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Abstract
Graph learning is an emerging technique widely used in di-
verse applications such as recommender system and medicine
design. Real-world graph learning applications typically op-
erate on large attributed graphs with rich information, which
do not fit in the memory. Consequently, the graph learning re-
quests have to go across the deep I/O stack and move massive
data from storage to host memory, which incurs considerable
latency and power consumption. To address this problem,
we developed GLIST, an efficient in-storage graph learning
system, to process graph learning requests inside SSDs. It
has a customized graph learning accelerator implemented in
the storage and enables the storage to directly respond to the
graph learning requests. Thus, GLIST greatly reduces the
data movement overhead in contrast to conventional GPGPU
based systems. In addition, GLIST offers a set of high-level
graph learning APIs and allows developers to deploy their
graph learning service conveniently. Experimental results on
an FPGA-based prototype show that GLIST achieves 13.2×
and 10.1× average speedup and reduces the power consump-
tion by up to 98.7% and 98.0% respectively on a series of
graph learning tasks when compared to CPU and GPU based
solutions.

1 Introduction

Graph is a fundamental data structure widely seen in mod-
ern computer systems and applications. Real-world social
networks, molecular graph structures, biological protein net-
works, social networks, and data from many other fields can be
modeled as graphs, particularly the attributed graphs (AGs),
which carry richer property information than well-studied
plain graphs [19, 40, 42]. Attributed graphs occupy a grow-
ing proportion of storage space in the datacenters of service
providers such as Facebook, Amazon and Alibaba, and the
trend will continue especially with the popularity of graph
database and graph analytics platforms for citation networks
and recommender systems [4, 7, 43, 58]. Taobao, one of the

largest online consumer-to-consumer (C2C) platforms, for
example, manages attributed graphs that consist of one bil-
lion users and two billion items [43]. Therefore, as the ma-
chine learning technology advances, the question of how to
make prediction, discover new patterns, and mine useful in-
formation from such rich attributed graphs, which is known
as the area of Graph Learning (GL), is gradually becoming
important in private and public cloud datacenters where the
massive graph data can be ingested to learn the basic classi-
fication, clustering, visualization and prediction functional-
ity [5, 29, 35, 43, 52–54].

Conventionally, common graph learning tasks require nu-
merous CPU or GPU nodes to deal with large-scale graph
learning problem and the related user queries, which directly
translates to sheer growth of power and cost overhead. For
instance, a typical GL-based recommender system in Al-
ibaba [43] employs hundreds of GPUs in service to mine
billion-scale attributed graph data associated to numerous
customers and shopping items. To investigate more cost-
effective GL systems, in this work we first characterize the
real-world GL applications by building a conventional single-
node GPU+SSD based graph learning system. In this system,
several critical tasks found in realistic datacenter infrastruc-
tures are implemented and simulated (See Section 3). We
discovered that there are several important impactive per-
formance in these mainstream graph learning tasks. (1) For
typical graph learning systems that respond to graph analysis
requests as shown in Table 2, the storage-and-compute decou-
pled systems are bottlenecked by I/O operations, and they are
not energy efficient in dealing with the GL requests due to
the costly data movement from the storage to CPUs/GPUs.
(2) Large-scale graph learning tasks exhibit poor data local-
ity, which can hardly be exploited in the limited on-chip or
even off-chip memory due to the large footprint of attributed
graphs such as social networks or recommender systems. (3)
We found that, although graph learning tasks are much more
complicated than plain-graph processing, they are generally
solvable by emerging graph neural networks (GNN), which
means a compact specialized GL accelerator is a viable alter-
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native to GPUs and CPUs in storage-centric GL systems.
To replace the power-hungry CPU/GPU based solutions

and eliminate the unnecessary power consumed by graph
data movement, we propose a near data computing system
to realize efficient Graph Learning In-STorage (GLIST). As
depicted in Figure 1(b), GLIST is a combination of in-SSD
computing and customized graph learning accelerator archi-
tecture, and it enables the storage device to directly respond
to attributed graph analysis requests and queries, making the
data warehouse machines more energy efficient.

