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Abstract

Incidents and outages dramatically degrade the availability
of large-scale cloud computing systems such as AWS, Azure,
and GCP. In current incident response practice, each team
has only a partial view of the entire system, which makes the
detection of incidents like fighting in the “fog of war". As
a result, prolonged mitigation time and more financial loss
are incurred. In this work, we propose an automatic incident
detection system, namely Warden, as a part of the Incident
Management (IcM) platform. Warden collects alerts from dif-
ferent services and detects the occurrence of incidents from a
global perspective. For each detected potential incident, War-
den notifies relevant on-call engineers so that they could prop-
erly prioritize their tasks and initiate cross-team collaboration.
We implemented and deployed Warden in the IcM platform
of Azure. Our evaluation results based on data collected in an
18-month period from 26 major services show that Warden
is effective and outperforms the baseline methods. For the
majority of successfully detected incidents (∼ 68%), Warden
is faster than human, and this is particularly the case for the
incidents that take long time to detect manually.

1 Introduction

Reliability is a key quality attribute of large-scale cloud sys-
tems such as AWS, Azure, and Google Cloud Platform (GCP).
Although tremendous effort has been devoted to improving
reliability, cloud systems still suffer from incidents and out-
ages [8, 10, 11]. Monitoring is widely used by cloud systems
to check their runtime status. A monitoring system collects,
processes, and aggregates quantitative data about a cloud sys-
tem. When a system problem occurs, an alert is sent to an
on-call engineer, who is expected to triage the problem and
work toward its mitigation. A severe enough alert (or a group
of aggregated alerts) is escalated as an incident.

∗Work done during Xin Zhao’s internship at Microsoft.
†Qingwei Lin is the corresponding author of this work.
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Figure 1: The timeline of handling a cross-service incident,
where it took nearly 50 minutes to understand the situation
and declare the incident.

Timely incident management is the key to reduce the sys-
tem downtime. However, according to our experience, a re-
active and ad-hoc incident detection is often employed in
practice, which hinders effective incident management. We
motivate our work using a real-world example. Fig. 1 shows
the timeline of an incident caused by a flawed configuration
change in the Storage service. The failed storage accounts
affected several SQL databases, and the failure was further
propagated to Web Application instances that were depending
on the impaired databases. The failure triggered cascading
alerts for Storage, SQL, and Web Application at 3:54 am, 4:00
am, and 4:25 am, respectively. After many rounds of discus-
sions (which took nearly 50 minutes), the engineers finally
realized that this was a cross-service issue, and an incident
was declared. An experienced Incident Commander (IC) [4,6]
was then engaged to coordinate the mitigation process. Even-
tually, at 5:27 am, the incident was mitigated and all services
were back to normal.

In this work, we focus on automatic incident detection
for cloud systems, so that incidents could be declared and
mitigated as early as possible. Incident declaration turns the
mitigation process from chaotic to managed, especially for
issues that require cross-team collaboration: the mitigation
tasks are prioritized, teams are aligned, and customer impact
is reduced. Our study is based on the Incident Management
(IcM) platform of Microsoft Azure, one of the world-leading
cloud computing platform. Though different companies [1–3]
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implement slightly different incident response processes, we
argue that they are essentially similar.

Incident detection is challenging. For a cloud system with
extraordinary complex dependency among thousands of com-
ponents, the on-call engineers, like in the fog of war, usually
only have a partial view of the big picture. In the above-
mentioned example, the engineers handling the storage alert
could only see the affected storage accounts, but it was time-
consuming to understand who was impacted. For engineers in
the SQL and Web Application teams, it also took them a con-
siderable amount of time to understand that they were affected
by the underlying services. According to our interview with
on-call engineers from the several service teams, such a diag-
nostic process could take as long as an hour. Also, there were
a large number of concurrent alerts, making the situation even
more challenging. Better communication processes/protocols
can help, but will not solve the problem completely.

In this work, we propose Warden for effective and timely
incident detection in IcM. Warden detects alerts that can
potentially turn into incidents by employing a data-driven
approach. A simple rule-based approach with human knowl-
edge is insufficient in practice as it can be easily overwhelmed
by a massive number of complex and ever-changing rules in
a large-scale production cloud system. An example rule is
“once a Storage alert was immediately followed by a SQL
alert and they happened in the same datacenter, it is likely that
they were related and constituted an incident”.

We develop a machine learning model to detect the inci-
dents, and point out incident-indicating alerts for the on-call
engineers. We have evaluated Warden using data collected
in an 18-month period from 26 major services on Azure.
According to our experimental results, Warden is effective
and outperforms the baseline methods. Warden is also faster
than human for the majority of successfully detected cases
(∼ 68%).

Our major contributions are summarized as follows:

• We study the problem of incident detection in the inci-
dent management (IcM) platform of Microsoft Azure.
We have identified the obstacles that result in prolonged
incident declaration time.

• We propose Warden, a framework to automatically detect
incidents based on alerts in IcM. Warden quickly detects
incidents and assists in task prioritization and cross-team
collaboration.

• We evaluate Warden with real-world data collected from
26 major services on Azure. The evaluation results con-
firm the effectiveness of the proposed approach. We have
successfully deployed Warden in IcM.

2 Background and Problem Formulation

In this section, we briefly describe the basic concepts about
alerts and incidents and then formulate the incident detection
problem. To help explain the concepts and the problem, we
perform an empirical study of 5 services (named Big5) of
Azure, namely Compute, Storage, Networking, SQL DB, and
Web Application. These 5 services are common to almost all
cloud computing platforms.

