurred track rewrites, and the number of
invoked sync calls for loading every 1 million of KV pairs,

where the x-axis of each sub-figure denotes the accumulated
number of inserted/loaded KV pairs.

0 10 20 30 40 50 60 70
Accumulated Number of Inserted KV Pairs (millions)

103

104

Th
ro

ug
hp

ut
 (O

P/
s)

1026.58 951.19

1518.992060.08

Seq 3Phase KVIMR-N KVIMR-M

(a) Changes in Throughput during Loading.

0 10 20 30 40 50 60 70
Accumulated Number of Inserted KV Pairs (millions)

0.0

1.5

3.0

4.5

#T
ra

ck
 W

rit
es

×103

Seq 3Phase KVIMR-N KVIMR-M

(b) Changes in the Number of Incurred Track Rewrites.

0 10 20 30 40 50 60 70
Accumulated Number of Inserted KV Pairs (millions)

0.0

0.5

1.0

1.5

#S
yn

c
Ca

lls

×104

Seq 3Phase KVIMR-N KVIMR-M

(c) Changes in the Number of Invoked Sync Calls.

Figure 6: Performance Changes during Loading.

First of all, from Figure 6a, we can observe that, com-
pared with Seq and 3Phase, KVIMR-N and KVIMR-M lead to
the much higher throughputs, almost for every 1 million of
inserted KV pairs along the whole loading process. The main
reason behind this is that, as revealed by Figures 6b and 6c,
KVIMR-N and KVIMR-M incur much less number of top track
rewrites and sync calls during the whole loading process.
Interestingly, after inserting about 60 millions of KV pairs,
KVIMR-M starts to achieve the highest throughput than the rest
of schemes. For example, KVIMR-M achieves 26.27% higher
throughput than that of KVIMR-N for the last 1 million of in-

666 2021 USENIX Annual Technical Conference USENIX Association

serted KV pairs. The reason is that, when the RMW processes
are inevitable during the late loading process, the proposed
Merged RMW approach can cleverly avoid redundant top
track rewrites and bound the number of sync calls, resulting
in the improved efficiency of persisting SSTables.

By contrast, Seq achieves the lowest throughput almost dur-
ing the whole loading process, and 3Phase starts to encounter
noticeable throughput degradation after inserting about 50 mil-
lions of KV pairs and suffers very low throughput as Seq at
the very end of the loading process. In particular, as observed
from Figure 6a, KVIMR-M achieves 2.01× and 2.17× higher
throughput than that of Seq and 3Phase respectively for the
last 1 million of inserted KV pairs. Such serious throughput
degradations of Seq and 3Phase can be attributed to their
track allocation designs. Particularly, Seq writes the SSTable
data in a strictly-sequential order (i.e., one track followed by
the subsequent one(s)), resulting in that the time-consuming
RMW processes are mostly incurred whenever writing to any
bottom track(s). On the other hand, 3Phase only utilizes bot-
tom tracks to accommodate the SSTable data and fully avoids
RMW processes during the first phase (i.e., before inserting
50 millions of KV pairs). However, when 3Phase starts to
allocate top tracks to accommodate SSTables afterwards, it
may incur more and more RMW processes as the space usage
of HDD increases due to the lack of consideration regarding
compaction frequency.

4.2.3 Throughput under Different Workloads

To further investigate the throughput under read-write mixed
workloads, we randomly insert and retrieve 7.5 millions of KV
pairs after loading the 75 millions of KV pairs into RocksDB.
In particular, three workloads of different read/write (R/W)
ratios (i.e., R90%:W10%, R50%:W50%, and R10%:W90%)
generated by YCSB [14], which follow the Zipfian distribu-
tion, are used to represent different write intensities. Figure 7a
shows the throughputs of different schemes, where the x-axis
denotes different R/W ratios and the y-axis shows the through-
put. It can be firstly observed that the throughputs of all the
evaluated schemes increase as the write intensity (or write
ratio) increases. This is because, randomly reading a large
amount of KV pairs from LSM-tree based KV store might
seriously slow down the overall throughput due to the poor
random access performance of HDD.