However, fitting large-graph learning tasks into compact
storage devices remains very challenging and worth investi-
gating. First, large graphs generally have too large footprint
to fit in the DRAM memory or the caching memory of stor-
age devices [20], thus processing a large attributed graph on
request tends to have poor locality, which must be well ex-
ploited in the design of GLIST. In the graph learning process,
how to efficiently and directly fetch graph learning model
parameters and the graph itself from the flash devices, how to
preserve locality in the working-set of GL, and how to exploit
the abundant channel-level flash bandwidth in SSDs is also
very important.

Second, fitting large-scale graph learning workloads into
storage SSDs is challenging due to the limitation of power and
computing resource inside the SSDs that generally have em-
bedded CPU or MCU for flash device management, because
deep learning technology based graph analysis workloads are
bandwidth and computational intensive at the same time. This
calls for a more efficient architecture to practice in-storage
graph learning with SSDs.

Third, though analyzing a single graph request does not
exhibit good memory locality, it is found that the inter-request
locality does exist as the working-sets of temporally corre-
lated requests overlap with one another to some degree as will
be discussed in Section 3. Thus, to achieve the best efficiency
of the in-storage computing, fully exploiting the concurrency
and the inter-request locality in the graph analysis requests is
also important. As a consequence, more consideration should
be given to the working-set caching and the request schedul-
ing strategy in the GLIST controller to reuse GL model and
graph data in storage.

In all, we make the following contributions in this paper:

• We profiled real-world GL workloads in different cate-
gories and obtained two main observations for optimiz-
ing the architecture of GNN systems in terms of data
locality, especially for systems with block-based storage
devices.

• Based on our observations, we proposed the GLIST ar-
chitecture to enable high-throughput graph learning ser-
vices. We handle concurrent requests issued to the power-
limited graph learning storage with specialized caching
system and locality-centric request scheduling policy to
exploit the data locality in and between the attributed

graph analysis requests. The graph analysis requests are
processed inside SSDs with a unified hardware accel-
erator to handle various graph learning tasks instead of
going across a deep I/O stack. To the best of our knowl-
edge, GLIST is the first in-storage acceleration system
for graph learning workloads such as recommender sys-
tems and automated customer service.

• We build a GLIST prototype on the Cosmos Plus
OpenSSD platform [1]. Experimental results show that
the GLIST caching and scheduling policy can improve
the performance by up to 13.2× and 10.1× compared
to CPU+SSD, GPU+SSD based system, respectively.

• GLIST provides a software abstraction with a set of
programming APIs that enable developers to create and
deploy their graph learning models and analysis service
into the in-storage graph learning system.

2 Background

2.1 Graph Learning Tutorial
Graph neural network applications can be modeled as an
encoding-decoding method [15, 58]. The encoding function
encodes the vertices in a graph into latent representation (also
called embedding) that summarizes both the location and
neighboring information. The decoding function decodes the
embedding to the original vertex information, which is di-
rectly related to graph learning tasks, such as labeling a vertex
in classification task.

Table 1: GNN Notations.
Notations Description Notations Description

G attributed graph G(V,E) Nb(v) vertex v’s neighbor set
hv the embedding vector of N(v) subset of vertex v’s

vertex v neighbor set
e(i,j) the edge between vi and vj R analysis result

Typically, the encoder function is composed of three types
of functions including Sample, Aggregate, and Combine.
Sample controls the scope of the information to be processed
in a graph. As formulated in Eq. 1, it samples a subset of
the neighbor vertices and constructs a new sub-graph for em-
bedding [6, 14, 53]. The notations used in the formulation is
summarized in Table 1. Sample can also be omitted accord-
ing to GCN [21] and GIN [48]. In this case, all the neighbor
vertices are used for embedding calculation.