Alert ID: 200603407 Title: Ongoing VM critical failures

Start Time: 2020-03-13 07:30:00 Mitigation Time: 2020-03-13 08:23:00

Commander: Bob

Related Alerts

Postmortem: summary, 5 why, timeline, root cause, repair items, etc.

Severity: High

Monitor ID: 

DataCenterFailure

Service: Compute Team: OS Owner: Lily

Declare Time: 2020-03-13 07:52:00

Diagnosis 

logs

  Region: A                                        Data Center/Cluster (Optional): xxx/xxx

Figure 2: Main fields of an alert. Additional fields (grey col-
ored) are appended when an alert is escalated into an incident.
The escalated alert becomes the primary alert of the incident,
while related alerts are manually linked.

2.1 Alerts and Incidents

Alerts represent system events that require attention, such as
API timeouts, operation warnings, unexpected VM reboots,
or network jitters. An alert consists mainly of fields shown in
Fig. 2. Each alert has an impact starting time. Its mitigation
time is filled when the problem is fixed. Alerts have different
severity levels - low, medium, and high. Alerts are reported
by monitors, which are continuously running programs that
keep tracking the health status of a certain aspect of a service
component. Each alert carries its monitor ID. Most alerts
has its region information and some with more fine-grained
location information such as datacenter or cluster.

Figure 3 shows the number of alerts per day for Big5 ser-
vices in an one-year time frame. There are tens of thousands
of concurrent alerts produced by a large number of compo-
nents in the cloud system. Even for high severity alerts, the
number could be hundreds or even several thousands. Figure 4
shows the number of active monitors per month. The number
is gradually increasing as the platform scaling up and being
improved.

In general, incidents are declared under severe situations.
Often, problems taking a long time to solve or requiring cross-
team collaboration are also declared as incidents. One incident
usually triggers correlated alerts [21, 53]. An incident is thus
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Figure 3: Number of alerts of different
severity levels for the Big5 services.
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Figure 4: Number of monitors of the
Big5 services actively reporting alerts
per month.
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Figure 5: The histogram of time to de-
clare incidents for the Big5 services.

escalated from one alert or a group of correlated alerts. Addi-
tional fields are added when alerts are escalated into incidents
as shown in Fig. 2. The primary alert of an incident is usually
the one closest to the root cause or with the earliest alerting
time. The incident commander and the on-call engineers man-
ually link related alerts with the primary alert based on expert
knowledge. In the one-year-length period, there were several
hundreds of incidents caused by the Big5 services, among
which ∼ 67% are incidents impacting more than one services.
These incidents are typically the hard ones for detection and
mitigation due to the partial view issue.

Fast incident detection is critical for ensuring timely inci-
dent management. The time to declare incidents takes around
one-third of the whole mitigation time in our study. Figure
5 shows the histogram of time to declare incidents for the
Big5 services. We normalized the time to declare incidents
in Fig. 5 to protect company sensitive data. The reader could
use the public incident reports [8,10,11] as a reference for the
incident mitigation time. About one-third of the incidents are
declared within minutes. Most of these incidents are single
service issues that could be straightforwardly detected based
on rules. Nearly half (47.6%) of the incidents take more than
30 NTUs (normalized time units) to declare, and a long tail
of incidents require even hours. We manually analyzed these
cases and found that most of these cases fall into the category
where a small issue slowly turns into a big one. Our proposed
approach is thus helpful by detecting incidents from a global
perspective.

2.2 Problem Formulation

We now formally define the problem of incident detection.
We denote the current wall clock as t. The input is the set of
alerts coming from different services within the time window
Wt whose duration is (t −w, t], where w is the length of the
window. One monitor can be triggered many times over its
lifetime. The series of alerts reported by any monitor m is
called an alert signal, denoted as sm.

From the input time window, we want to estimate the prob-
ability of Pt = P(It |At), where It ∈ {0,1} is the indicator of
incident. At is the observed set of alert signals in the time win-
dow that ends at t. We then infer that an incident has occurred

by examining whether Pt surpasses a threshold.
In addition, we need to extract a subset of alert signals

which are indicating the incident from the time window, de-
noted as Ât ⊂At . System failures often lead to correlated alert
signals. The physical meaning is that each alert signal sm ∈ Ât

therein is one symptom caused by the underlying incident.
We name Ât as incident-indicating alert signals. According
to our definition, we shall have Pt = P(It |At) = P(It |Ât).

In summary, we divide the incident detection problem into
two steps. The first step is incident detection based on the
observed alert signals from different services in a recent time
window. The second step is to understand which alert signals
are likely caused by the detected incident, i.e., identify the
incident-indicating alert signals. When we detect the incident,
we only notify the relevant on-call engineers. We describe the
details of our solution in the next section.

3 The Proposed Approach

The workflow of Warden is shown in Fig. 6, which consists
of the following major steps:

Alert signal selection Monitoring a very large-scale sys-
tem is challenging due to the sheer number of components
being watched. The raw alert data is not only large in volume
but also contains noise. Therefore, we select only a subset
of monitors which exhibit relatively strong association with
incidents. Details about alert signal selection could be found
in Sec. 3.1.

Incident Detection We adopt a data-driven paradigm for
incident detection. We carefully extract a set of features from
alerts in a recent time window based on domain knowledge in
Sec. 3.2.1. Then, the feature vector is fed to a Balanced Ran-
dom Forest (BRF) [37] model constructed offline. With this
model, we could detect the occurrence of incidents. Section
3.2.2 explains how we train and apply the model.