More importantly, as revealed by Figure 7a, KVIMR-N and
KVIMR-M are more effective in improving the throughput as
the write intensity keeps increasing, as compared to Seq and
3Phase. Specifically, KVIMR-N and KVIMR-M lead to at least
2.28%, 10.22% and 28.93% throughput improvements (than
that of Seq and 3Phase) under workloads of R90%:W10%,
R50%:W50% and R10%:W90% respectively. This is because,
as shown in Figure 7b, for all the evaluated schemes, the num-
ber of incurred compactions increases as the write intensity
increases. Such increasing number of compactions implies
that more SSTables need to be persistted into HDD, leaving a

(a) Throughput under Workloads of Various R/W Ratios.

(b) #Compactions under Workloads of Various R/W Ratios.

Figure 7: Throughput under Workloads of Various R/W Ratios

larger room for KVIMR-N and KVIMR-M to reduce the number
of track rewrites and sync calls for higher throughput gains
(under workloads of higher write intensities).
4.2.4 Throughput under Different Sizes of SSTable
To understand how the impact of SSTable size on the through-
put, we randomly loading/inserting 75 millions of 1 KB KV
pairs into RocksDB under different sizes of SSTable. Specif-
ically, as suggested in the [8], since HDD typically demon-
strates better performance under larger sizes of SSTable, this
section mainly evaluates the throughput of different schemes
when SSTable size ranges from 64MB to 512MB.

Figure 8: Throughput under Different Sizes of SSTable.

Figure 8 shows the overall load performance results, where
the x-axis denotes different SSTable sizes and the y-axis
denotes the throughput. It can be firstly observed that all
the schemes achieve higher throughput with larger SSTable
sizes. Besides, KVIMR still effectively and stably achieves bet-
ter throughput than that of Seq and 3Phase as the SSTable
size increases. More interestingly, as compared to KVIMR-N,
KVIMR-M tends to be more effective in improving the through-
put when the SSTable size increases. Specifically, the per-
formance gaps between KVIMR-N and KVIMR-M are 7.0%,
5.9%, 13.0%, 16.8% with SSTables sizes of 64 MB, 128 MB,
256 MB and 512 MB respectively. The key reason of such
increasing performance gap is that the Merged RMW adopted

USENIX Association 2021 USENIX Annual Technical Conference 667

by KVIMR-M has potential to circumvent more redundant top
track rewrites and reduce more number of sync calls with
larger SSTable sizes.

4.2.5 Support for Other LSM-tree based KV Stores

To demonstrate the great compatibility of KVIMR, we fur-
ther conduct the load throughput evaluation (i.e., loading
75 millions of 1 KB KV pairs generated by YCSB [14])
on other two well-known LSM-tree based KV stores: Lev-
elDB [21], and HyperLevelDB [17]. Notably, to present the
performance results on the same basis, we apply the same
configurations adopted by RocksDB to both LevelDB and
HyperLevelDB for achieving better HDD performance. That
is, we set the SSTable size to 64 MB, set the size limit of
level 1 to 256 MB and set kL0_SlowdownWritesTrigger and
kL0_StopWritesTrigger to 20 and 36 respectively. Moreover,
since LevelDB and HyperLevelDB lack the design of com-
paction_readahead_size, we instead set the block_size to
2 MB to have better performance on HDD as suggested by [6].

(a) LevelDB (b) HyperLevelDB

Figure 9: Throughput of Loading 75 Millions of KV Pairs
into Other Well-Known LSM-tree based KV Stores.

Figures 9a and 9b show the overall throughput achieved
by LevelDB and HyperLevelDB respectively upon loading
75 millions of 1 KB KV pairs. It can be clearly observed that
the trends of overall throughputs achieved by the evaluated
schemes under LevelDB and HyperLevelDB are quite simi-
lar to what we can observe under RocksDB (see Figure 5a).
That is, KVIMR-N and KVIMR-M still effectively achieve better
throughputs than that of Seq and 3Phase by at least 55.43%
and 21.16% under LevelDB respectively (and by at least
60.41% and 23.59% under HyperLevelDB respectively).