Sv = Samplek(Nb(v)) (1)

Aggregate aggregates the features of all the incoming vertices
to update the feature of current vertex v.

h′kv = Aggregate({h(k−1)
u }u∈Nv

) (2)

where hk
v
′

is the feature of vertex v aggregated from features
of neighbor vertices h(k−1)

u at the (k - 1)th layer.
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Figure 1: A processing example of typical GL-based social network recommendation service [14, 21, 46] When Alice tries
to extend her connection via a social network App, a request is generated by the App and sent to the data center¬. The request
is then converted to multiple graph analysis operations to predict users who Alice may be interested in. One of the operations
is assigned to Server C to predict the potential connection between Alice and Rick. With conventional storage, the relevant
sub graph of the huge social network must be loaded from the external storage to main memory and will be processed with an
encoder function on host. The processing is to generate embedding vectors that can represent the two users’ social network
characteristics®. Then a DNN-based predictor is invoked as a decoder to determine whether the two users may agree to connect¯.
Finally, the recommendation is obtained based on all the prediction results and sent to the user App°. (b) GLIST can simplify
the graph learning processing. There is no data movement between the storage and the host system.

In order to obtain the updated feature of vertex v at layer k
i.e. hk

v, Combine, which is essentially an MLP operation, is
applied.

hk
v = Combine(h′kv) (3)

With multiple iterative processing, the obtained embed-
ding vectors are fed to the decoder function to perform graph
analysis tasks. The graph learning tasks can be categorized
into three types [47]: Node-level analysis, Edge-level anal-
ysis, Graph-level analysis. Meanwhile, the decoder function
varies from specific graph learning tasks, and they will be
detailed as follows.

Node-level analysis aims to classify nodes without labels
in graphs. It can also be applied for the classical community
classification task in online social network analysis [3, 26],
which essentially classifies nodes into several communities.
The decoder function of Node-level analysis can be formu-
lated as Eq. 4 [21].

Rv = Decoder(hv) (4)

Edge-level analysis focuses on the prediction of missing
edges or edges’ attributes. A typical use is to predict the poten-
tial connections between users and items in recommender sys-
tems, revealing a user’s interest in an item. The decoder func-
tion of Edge-level analysis can be formulated as Eq. 5 [38].

Re(i, j) = Decoder(hi,h j) (5)

Graph-level analysis operates on the entire graph as for-
mulated below [48] and mainly targets for graph classification.

RG = Decoder({hu}u∈G) (6)

GNN can be used for many applications as summarized in
Table 2. We take a GL-based social network recommender
system shown in Figure 1 (a) as an example to illustrate the

use of GL. When the server receives an edge analysis request
to predict the potential relationship between two users, the
algorithm will load the relevant sub-graphs of the social net-
work in external storage with a Sample function to host mem-
ory, and then generates embedding vectors for the analyzed
users® with an Aggregate function and a Combine function.
This will lead to high processing latency mainly caused by (1)
random data access to storage and (2) massive data transfer
across the bandwidth-limited PCIe bus and deep OS software
stack. Then, the two generated embedding vectors are used by
a DNN-based predictor to determine the existence of social
connection between the two users¯. Finally, the prediction re-
sult, which is usually a scalar, is sent back to the host machine
and the user App eventually to make a recommendation. The
proposed GLIST system, as shown in Figure 1 (b), however,
performs the graph learning tasks only in SSDs to mitigate
the drawbacks mentioned above.