Incident-indicating alerts identification We developed a
novel approach to identify the incident-indicating alerts. We
start by dividing the alert signals into groups. Then, we assign
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(1) Alert signal selection

Feature vector

Model

(2) Incident Detection (3) Incident-indicating alerts identification

0.6

0.2

0.1

(4) Notification

Figure 6: (1) Recent alert signals in a time window are selected and cached. (2) A feature vector is extracted and fed to a model
for incident detection. (3) We extract a group of alert signals which most significantly indicate the detection result. (4) Relevant
on-call engineers are notified for further investigation.

a score to each group based on an algorithm of our design
called Group Shapely Value (GSV). The group of alert signals
with the highest importance score is identified as the incident-
indicating alerts. We explain the grouping and group-based
model interpretation in Sec. 3.3. This approach is inspired
by model interpretation [43], which is about understanding
the relationship between inputs and outputs of a machine
learning model. However, our goal is to extract a group of
alerts indicating the detection result as shown in Fig.6 (3).
The difference between incident-indicating alert identification
and model interpretation is discussed in Sec. 5.

Notification We integrated our system into the IcM of
Azure. A notification is pushed to all involved alerts when
a potential incident is detected. When the corresponding on-
call engineers are aware of the detected emerging issue, they
could better understand the big picture and form a collabora-
tion group to declare and resolve the incident. We introduce
the practical usage scenario in Sec. 3.4.

3.1 Alert Signal Selection

Feeding alerts from all monitors could overwhelm the de-
tection model. Figure 3 and Figure 4 show the number of
active monitors and produced alerts for the Big5 services,
respectively. There are even more monitors and alters consid-
ering other services. In contrast, the number of incidents is
relatively small.

The purpose of alert signal selection is to identify a subset
of monitors which emit alerts exhibiting a relatively high
correlation with incidents. For this purpose, we calculate a
score for each monitor. The higher the score, the more likely
the alert signal from this monitor will indicate that the cloud is
experiencing an incident. If we observe that the alerts from a
certain monitor co-occur with incidents frequently, we should
assign a high score to that monitor. With this intuition, we
adopt the Weighted Mutual Information (WMI) [26]. WMI is
a measure of the mutual dependence between two variables,
i.e., quantifying the “amount of information" obtained about
one random variable through observing the other random

variable [50].
Formally, denote I as the set of all incident. For each mon-

itor m, we could calculate the WMI between the alert signal
sm and all incidents, i.e., I(sm;I ). One monitor is usually only
effective in detecting a specific problem. However, there are
many different types of incidents. Therefore, calculating the
WMI of one monitor against all incidents is not appropriate
in characterizing its effectiveness, especially given one inci-
dent type may have far more cases than another type. Yet, a
minority incident type may be equally, if not more, important
than a majority type.

We divide all incidents into different subtypes based on
their owning team that handled this incident. We notice that,
in a production organization, each team usually focuses on
specific functionalities [17, 18, 30]. Therefore, we assume
that all incidents handled by the same team are similar, and
therefore, constitute a subtype of incidents. We use i ⊂ I to
denote the a subtype of incidents. Then, the WMI between sm

and i could be calculated in Eq. (1).

I(sm; i) = ∑
sm

∑
i

w(sm
, i) ·P(sm

, i) · log

(

P(sm
, i)

P(sm)P(i)

)

(1)

Both sm and i are series of events with sm
, i ∈ {0,1}. Eq.

(1) essentially elaborates all value combinations of the two
variables and examines their inherent dependence. We divide
historic data into windows in order to calculate Eq. (1). For
instance, to derive the joint probability P(sm = 1, i = 1), we
simply count the number of windows containing both events.
This value is then divided by the total number of windows.
Other joint and marginal probabilities could be derived in a
similarly way. The coefficients w(sm

, i) in Eq. (1) are used to
assign different weights to different value combinations.

Once we have the WMI for every pair of monitor and in-
cident subtype, we can calculate the sum of score for m by
going through all incident subtypes. We use this score to rank
the monitors and pick the top 150, which are most effective for
incident detection. We will evaluate the number of selected
monitors in Sec. 4.6.2. The alerts not reported by the selected
monitors are ignored by our system.
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3.2 Incident Detection

We formulate the incident detection problem as a binary clas-
sification problem. The input consists of alert signals in a time
window. A classifier is trained offline based on the historic
labelled samples. Then, we apply the trained model for online
incident detection.

3.2.1 Feature Extraction

We identify the following features from alerts generated by
selected monitors in a time window:

Alert signals: The first set of features characterize the alert
signals. Each alert signal is a series of alerts generated by a
certain monitor within the time window.

• Alert count. In the event of a malfunction, the alert signal
is typically stronger than usual. As a result, we count the
total number of alerts and the high-severe alerts for each
monitor, respectively. Multiple services may start to re-
port alerts, and we, therefore, count the number of alerts
from each service. Besides, we count the total number of
alerts, the total number of monitors reporting high-severe
alerts, and the total number of services, respectively.

• Alert burst. We adopt a time window length of 3 hours1.
Our window size is large enough to accommodate related
alerts. However, under certain conditions, alerts erupt
only in a small time and space. For instance, a partial
power failure may hit only a few racks in a datacenter.
To capture this feature, we calculate the max number of
monitors reporting alerts and the max number of high-
severity alerts in any datacenter, respectively. Likewise,
in the temporal dimension, we calculate the two features
for all child sliding windows of 10/30/60 minutes in
length, respectively.

Engineer activities: Engineers leave their footprints when
they are working on alerts in IcM. The second set of features
characterize the intensiveness of engineer activities. Engi-
neers could post their diagnosis logs on the alert page. They
could also launch a bridge meeting for online discussion. The
bridge meetings are hosted by IcM and attached to the alerts.
If people in one service want to reach out to another service,
they could use the notification tool in IcM which automat-
ically routes them to the on-call team in the other service.
Though private communications (via personal phone calls or
IM apps) still exist, most traffic today is through IcM.