5 Related Work
There exist some mentionable studies proposed to address the
track rewrite issue of Shingled Magnetic Recording (SMR)
based HDD by introducing the following techniques to the
existing LSM-tree based KV store implementations. For ex-
ample, SMRDB [39] proposes to enlarge the SSTable size to
the band/zone size of SMR based HDD to avoid track rewrites,
arranges SSTables into only two levels with the key ranges
of SSTables overlapped within the same level, and presents a
new cost-considered compaction design. Another study called

SEALDB [52] proposes to group the SSTables involved in a
compaction into a set, and then sequentially writes a set of
SSTables into a variable-sized dynamic band to mitigate the
track rewrite issue. A more recent study namely GearDB [53]
proposes to sequentially write the SSTables of the same level
into the same SMR band/zone, and further introduces a Gear
Compaction to avoid garbage collection in SMR based HDD.

The aforementioned designs indeed take effect at mitigat-
ing the track rewrite issue of SMR; however, they could be
ineffective when blindly applied to IMR based HDD since
SMR and IMR technologies adopt naturally-different track
layouts. Specifically, all these designs must write the SSTa-
bles into SMR tracks in a “strictly-sequential” order (i.e., one
track followed by the subsequent one(s)). As revealed by our
evaluation, sequentially writing SSTables into IMR tracks
may incur serious throughput degradation, since writing to
any bottom track may cause the time-consuming RMW(s) to
rewrite its adjacent top track(s) in the IMR based HDD. On
the other hand, all these designs are developed by revamping
the existing LSM-tree based KV store (i.e., LevelDB [21]).
That is, they are all tightly-coupled with one specific imple-
mentation of the LSM-tree based KV store, making them
costly to be upgraded with the software updates of KV store
and integrated with other representative implementations of
the LSM-tree based KV store, such as the widely deployed
RocksDB [18].

6 Conclusion
This paper presents KVIMR, a data management middle-
ware, to construct a cost-effective yet high-throughput LSM-
tree based KV store on IMR based HDD. KVIMR delivers
great compatibility for mainstream LSM-tree based KV store
implementations without introducing significant modifica-
tions by being architected as a middleware sitting between
LSM-tree based KV store and IMR based HDD. Technically,
KVIMR remedies the throughput degradation resulted from
IMR through the proposing of two novel designs: a Com-
paction Aware Track Allocation scheme to minimize the time-
consuming RMWs and efficiently access the SSTables during
the compaction process, and a Merged RMW approach to
improve the efficiency of persisting an SSTable into IMR
based HDD when the time-consuming RMWs are inevitable.
Our evaluations on three well-known LSM-tree based KV
store implementations (i.e., RocksDB, LevelDB, and Hyper-
LevelDB) reveal that KVIMR not only improves the overall
throughput by up to 1.55× under write-intensive workloads
but even achieves 2.17× higher throughput under high space
usage of HDD, as compared with the state-of-the-art three-
phase track allocation scheme for IMR.

7 Acknowledgements
We thank our shepherd, Raja Appuswamy, and all the anony-
mous reviewers for their valuable comments and suggestions.
This work is supported in part by The Research Grants Coun-
cil of Hong Kong SAR (Project No. CUHK24209618).

668 2021 USENIX Annual Technical Conference USENIX Association

References

[1] Desktop hdd product manual standard mod-
els st1000dm003 st500dm002. https://www.
seagate.com/www-content/product-content/
desktop-hdd-fam/en-us/docs/100768625b.pdf.

[2] Ensuring data reaches disk. https://lwn.net/
Articles/457667/.

[3] fdatasync. https://man7.org/linux/man-pages/
man2/fdatasync.2.html.

[4] Hgst. libzbc version 5.4.1. https://github.com/
hgst/libzbc.

[5] POSIX: Portable Operating System Interface. https://
pubs.opengroup.org/onlinepubs/9699919799/.

[6] Rocksdb tuning guide. https://github.com/
facebook/rocksdb/wiki/RocksDB-Tuning-Guide.

[7] Sync. https://man7.org/linux/man-pages/man2/
sync.2.html.

[8] Tuning rocksdb on spinning disks. https:
//github.com/facebook/rocksdb/wiki/
Tuning-RocksDB-on-Spinning-Disks.

[9] Write stalls. https://github.com/facebook/
rocksdb/wiki/Write-Stalls.

[10] Abutalib Aghayev, Mansour Shafaei, and Peter Desnoy-
ers. Skylight—a window on shingled disk operation.
ACM Transactions on Storage (TOS), 11(4):16, 2015.

[11] Ahmed Amer, JoAnne Holliday, Darrell DE Long,
Ethan L Miller, Jehan-François Pâris, and Thomas
Schwarz. Data management and layout for shingled
magnetic recording. IEEE Transactions on Magnetics,
47(10):3691–3697, 2011.