2.2 In-storage Graph Processing
By enabling computation in storage that can avoid massive
data movement between storage devices and host memory,
in-storage computing (ISC) has become a promising comput-
ing paradigm for big data processing [8, 11, 17, 18, 28, 32, 37].
Graph processing on large-scale graphs is considered to be
I/O intensive and requires frequent accesses to the graph in
storage, so it fits well to the ISC paradigm. A number of prior
works have intensively investigated the use of ISC for graph
processing and demonstrated competitive performance and
energy efficiency [18,22,23,25,31,34,41,56]. GraphSSD [34]
proposed a semantic-aware translation layer for efficient data
access in graph processing. GraphOne [23] proposed an ef-
ficient dynamic graph store to facilitate both runtime graph
update and processing. It supports various graph processing
operations from distinct perspectives. G-Store [22] and MO-
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Table 2: Graph learning tasks, algorithms, and datasets.
Analysis level Model Graph #Vertices/#Graphs #Edges(per graph) Application

Node-Level GCN [21] ogbn-products (OP) [16] 2,449,029 61,859,140 Product category prediction
GS-Pool [14] soc-LiveJournal1 (SL) [3, 26] 4,847,571 68,993,773 On-line community classification

twitter (TW) [24] 61,578,417 1,468,365,182 User classification in social network
ogbn-papers100M [16] 111,059,956 1,615,685,872 Research papers classification

Edge-Level GS-Pool [14] ogbl-citation2 (OCi) [16] 2,927,963 30,561,187 Missing citations prediction
PinSage [53] ogbl-wikikg2 (OW) [16] 2,500,604 17,137,181 Knowledge graph completion

SOC-Friendster (SF) [51] 65,608,366 1,806,067,135 Missing relationships prediction in social network
Graph-Level GCN [21] ogbg-molpcba (OM) [16] 437,929 28.1 Molecular property prediction

GIN [48] ogbg-code(OCo) [16] 452,741 124.2 Code summarization
ogbg-ppa (OP) [16] 158,100 2,266.1 Taxonomic prediction

SAIC [31] also achieved efficient in-storage graph processing
with redundant data elimination methods and locality opti-
mizations. Graphene [30] and FlashGraph [57] were proposed
to address the I/O challenge in graph processing by managing
frequently accessed data in DRAM.

However, due to the power constraint, the low-end pro-
cessors in storage usually have limited computing capability
to deal with complicated and demanding tasks. In this case,
many powerful hardware accelerators are built in the context
of ISC in recent years. GraFBoost [18] develops a specialized
accelerator to coalesce the random accesses to the storage in
large-scale graph processing and achieves server-class per-
formance with small memory and low power footprint. Ex-
traV [25] utilizes a cache-coherent hardware accelerator to
achieve both high performance and high flexibility for plain
graph analysis.

While prior in-storage graph processing works mainly tar-
get to analyze plain graphs which only have simple scalar
attributes, they cannot fulfill the processing requirements of
the graph learning workloads that mostly operate on graphs
with large vector attributes, because the graph learning tasks
have distinct data access patterns and computation intensity.
In addition, the primitive operations used in graph learning
can also be unique. For example, the Sample function is not
supported by any of the conventional plain graph processing
abstractions [33,36,55]. Thus, we are motivated to investigate
a novel ISC architecture for cutting-edge learning tasks on
large and spare graphs.

3 GL Workload Study for GLIST Design

3.1 Single Workload Characterization
Experimental setup In order to characterize and gain insight
of various graph learning workloads, we conduct an in-depth
study on a series of real-world representative GL applications
on GPU [44]. The details of the applications and the datasets
used for evaluation are illustrated in Table 2. The models and
evaluation datasets are all stored in a 1 TB Samsung 970 PRO
NVMe SSD. The computation device is an NVIDIA V100
GPU (Volta) equipped with 16 GB HBM2 memory.

Result analysis The latency of a graph learning task is bro-
ken down into three parts: GPU compute time(Computation)
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Figure 2: Performance breakdown of compute and I/O time
for different graph learning workloads.

which implies the computation overhead, CudaMemcpy
time(CudaMemcpy) which represents the time spent on the
data movement between GPU and host, and the SSD to
DRAM communication time (SSD). Figure 2 shows the pro-
filing results, from which we can safely land two conclusions:
First, the I/O bottleneck significantly penalizes the perfor-
mance of graph analysis requests for most graph learning
tasks. As we can see, all the graph learning tasks evaluated
in this experiment spend more than half of their execution
time on I/O operations, which means that GL workloads are
limited by I/O bandwidth.