• Diagnosis log count. The engineers tend to leave diag-
nosis logs on the alert web pages as well as in the bridge
meetings. We count the number of discussion posts for

1According to our empirical study, over 80% alerts are triggered within 3
hours after the impact start time.

Alerting time Severity Service Datacenter# Logs # Bridges # Notifications Region

2020-08-01 10:00:00

2020-08-01 10:05:00

2020-08-01 10:35:00

2020-08-01 10:15:00

2020-08-01 11:10:00

H

H

M

H

M

A

A

B

C

B

3

4

2

1

1

1

0

1

0

0

2

1

1

1

0

dc1

dc1

dc1

dc3

dc2

r1

r1

r1

r1

r1

Monitor

m1

m2

m3

m1

m3

2 2 1 1 2 0 2 2 1 5 2 3 2 3 2 2 2 2 3 3  5 4 2 2 3 1 1 1 10 1 
m1,m2,m3 A,B,C

# alerts

# monitors w high-sev alerts

# services

datacenter 10/30/60 windows log
bridge

notification time region

Alert signals Engineer activities
Time & 

location

Figure 7: An example of feature extraction with 5 alerts in the
time window generated by 3 monitors from 3 services. One
feature vector is constructed for each time window.

each alert and the number of concurrent bridge meetings
in IcM, respectively.

• Notification count. Notifications are sent to initiate cross-
team collaborations. We thus count the number of notifi-
cations within the time window.

In addition to the aforementioned features, we also include
features about time (day and hour) and location (Region ID).
We illustrate the process of feature extraction using a dummy
example of 5 alerts in Fig. 7. We show a few example columns
of the derived feature vector.

3.2.2 Model Construction

We construct data samples using alert data with a sliding
window to training an incident detection model. The window
size is set to 3 hours as discussed in the previous section. The
window is sliding with a stride length of 5 minutes, which
is small enough in order not to miss any significant changes.
The label of the sliding windows overlapping with incidents
is positive; otherwise, negative. The labeling methodology
is illustrated in Fig. 8. The two vertical bars represent the
impact starting time and the mitigation time of the incident,
respectively. The example sliding window (i.e., the shadowed
rectangle) in Fig. 8 is thus labeled as positive. The 5-minute
stride length is only used for offline model construction. For
online usage, Warden runs once every minute. More details
could be found in Sec. 3.4.

Not all alert signals in the window are part of the incident.
In Fig. 8, only the alerts marked by the dashed curve are
symptoms of the incident. This group of alert signals is Ât

according to our definition in Sec. 2.2. In our evaluation, we
use the links between alerts to obtain the relationship between
an incident and its related alerts. The links were manually la-
belled by on-call engineers or the incident commander during
the incident mitigation process. We note that the related alerts
are only available for historic data. For online detection, this
information is unknown (or partially unknown).

Once we have the extracted features and the labels, we
train a model and apply it for online incident detection. In our
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Impact start time Mitigation time

Incident-indicating

alerts

Figure 8: The sliding window is labelled as positive if any
incident impact start time falls into it. Those time windows
with no overlap with incident impact time ranges (from impact
start to mitigation) are labelled as negative.

context, the number of incidents is much smaller than that of
alerts. We therefore choose the BRF [37] classifier because
of its robustness to noise and ability to handle imbalanced
data. Warden is a generic framework, and any model could
be plugged in for the classification task. More details about
the model selection are presented in Sec. 4.6.1.

The output of the model is the probability Pt ∈ [0.0,1.0].
We use a confidence threshold as discussed in our problem
formulation in Sec. 2.2. If the confidence is higher than the
threshold, we believe a potential incident is happening.

3.3 Identifying the Incident-indicating Alerts

We need to inform the right people when a potential incident
is detected, and otherwise, it is non-actionable. In other words,
we need to find out which alerts in the window are related to
the detected incident, as illustrated in Fig. 8. After we identify
these incident-indicating alerts, we notify their responsible
on-call engineers.

It is a non-trivial task given many concurrent alert signals
in the window. We propose a novel approach inspired by
two intuitions: first, the target alert signals must be a group
of correlated alert signals due to the same reason; second,
the target alert signals should contribute significantly to the
detection result. Such a group of correlated alerts is indicative
to the detected incident.

Our approach has two steps. We first group alert signals
that are likely related to each other into signal groups. Then,
we interpret the incident detection model on a group basis.

3.3.1 Alert signal grouping

Correlated alert signals could be identified based on statistics
on their co-occurrence history. We put two alert signals into
the same group under one of the two conditions: (1) they
co-occur frequently in history; (2) they fire from the same
cluster.

An alert signal is a series of events. We thus first charac-
terize the correlation between a pair of alert signals as we
did for monitor selection in Sec. 3.1. We use a threshold to
tell if one is strongly correlated with another. In addition, we

conduct statistics on related alerts for historic incidents. For
each incident, people manually link related alerts. If two alert
signals are frequently linked in history (more than 3 times),
we believe that they are correlated if they present in the same
time window.

Then, if two alert signals fire in the same cluster, we believe
that they are correlated. In a large-scale cloud computing
platform like Azure, a cluster is usually dedicated for a certain
functionality (e.g., for storage, compute, or database). If two
alert signals emerge from the same cluster in a short time
frame, they are inherently related in a high probability.

We apply the aforementioned rules to group alert signals
in the current time window. After grouping, the alert signals
are divided into corresponding groups, as illustrated in Fig. 6.

3.3.2 Group-based Model Interpretation

We now discuss how to obtain the incident-indicating alerts.
The basic idea is to rank the signal groups according to their
contribution to the prediction result of the detection model.
Then, we pick the top group of alert signals.