[12] W. A. Challener, C. Peng, A. V. Itagi, D. Karns, Y. Peng,
X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju,
R. E. Rottmayer, M. A. Seigler, and E. C. Gage. The
road to hamr. In Magnetic Recording Conference, 2009.
APMRC ’09. Asia-Pacific, pages 1–2, Jan 2009.

[13] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C
Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chan-
dra, Andrew Fikes, and Robert E Gruber. Bigtable: A
distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):4,
2008.

[14] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Yahoo! cloud serving
benchmark (ycsb), 2010.

[15] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly available
key-value store. In ACM SIGOPS operating systems
review, volume 41, pages 205–220. ACM, 2007.

[16] E. A. Dobisz, Z. Z. Bandic, T. W. Wu, and T. Albrecht.
Patterned media: Nanofabrication challenges of future
disk drives. Proceedings of the IEEE, 96(11):1836–
1846, Nov 2008.

[17] Robert Escriva, Sanjay Ghemawat, David Grogan,
Jeremy Fitzhardinge, and Chris Mumford. Hy-
perleveldb, 2019. https://github.com/rescrv/
HyperLevelDB.

[18] Facebook. Rocksdb: a persistent key-value store for fast
storage enviroments., 2011. https://github.com/
facebook/rocksdb.

[19] Kaizhong Gao, Wenzhong Zhu, and Edward Gage.
Write management for interlaced magnetic recording
devices, November 29 2016. US Patent 9,508,362.

[20] Kaizhong Gao, Wenzhong Zhu, and Edward Gage. In-
terlaced magnetic recording, August 8 2017. US Patent
9,728,206.

[21] Sanjay Ghemawat and Jeff Dean. Leveldb, 2011. https:
//github.com/google/leveldb.

[22] Steven Granz, Jason Jury, Chris Rea, Ganping Ju, Jan-
Ulrich Thiele, Tim Rausch, and Edward Gage. Areal
density comparison between conventional, shingled, and
interlaced heat-assisted magnetic recording with multi-
ple sensor magnetic recording. IEEE Transactions on
Magnetics, PP:1–3, 09 2018.

[23] Steven Granz, Wenzhong Zhu, Edmun Chian Song Seng,
Utt Heng Kan, Chris Rea, Ganping Ju, Jan-Ulrich Thiele,
Tim Rausch, and Edward C Gage. Heat-assisted inter-
laced magnetic recording. IEEE Transactions on Mag-
netics, 54(2):1–4, 2017.

[24] Jorge Guerra, Leonardo Mármol, Daniel Campello,
Carlos Crespo, Raju Rangaswami, and Jinpeng Wei.
Software persistent memory. In Presented as part
of the 2012 {USENIX} Annual Technical Conference
({USENIX}{ATC} 12), pages 319–331, 2012.

[25] Mohammad Hossein Hajkazemi, Ajay Narayan Kulka-
rni, Peter Desnoyers, and Timothy R Feldman. Track-
based translation layers for interlaced magnetic record-
ing. In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), pages 821–832, 2019.

USENIX Association 2021 USENIX Annual Technical Conference 669

https://www.seagate.com/www-content/product-content/desktop-hdd-fam/en-us/docs/100768625b.pdf
https://www.seagate.com/www-content/product-content/desktop-hdd-fam/en-us/docs/100768625b.pdf
https://www.seagate.com/www-content/product-content/desktop-hdd-fam/en-us/docs/100768625b.pdf
https://lwn.net/Articles/457667/
https://lwn.net/Articles/457667/
https://man7.org/linux/man-pages/man2/fdatasync.2.html
https://man7.org/linux/man-pages/man2/fdatasync.2.html
https://github.com/hgst/libzbc
https://github.com/hgst/libzbc
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://man7.org/linux/man-pages/man2/sync.2.html
https://man7.org/linux/man-pages/man2/sync.2.html
https://github.com/facebook/rocksdb/wiki/Tuning-RocksDB-on-Spinning-Disks
https://github.com/facebook/rocksdb/wiki/Tuning-RocksDB-on-Spinning-Disks
https://github.com/facebook/rocksdb/wiki/Tuning-RocksDB-on-Spinning-Disks
https://github.com/facebook/rocksdb/wiki/Write-Stalls
https://github.com/facebook/rocksdb/wiki/Write-Stalls
https://github.com/rescrv/HyperLevelDB
https://github.com/rescrv/HyperLevelDB
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
https://github.com/google/leveldb
https://github.com/google/leveldb