Second, it is hard for real-world large graphs to fit the
memory. For example, twitter (TW) and soc-LiveJournal1
(SL) in the tested datasets cannot be fully loaded into 16 GB
GPU memory. Thus, the algorithms have to load data from
last-level storage on demand (Sampling based algorithms, i.e.
GS-Pool and PinSage) or even cannot run (Non-Sampling
based algorithms, i.e. GCN and GIN). Huge graphs not only
increase the I/O access overhead, but also seriously restrict the
throughput of general purpose processors, due to the memory
capacity limitation. However, if the working set of graphs can
be preprocessed where they originally stay and only the rele-
vant sub-graph are moved, the data movement and processing
overhead can be significantly reduced.

3.2 Locality in Graph Learning Workloads
To enable graph learning inside storage and service GL re-
quests from users, we must exploit the locality in graph learn-
ing workloads to alleviate the SSD bandwidth limitation while
preventing the long-latency flash accesses from penalizing
the response performance. Two major exploitable locality
observations that help fit the graph learning workloads into
SSDs will be illustrated as follows:
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1. There exists working set reusability in between graph
learning requests.

Because SSD typically has much longer latency and coarser
access granularity like pages and blocks, it is essential to take
advantage of the limited DRAM or SRAM cache in it and
exploit the locality in between the graph analysis requests
for performance improvement. There are two potential types
of locality in between the graph learning requests. The first
type is Graph Data Locality (GDL) while the second is model
parameter locality (MPL). For GDL, processing each vertex
in the graph will involve a working set consists of its neigh-
bors’ property data. Graph analysis requests that happen to
hit vertices in the proximate regions in the graph probably
share a common working set. For MDL, many graph learning
requests like node classification may utilize the same model
parameters, so it will be beneficial to select and combine the
graph learning requests with the same model parameters from
all the batched requests.

2. The layout of graph data in flash channels significantly
impacts the locality of in-storage graph learning.

Each single vertex/edge feature vector in attributed graphs
is usually at the size of hundreds of bytes or few KB [19,
39, 50] and is smaller than a flash page size (i.e. 16 KB), the
minimum operation granularity of flash devices. However,
recent graph neural networks that respond to GL requests
usually adopt Sample function which samples a subset of
the target vertices’ multi-hop neighbors [10, 14, 53]. This
means that there may exist bandwidth under-utilization when
the vertices located in the same flash page are not sampled
simultaneously because the multi-hop structural correlation
may not be captured by the Sample function.

For Observation 1, the request scheduling and caching strat-
egy should be designed to fully exploit the temporal data lo-
cality that exists between requests. For Observation 2, the
feature data layout in flash devices should be reorganized to
improve the data reuse in a flash page.

4 GLIST Design

4.1 System Overview
To move the graph learning ability into storage devices, a
state-of-the-art GL framework must support for system de-
signers to develop and deploy the service of GL functions, e.g.
GNN-based recommender systems and vertex classification,
in storage devices. Inspired by the GL framework described
in [58], we construct a multi-layered system architecture for
the GLIST system, including user interface, run-time manage-
ment, and specialized hardware as shown in Figure 3.

For the purpose of processing various graph data with
GLIST, users can interact with it using the provided com-
mands (see Table 3) via the GLIST Application Interface to
define or invoke the specific GL functions in storage devices.
Except the interface of defining and calling graph analysis

functions in storage, GLIST also implicitly performs locality-
aware graph reorganization for the newly registered and up-
dated graphs on the host machine, so that the GLIST system
can improve storage operations and the response efficiency
when processing the received user analysis requests.