For this purpose, we develop a novel algorithm called
Group Shapely Value (GSV). GSV is heavily inspired by
the Shapely Value method [47] which is a model-agnostic
interpreter.

Algorithm 1 Group Shapely Value (GSV)

Require:

The classification model, M;
A testing window, Wt ;
The alert signal groups set associated with Wt , Gt ;
The target group, g ∈ Gt ;
Background training data, B

Sampling rounds, n

Ensure:

The Shapely Value c for target group g;
1: ϕ = 0
2: for 1 to n do

3: Randomly select a subset G ′
,G ′ ⊆ Gt

4: Gother = Gt \ (g∪G ′)
5: Randomly select a sample xb ∈ B

6: b1 = xt (Gother)∨ xt (g)∨ xb (G
′)

7: b2 = xt (Gother)∨ xb (g)∨ xb (G
′)

8: ϕ = ϕ+M (b1)−M (b2)
9: end for

10: c = ϕ
n

The original Shapely Value method only estimates the im-
portance for each feature value. In contract, GSV is able to
interpret the model for each alert signal group.

The intuition behind GSV is that we assemble combina-
tions of alert signal groups to evaluate the contribution from
each individual group. We leverage the Monte Carlo approxi-
mation method [47] to overcome the combination explosion
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Recommended Actions panel on the alert page

Dashboard of emerging issues

Expanded view of the incident-related alerts
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Figure 9: Web-based UI of Warden in IcM. (A) shows the
“Recommended Actions” panel and (B) shows the “Emerging
Issues” dashboard.

problem. The details of GSV can be referred in Algorithm 1.
The input of the algorithm are the model M and the set of alert
signal groups in the time window denoted as Gt obtained in
the previous grouping step. GSV requires a set of background
data B, which is randomly sampled from the training data. n

is a hyper-parameter which is typically set to several hundred.
In Algorithm 1, we construct two synthetic samples b1

and b2 in each iteration, as shown in Line 6 and Line 7, re-
spectively. Then, we calculate their difference in prediction
probabilities by the model M. The operator x(·) retains only
the feature values from a subset of alert signal groups of the
testing sample x. Intuitively, the difference between b1 and b2

indicates the significance of the current value of g (i.e., xt (g))
given a background sample xb ∈ B. The iteration continues
for n rounds and the accumulated ϕ is normalized to c. We
use c as the score for the group g. We pick the group with the
highest score as the incident-indicating alert signals.

3.4 Using Warden in Practice

To facilitate using Warden in practice, we develop a Web-
based UI as shown in Fig. 9. The UI consists of two parts: (A)
a “Recommended Action” panel located on each alert page,
and (B) a dashboard of “Emerging Issues” for all detected
incidents. Each detected incident is with a list of incident-
indicating alerts.

Warden runs periodically at a fixed interval (in our prac-
tice, Warden runs once every minute, and the main task takes
around 20 seconds). When Warden detects a potential inci-
dent, a notification is pushed to the “Recommended Action”
panels of all identified incident-indicating alerts. Our notifica-
tion is basically saying: this alert is of high priority and it may

be part of an emerging incident. Please check other alerts are

likely triggered by the same issue as well. When the engineer
sees the notification pops up in the “Recommended Action”
panel, she or he could click to jump to the dashboard for

more details. The list of related alerts on the dashboard helps
the engineers to understand the big picture, prioritize their
work, and initiate cross-team collaboration. We will describe
real-world cases in Sec. 4.7.

4 Experimentation

In our evaluation, we aim to answer the following research
questions:

• RQ1: How effective is Warden in detecting incidents?

• RQ2: How fast can Warden detect incidents compared
with human?

• RQ3: How accurate can Warden extract incident-
indicating alert signals?

• RQ4: What is the impact of key system settings on inci-
dent detection performance?

4.1 Dataset

To evaluate Warden, we collect alert data (∼240G) from the
IcM of Azure within a 18-month-length period, starting from
Oct.2018. We carefully selected 26 major services of Azure,
including the Big5. Hundreds of people in dozens of teams are
behind each service. The total number of incidents reported
by the 26 services accounts for ∼ 72% of all incidents in
Azure. The dataset includes over 10 million alerts. We use the
data in the last two month for testing and the previous months
for training. Our training and testing data contain around 82%
and 18% of all incidents, respectively. We organize our dataset
into sliding windows and conduct data labeling as discussed
in Sec. 3.2.2. The positive-to-negative ratio is around 1:25.
More details about our dataset could be found in Table 1.

Training Testing
Low-severity alert 31.4% 7.8%
Med-severity alert 51.6% 6.3%
High-severity alert 2.6% 0.3%

Incident 82.2% 17.8%

Table 1: Details about the dataset for experimentation.

4.2 Evaluation Metrics

Warden runs on a fixed interval. Once a potential incident
is inferred, Warden notifies related on-call engineers. The
metric we care most about is the accuracy of incident detec-
tion and incident-indicating alert identification. For incident
detection, we calculate the precision, recall, and F1-score. Pre-
cision measures the ratio of the sliding windows identified
by Warden are truly containing incidents. Recall measures
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the ratio of positively labeled windows recognized by War-
den. F1-score is the harmonic mean of precision and recall.
We also calculated AUC-PR in model selection, which is the
area under the precision-recall curve. For incident-indicating
alerts identification, we use Jaccard Index [33] to measure the
difference between the identified group of alerts versus the
manually linked alerts.