[26] Tyler Harter, Dhruba Borthakur, Siying Dong, Ami-
tanand Aiyer, Liyin Tang, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. Analysis of {HDFS}
under hbase: A facebook messages case study. In Pro-
ceedings of the 12th {USENIX} Conference on File
and Storage Technologies ({FAST} 14), pages 199–212,
2014.

[27] Weiping He and David HC Du. Smart: An approach
to shingled magnetic recording translation. In 15th
{USENIX} Conference on File and Storage Technolo-
gies ({FAST} 17), pages 121–134, 2017.

[28] Euiseok Hwang, Jongseung Park, Richard Rauschmayer,
and Bruce Wilson. Interlaced magnetic recording. IEEE
Transactions on Magnetics, 53(4):1–7, 2016.

[29] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and
Sangyeun Cho. The multi-streamed solid-state drive. In
6th {USENIX} Workshop on Hot Topics in Storage and
File Systems (HotStorage 14), 2014.

[30] P. Kasiraj, R. New, J. de Souza, and M. Williams. System
and method for writing data to dedicated bands of a hard
disk drive. In US Patent 7490212, Feb 2009.

[31] A. Kikitsu, Y. Kamata, M. Sakurai, and K. Naito. Recent
progress of patterned media. IEEE Transactions on
Magnetics, 43(9):3685–3688, Sept 2007.

[32] M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Chal-
lener, R. E. Rottmayer, G. Ju, Y. T. Hsia, and M. F. Erden.
Heat assisted magnetic recording. Proceedings of the
IEEE, 96(11):1810–1835, Nov 2008.

[33] Chunbo Lai, Song Jiang, Liqiong Yang, Shiding Lin,
Guangyu Sun, Zhenyu Hou, Can Cui, and Jason Cong.
Atlas: Baidu’s key-value storage system for cloud data.
In 2015 31st Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–14. IEEE, 2015.

[34] Avinash Lakshman and Prashant Malik. Cassandra: a
decentralized structured storage system. ACM SIGOPS
Operating Systems Review, 44(2):35–40, 2010.

[35] Shaoping Li, Gerardo A Bertero, Michael L Mallary,
Ge Yi, and Steven C Rudy. Connection schemes
for a multiple sensor array usable in two-dimensional
magnetic recording, November 18 2014. US Patent
8,891,207.

[36] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Har-
iharan Gopalakrishnan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Wisckey: Separating keys
from values in ssd-conscious storage. ACM Transac-
tions on Storage (TOS), 13(1):5, 2017.

[37] Miha Marolt and Z Jaglicic. Superparamagnetic mate-
rials. In Proceeding of Seminar Ib-4th Year (Old Pro-
gram), University of Ljubljana Faculty of Mathematics
and Physics, 2014.

[38] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The log-structured merge-tree (lsm-tree).
Acta Informatica, 33(4):351–385, 1996.

[39] Rekha Pitchumani, James Hughes, and Ethan L Miller.
Smrdb: key-value data store for shingled magnetic
recording disks. In Proceedings of the 8th ACM In-
ternational Systems and Storage Conference, page 18.
ACM, 2015.

[40] HJ Richter, AY Dobin, RT Lynch, D Weller, RM Brockie,
O Heinonen, KZ Gao, J Xue, RJM vd Veerdonk, P As-
selin, et al. Recording potential of bit-patterned media.
Applied Physics Letters, 88(22):222512, 2006.

[41] Mendel Rosenblum and John K Ousterhout. The design
and implementation of a log-structured file system. ACM
Transactions on Computer Systems (TOCS), 10(1):26–
52, 1992.

[42] Mansour Shafaei, Mohammad Hossein Hajkazemi, Pe-
ter Desnoyers, and Abutalib Aghayev. Modeling drive-
managed smr performance. ACM Transactions on Stor-
age (TOS), 13(4):38, 2017.