Take the recommender system shown in Figure 1 as an
example. At the offline stage, the social network graph which
embeds the users’ friendship information with connected
edges is registered and stored in the flash devices of the GLIST
system by GraphRegister(). The API also quantizes the vertex
feature vector and chooses appropriate bit-width for edge data
representation. The registered graph will further be used to
make recommendation via GNN algorithms by predicting the
existence of an edge. The GNN-based recommender model,
e.g. PinSage from Pinterest [53] is trained and obtained by
the application developers, and is then registered and kept
in storage via ModelRegister(). It will be later invoked on
requests.

After the model deployment, the users’ clicks on the rel-
evant App are converted to GL queries and sent to the data
center machines. Particularly for the friend recommendation
queries, essentially they belong to typical link predictions over
the social network graph and will be handled by the daemon
process running on the host of the GLIST system. On receiv-
ing the requests, the daemon process calls GraphAnalysis().
To exploit the data reuse between requests and ensure the
request processing latency at the same time, the GL requests
are batched in fixed time windows before being issued to the
computing storage in GLIST ¬. In the computing storage, a
runtime environment is maintained to manage the incoming
link prediction requests. It translates each link prediction
request to primitive analysis commands including a vertex
embedding command that invokes the encoder function and
a prediction command that executes the decoder function.
The link prediction can be obtained after the execution of the
corresponding primitive analysis commands.

In addition, the GLIST runtime also provides optimiza-
tions to exploit the data reuse within the batched requests
and roughly includes two parts: (1) It reorders the primitive
vertex analysis commands that generate flash accesses (i.e.
vertex embedding requests) to explore the graph data reuse
and fits the flash accesses to the flash channel-level paral-
lelism. (2) It groups the reordered primitive vertex analysis
commands into small batches to increase the bandwidth uti-
lization of ways and channels, instead of sequentially handling
each graph analysis command with limited footprint [14, 53].
After the commands are received and handled by the GLIST
runtime, they are further decoded and sent as instructions to
the GLIST processor that eventually executes and accelerates
the graph learning functions. The instructions are served by
the Sampler first, which fetches the feature vectors from the
flash devices ²-³ or the Page Cache directly ´ from the
on-board DRAM. Then, it constructs a larger sub-graph by
merging multiple small sub-graphs obtained from the grouped
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Table 3: GLIST APIs
Category APIs

Graph Update AddEdge, RemoveEdge, AddVertex,
RemoveVertex, UpdateVertex

Graph Registeration GraphRegister, Graph Unregister
Model Registeration ModelRegister, ModelUnregister

Graph Analysis GraphAnalysis, GetAnalysisResult

sampling functions [6, 14, 43]. The newly assembled graph
is further loaded to the on-chip buffers of GLA. When all
the required data are ready, the processing element array is
instructed by the commands to execute the invoked vertex
analysis model. Afterwards, when the feature vectors of the
queried edge’s endpoints are ready, the primitive prediction
function is scheduled onto the GLA to predict the link proba-
bility between target vertices. Finally, the GLA triggers the
GLIST Runtime to collect the results and return the analysis
results to the daemon process via GetAnalysisResult().
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Figure 3: System architecture of GLIST.

4.2 The GLIST Runtime
The GLIST runtime is designed to decode, schedule, and issue
the input requests to flash devices and the GLA. It manages
the incoming requests as commands from the host machine,
and also exploits the locality in between concurrent requests,
and re-schedule the requests to maximize the available local-
ity. To improve the flash bandwidth utility and exploit the
inter-request locality, the GLIST runtime maintains two key
structures, the Page Cache and the Graph Learning Transla-
tion Table, which enable the reuse of graph data and GNN
models fetched from the flash devices in and between consec-
utive requests.