4.3 RQ1: Incident Detection Effectiveness

To our best knowledge, Warden is the only deployed system
for incident detection based on monitor reported alerts in
large-scale cloud systems. To better evaluate the effectiveness
of incident detection, we compare Warden with the following
baselines:

Anomaly detection Anomaly detection is a widely used
approach to discover system faults. An incident is detected
if the actual number of alerts is significantly higher than the
prediction. We implement our baselines based on Prophet [49]
from Facebook, which is widely adopted for time-series fore-
casting. The first baseline, namely anomaly-H, is evaluated
on high-severity incidents; the second, namely anomaly-S, is
evaluated on incidents reported by our selected monitors.

AirAlert AirAlert [23] uses a XGBoost [20] model to pre-
dict outages with only the alert count features from each mon-
itor. We implemented AirAlert with input from our selected
monitors.

The comparison results of Warden with the three baselines
are presented in Fig. 10. There is a trade-off between pre-
cision and recall for a certain model. As discussed in Sec.
3.2.2, we use a confidence threshold to tune our model. In Fig.
10, we tune the models to change their precision to different
values (0.5 ∼ 0.9) and record the corresponding recall val-
ues. The x-axis of Fig. 10 is the precision and the bar charts
show the corresponding recall values. The results show that
Warden is effective and outperforms the baseline methods.

The anomaly detection based approaches achieve very low
recall. The key reason is that an incident does not necessar-
ily cause a spike, especially given the large volume of alerts.
Only those incidents with extremely large impact (usually re-
ferred to as outages) could lead to high peaks. The anomaly-S
achieves slightly higher recall than anomaly-H, which demon-
strates the effectiveness of our monitor selection. AirAlert
achieves better performance than the anomaly detection based
approaches. As discussed in Sec. 3.2.1, we identified more
features in addition to alert count. With the full set of features,
Warden significantly outperforms AirAlert. This evaluation
result justifies the effectiveness of feature engineering.

False alarms could be annoying to deal with in real-world
scenario, as they can cause incorrect task prioritization or
unnecessary communication. To avoid spamming the engi-
neering team with false alarms, we ensure a precision of above
90%, which corresponds to a recall of ∼ 58%. The achieved
F1-score is 0.71.

4.4 RQ2: Fast Incident Detection

We compare the detection time using Warden and the manual
incident declaration time for incidents in our test dataset. For
all successfully detected incidents, Warden is able to perform
detection faster than human in ∼ 68% of cases. The time
saving for an incident is measured between the notification
time reported by Warden and the incident declaration time
reported by the on-call engineers. The median time saving
for these cases is 21.8 NTUs, which accounts for ∼ 15% of
the whole time-to-mitigate for these incidents. The readers
could use the public incident reports [8, 10, 11] as a reference
for incident mitigation time.

Figure 11 compares the time taken by manual incident
declaration and that by Warden. Each cross in the figure rep-
resents one case in our testing dataset. It is clear Warden
beats human for majority of cases. Moreover, we can see that
Warden can particularly help reduce the incident detection
time for those cases performed poorly by human. In practice,
for those cases when Warden falls behind human, we simply
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ignore them without sending notifications. To make the figure
more compact, we only show data points within 60 NTUs.

4.5 RQ3: Accuracy of Extracting Incident-

indicating Alert Signals

It is tricky to evaluate how accurately can Warden extract the
incident-indicating alert signals from the current time window.
Our ground truth is based on manually linked alerts in inci-
dents. As discussed in Sec. 2.1, the incident commander and
on-call engineers manually link related alerts to the primary
alert of an incident. Since this is done manually, it is easy to
miss some related alerts. According to our empirical study,
usually, only partial alerts are linked during a failure event.
Therefore, it is infeasible to rely on the manual links for eval-
uation. However, we discovered that the impacted services
are more reliable. When an incident occurs, more than one
alert usually gets triggered for each impacted service. People
usually selectively pick one or a few alerts and add to the
primary alert, which are used to track the health status of
that service. As a result, we use only the group of impacted
services, instead of the linked alert signals, for evaluation.

We extract the incident-indicating alerts from the current
time window as described in Sec. 3.3. For evaluation, we com-
pare the owning services of the identified alert signals with
the actual impacted services. Figure 12 shows the CDF of the
Jaccard indices for the cases recalled by Warden in our testing
dataset. First of all, we can see that Warden achieves a per-
fect alignment with the ground truth for 53% cases. For 78%
cases, the Jaccard index is above or equal to 50%. Moreover,
the curve in Fig. 12 is constantly above 0, which means that
Warden can find at least one impacted service when incidents
have been detected. In general, Warden can accurately find
the impacted services inside the current time window.

4.6 RQ4: The Impact of Key System Settings

So far we have evaluated our system with a fixed set of settings.
We now address the question of how different system settings
affect the performance. Specifically, we examine three sub-
questions: (1) What is the impact of different classification
models on incident detection? (2) how many monitors should
we select? and (3) how much data and how often is required
to train our model?

4.6.1 Classification Model Selection

Warden uses a classification model for incident detection. We
evaluated a few popular candidates, namely Penalized Linear
Regression (PLR) [23], SVM [24], Balanced Random Forest
(BRF) [37], and LightGBM [36]. To account for data imbal-
ance, we assign different class weights to positive/negative
samples for PLR, SVM, and LightGBM; for BRF, we adjust

the sampling rate. These settings are all tuned with grid search
using validation data. The results are shown in Table 2.

Model F1 Recall Precision AUC-PR
PLR 0.505 0.361 0.840 0.64
SVM 0.604 0.655 0.561 -

LightGBM 0.680 0.658 0.704 0.71
BRF 0.704 0.658 0.757 0.73

Table 2: The comparison results of different models.