[43] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg,
Chinmay Soman, and Sam Shah. Serving large-scale
batch computed data with project voldemort. In Proceed-
ings of the 10th USENIX conference on File and Storage
Technologies, pages 18–18. USENIX Association, 2012.

[44] I. Tagawa and M. Williams. High density data-storage
using shingled-write. In IEEE International Magnetic
Conference,, 2009.

[45] Shucheng Wang, Ziyi Lu, Qiang Cao, Hong Jiang, Jie
Yao, Yuanyuan Dong, and Puyuan Yang. {BCW}:
Buffer-controlled writes to hdds for ssd-hdd hybrid stor-
age server. In 18th {USENIX} Conference on File
and Storage Technologies ({FAST} 20), pages 253–266,
2020.

[46] R. Wood, M. Williams, A. Kavcic, and J. Miles. The
feasibility of magnetic recording at 10 terabits per square
inch on conventional media. IEEE Transactions on
Magnetics, 45(2):917–923, Feb 2009.

[47] Roger Wood. Shingled magnetic recording and two-
dimensional magnetic recording. IEEE Magnetics Soci-
ety, Santa Clara Valley, 2010.

[48] Fenggang Wu, Bingzhe Li, Baoquan Zhang, Zhichao
Cao, Jim Diehl, Hao Wen, and David HC Du. Tracklace:

670 2021 USENIX Annual Technical Conference USENIX Association

Data management for interlaced magnetic recording.
IEEE Transactions on Computers, 2020.

[49] Fenggang Wu, Ming-Chang Yang, Ziqi Fan, Baoquan
Zhang, Xiongzi Ge, and David HC Du. Evaluating host
aware {SMR} drives. In 8th {USENIX} Workshop on
Hot Topics in Storage and File Systems (HotStorage 16),
2016.

[50] Fenggang Wu, Baoquan Zhang, Zhichao Cao, Hao Wen,
Bingzhe Li, Jim Diehl, Guohua Wang, and David HC
Du. Data management design for interlaced magnetic
recording. In 10th {USENIX} Workshop on Hot Topics
in Storage and File Systems (HotStorage 18), 2018.

[51] Ming-Chang Yang, Yuan-Hao Chang, Fenggang Wu,
Tei-Wei Kuo, and David HC Du. On improving the
write responsiveness for host-aware smr drives. IEEE
Transactions on Computers, 68(1):111–124, 2018.

[52] Ting Yao, Zhihu Tan, Jiguang Wan, Ping Huang, Yiwen
Zhang, Changsheng Xie, and Xubin He. Sealdb: An
efficient lsm-tree based kv store on smr drives with sets
and dynamic bands. IEEE Transactions on Parallel and
Distributed Systems, 30(11):2595–2607, 2019.

[53] Ting Yao, Jiguang Wan, Ping Huang, Yiwen Zhang, Zhi-
wen Liu, Changsheng Xie, and Xubin He. Geardb: a
gc-free key-value store on hm-smr drives with gear com-
paction. In 17th {USENIX} Conference on File and Stor-
age Technologies ({FAST} 19), pages 159–171, 2019.

[54] Hwanjin Yong, Kisik Jeong, Joonwon Lee, and Jin-Soo
Kim. vstream: virtual stream management for multi-
streamed ssds. In 10th {USENIX} Workshop on Hot
Topics in Storage and File Systems (HotStorage 18),
2018.

[55] J. G. Zhu, X. Zhu, and Y. Tang. Microwave assisted
magnetic recording. IEEE Transactions on Magnetics,
44(1):125–131, Jan 2008.

USENIX Association 2021 USENIX Annual Technical Conference 671

	Introduction
	Background and Motivation
	LSM-Tree based KV Store
	Interlaced Magnetic Recording
	Motivation: Degradation on Throughput and Compaction Efficiency

	KVIMR
	System Architecture
	Compaction-aware Track Allocation
	Special Properties of Compaction Process
	Design of Compaction-aware Track Allocation

	Merged Read-Modify-Write
	SSTable Persisting with Naïve RMW
	SSTable Persisting with Merged RMW

	Crash Consistency

	Evaluation
	Evaluation Setup
	Evaluation Results
	Overall Load Performance
	Load Performance Changes
	Throughput under Different Workloads
	Throughput under Different Sizes of SSTable
	Support for Other LSM-tree based KV Stores

	Related Work
	Conclusion
	Acknowledgements