We mainly use the AUC-PR for comparison. Since AUC-
PR does not apply for SVM, we also record the F1-score
and the corresponding precision and recall. BRF achieves the
highest AUC-PR of 0.73 compared with PLR and LightGBM.
For BRF and SVM, we could see BRF achieves higher pre-
cision and recall. In conclusion, BRF outperforms the other
candidates, and therefore we adopt BRF in our system.

4.6.2 Alert signal selection

In Sec. 3.1, we have derived a score for each monitor and
ranked all monitors accordingly. One remaining question is
how many monitors should be selected. Intuitively, selecting
more monitors will improve the coverage by detecting more
incidents. However, more monitors also increase the com-
plexity of the model as well as the data volume. Therefore,
we try to find the minimum set of monitors while achieving
satisfactory precision and recall.

We measure the recall at different precision values (0.6,
0.7, and 0.8) varying the number of monitors. The results are
presented in Fig. 13, where the x-axis denotes the number of
monitors and the y-axis shows the recall. The three curves are
the recall values with different precision values, respectively.
The number of monitors is ranging from 25 to 300.

We can see that the recall rises significantly for all three
curves, when the number of monitors increases from 25 to
150, which is in line with our expectation. This observation in-
dicates that a moderate fraction of incidents could be detected
with a relatively small number of monitors. Then, increasing
the number (when exceeds 150) would not increase the cov-
erage as the newly-added monitors become less indicative
of incidents. On the other hand, adding more monitors will
increase the number of alerts to process. As a result, we set
the number of selected monitors to 150 in our system.

4.6.3 Training data and frequency

We also evaluate our model with different training data
lengths. Specifically, we keep the later two months in our
dataset for testing and vary the length of training data from 1
to 16 months. For each round, we record the F1 score and the
result is shown in Fig. 14.

The x-axis shows the length of training data from 1 to 16
months, and the y-axis is the F1 score. We can see that F1 rises
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with more training data. However, the gain becomes minor
with the training data length exceeding 9 months. Therefore,
for production usage, we collect data from the last 12 months
for training, which is sufficient to reach optimal performance.

Another question is how often we need to retrain the model.
We use 9 months of data for training and 2 months for testing.
We interleave the training and testing data by m days, where
m ranges from 0 to 80. We record the F1 scores with different
interleaving intervals. Fig. 15 shows the result where the
x-axis is the interleaving days and the y-axis is the mean
F1 score. The dashed line is the regression fit which clearly
shows a decreasing trend.

We can see a decline in performance as the data evolves
(e.g., newly added monitors as shown in Fig. 4). In our system,
we retrain our model on a weekly basis to capture incremental
data changes. Our training is conducted on a node with 48
cores and 512 G memory. The training process with a 12-
month dataset takes 16 cores and ∼ 8G memory, and costs
∼ 1.2 hours.

4.7 Case Studies

Warden has been deployed online in IcM of Azure for around
3 months till May 2020. In this section, we describe two
real-world cases.

Case 1: power failure incident The first case is an incident
caused by a datacenter power failure. Counterintuitively, not
all incidents caused by power issues are easy to detect. Few
power issues lead to real incidents due to resource redundancy.
In this case, the region of the datacenter was hit by an ice
storm, resulting in a large-scale power failure. The affected
racks lost power when their supporting UPS units drained. It
took tens of minutes before running out of power supply.

Multiple services got affected gradually during this inci-
dent. Warden sent out an initial notification at receiving alerts
from the Compute service. The alerts were about “Compute
Manager QoS degradation". Our notification immediately
attracted the attention of the on-call engineer. When the engi-
neer was investigating the problem, Warden gradually identi-

fied more than 10 alert signals (including “Virtual machines
unexpected reboot", “Web Application probe alert", “TOR
dead event", “Too many partition load failures", “API Unex-
pected Failures", etc.) in following time intervals. Not only
the inference confidence of the model was raised substantially,
but also more on-call engineers from multiple teams were en-
gaged. They were on the same page, and a bridge meeting was
set up for collaborative problem-solving. Without Warden, the
engineers in different service teams would have to run indi-
vidual diagnoses and discuss back-and-forth for a prolonged
time until they realized that they were impacted by a power
failure.

Case 2: networking incident The second case is an inci-
dent caused by TOR (top-of-rack router) down. When the
TOR device is down, a VM will lose the connection to its
storage, resulting in an unexpected reboot. Meanwhile, the
issue of VM unexpected reboot could also be caused by stor-
age problems such as disk failures. The current practice is
that on-call engineers run diagnostic tools to find out the root
cause [51]. This diagnosis is time-consuming and requires
cross-team collaboration.

In this case, a VIP customer’s service was impacted and
timely root cause analysis (RCA) was required. When the
TOR down alert was received, Warden notified the Network-
ing on-call engineer immediately. Several minutes later, the
alert from the Compute service arrived, and Warden corre-
lated the two alerts together. When the RCA request came to
the Compute team, it was immediately concluded the incident
was caused by the networking issue. Timely RCA helped
increase our customer’s confidence.

5 Discussions

Why can incidents be detected? Incidents can be caused
by one-off issues like code bugs or flawed configurations.
Once these issues get fixed, they might never happen again.
However, the detection is not based on the root causes, but
on symptoms (the triggered alerts) which indeed exhibits
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certain repetitive patterns. In addition, some root cause issues
indeed happen again and again, like hardware failures. For
example, we examined the incidents caused by cluster-level
partial power failures in history. The consequential impact
vary slightly from one case to another. Therefore, it is also non-
trivial to detect based on manually crafted rules. In conclusion,
a data-driven approach is appropriate for incident detection.

Generalizability of the proposed approach Incident de-
tection is a common problem for all cloud platforms. Different
companies implement different incident response processes.
For example, Azure has a 4-step incident management process
as discussed in [17]. The steps are detection, triage, mitigation,
and resolution. GCP employs a very similar 4-step process
as described in [1], with more detailed child processes in
each step. NIST proposed a high level of abstraction for inci-
dent response with similar steps in [5]. Warden relies on the
monitoring system which is a key building block to ensure
service reliability. Therefore, our proposed approach could be
extended to all these incident response platforms.

Trade-off in detection accuracy and delay Warden aims
to detect the incidents as early as possible. However, there is
a trade-off between the accuracy and the delay. We can wait
for long enough until the alerts accumulate so that we can
accurately detect incidents. On the other hand, we can make
detection with only early weak signals, which will save time
but also lower our confidence. So far, the primary audience
of our system are the on-call engineers. Therefore, we con-
ducted user studies to understand their practical concern. We
conclude a precision above 90% is satisfactory for real usage,
and we then tune our system accordingly.

Difference between incident-indicating alert identifica-

tion and model interpretation Identifying the incident-
indicating alerts is not solely a model interpretation prob-
lem [43]. Algorithms, such as SHAP or LIME [40, 41, 45],
rank the input features based on their contribution to the pre-
diction result, without considering the inherent relationship
between the features. In our system, the features are con-
structed from the alert signals and we want to understand the
contribution of each alert signal, instead of individual features.

5.1 Threats to Validity

Subject system: We have limited our evaluations to 26 major
services on Azure, which produce the majority of incidents.
The services we pick are representative of large-scale cloud
computing platforms. For example, the Compute, Networking,
and Storage are the three most fundamental services. We also
include SQL DB, Web Application, Backup, Data Pipeline,
etc., which are common services provided by all platforms
such as AWS, Azure, and GCP. The incidents in our dataset

are caused by a variety of common reasons. The top 5 de-
terministic reasons are code bug, network hardware issue,
configuration, code defect, and design flaw. In our future plan,
we will extend our evaluations with more services.

Label quality: We rely on manually linked alerts in our
evaluation in Sec. 4.5. In practice, usually, only part of related
alerts are linked correctly. The major problem is the missing
links. Instead of manually linking all related alerts, the on-call
engineers often only selectively link one alert for one service
to track the cause-effect relationship. As a result, we have to
evaluate the correctness of our extracted alerts on a service
basis. Sometimes, people may even fail to involve a truly
impacted service or add wrong links between irrelevant alerts.
We incorporated experts from IcM to verify our label data
and made a number of corrections. The label quality problem
is thus greatly mitigated.

6 Related Work

Fault Detection and Localization: A significant amount of
work [14, 28, 29, 31, 32, 34, 42, 44, 48, 51] exists on failure
detection in cloud environments. Researchers [28,31,44] have
advocated the scenario where minor failures from low-level
services may cause large-scale impact to dependent services,
which actually motivates our work of using alerts from multi-
ple services to detect incidents. Some work [13,25,35,42,51]
leverages the service dependency graph or API invocation
chain to localize the root cause. Other work [14, 29, 32] pro-
poses to use agents in distributed systems for failure detection
and localization. In this work, we lay our foundation on top of
the existing failure monitoring infrastructure built by individ-
ual services. We do not assume that we know the hierarchical
dependency among components, which we believe is challeng-
ing for a large-scale dynamically changing cloud computing
platform.

Time-Series Anomaly Detection: We notice that there is
a body of work on anomaly detection and root cause local-
ization for multi-dimensional time-series data [16, 38, 52].
There are plenty of commercial anomaly detection frame-
works [7, 9, 12] offered by companies. In contrast, our work
is based on alert data produced by cloud monitors. The alert
data (described in Sec. 2.1) is very different from time-series
metric data or console logs, and is commonly seen in cloud
systems. Besides, our approach can not only detect the occur-
rence of cross-service incidents but also identify the incident-
indicating alerts. We propose a novel algorithm called GSV
for extracting the incident-indicating alerts. Finally, we target
incidents that require cross-team collaboration (i.e., cross-
service incidents). Therefore, we believe our work is novel
and significantly different from the related work on time-
series anomaly detection.

Incident Management: Haryadi et al. [27] analyze hun-
dreds of officially published outages. Recently, there are also
increasing interests in incident triage [17, 18, 39, 46, 56]. Jun-
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jie et al. [19] use deep learning to find low severity inci-
dents that represent self-healing or transient issues. Yujun
et al. [22] study the problem of grouping different incidents
with intrinsic relationships. Incident detection or prediction
has gained increasing interest in recent years. A few recent
work leverages customer feedback [55], tweets [15], or alerts
with rich textual information [54] to detect real-time issues
for online systems. They focus on extracting effective indi-
cators from textual information. However, in our system, the
alerts carry only machine generated texts as shown in Fig. 9
which is different from natural languages. Our previous work
AirAlert [23] uses monitor generated alerts to predict several
specific types of outages. In this work, Warden is designed
for generic incident detection. We compare the performance
of Warden with AirAlert in Sec. 4.3.

7 Conclusion and Future Work

In this work, we propose Warden, a framework to automat-
ically detect incidents. We train an inference model based
on historic failure patterns with input from a set of carefully
selected monitors. Upon detecting potential incidents, War-
den extracts a set of related alert signals and notifies relevant
on-call engineers. This information assists the on-call engi-
neers to prioritize their tasks and initiate cross-team collabo-
ration. We have evaluated Warden using data collected from
26 major services on Azure. The evaluation results confirm
the effectiveness of Warden. Furthermore, Warden has been
successfully deployed in production.

We notice that not all incidents are covered by the monitor-
ing system. Therefore, in our future work, we plan to exploit
more signals such as the customer submitted support cases
and social streams for incident detection.
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