GLIST Page Cache is adopted to exploit temporal data
locality between user requests. It caches the edges, vertex
feature vectors and model data touched by the previously
executed requests. Besides, the intermediate data such as the
embedding vectors of vertices are also cached. We adopted
the Least Recent Use strategy as replacement policy. The
Page Cache works in the process of request response, and
it is also used to hide the latency of operations correlated
to the GNN function deployment stage, e.g. registering new
function models.

Graph Learning Translation Layer, denoted as GL-TL,
is provided to index reusable objects in SSDs including the
graph property data, edge information, and analysis model
parameters. GL-TL replaces the conventional LBA-to-PPN
(logic block address to physical page number) paging used in
commercial SSDs. GL-TL includes three translation tables,
i.e. the Vertex Mapping Table, the Property Mapping Table,
and the Model Mapping Table. The Vertex Mapping Table
records the mapping between the vertex ID and the flash page
which keeps its neighbors. Besides, it also records other meta-
data of each vertex such as the number of adjacent vertices.
Similarly, the Model Mapping Table and the Property Map-
ping Table keep the logical object index and physical block
address. All the tables are kept in the DRAM when GLIST is
activated.

4.2.1 In-storage Graph Learning Request Scheduling

Though the GLIST Page Cache and GL-TL enable the reuse
of graph in between requests, how to group the requests into
batch of concurrently executed commands impacts the effi-
cacy of locality enhancement. When being requested, GNNs
usually at first sample the large graph and operate on certain
sub-graphs. Due to the random sampling strategies, analyzing
a single vertex usually touches several flash pages to fetch
the feature vectors of the sampled sub-graph, which has very
unpredictable locality and sometimes causes a huge waste
of flash bandwidth. However, if multiple analysis requests
are concurrently processed and tactically reordered by the
GLIST runtime, the flash bandwidth utilization will be im-
proved. Nevertheless, due to the limited size, the DRAM in
storage cannot accommodate the whole working set of a large
request batch. Reordering and grouping the requests will help
improve the cache reusability. In this way, multiple groups
are served sequentially to reuse the shared data including
the attribute information and intermediate data of vertices,
because the groups of different requests may overlap with
one another and share the intermediate or the input property
data in the requests. Moreover, the requests in each group are
fused and processed as a batch can better utilize both the flash
bandwidth and the PE array of GLA.

The process of GL requests scheduling is shown in Al-
gorithm 1. To exploit the intermediate data reuse, GLIST
leverages an encoding-decoding manner by splitting the GNN
workflow into vertex embedding phase and prediction phase.
In vertex embedding phase, the intermediate data can be
reused by other analysis requests. For example, as shown in
Figure 1, the latent representation of each user obtained from
this phase can be used to generate any recommendations re-
lated to that user. The operations in the prediction phase, how-
ever, are highly dependent on each specific user request, which
hardly share intermediate data. Therefore, GLIST parses the
requests (Line 3), so that only the primitive vertex embedding
requests are re-scheduled. After re-scheduling, the primitive
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Algorithm 1: Request Scheduling
Input: Graph G, Request Ri, Group Size S
Output: Scheduled Requests Ro, Embedding-Prediction Mapping Table

EP_MT
1 req_mapping_table = dict()
2 par_ri = usr_req_partition(Ri)
3 for user_req← par_ri do
4 if user_req.type == "Edge" then
5 primitive_req_mapping_table =

extract_edge(primitive_req_mapping_table, user_req)
6 else if user_req.type == "Graph" then
7 primitive_req_mapping_table =

extract_graph(primitive_req_mapping_table, user_req)

8 else
9 primitive_req_mapping_table =

extract_vertex(primitive_req_mapping_table,user_req)

10 reordered_primitive_req, primitive_req_mapping_table =
reorder_primitive_req(task_primitive_req, primitive_req_mapping_table)

11 Ro, EP_MT = request_grouping(Con f ig, reordered_primitive_req,
primitive_req_mapping_table)

12 return Ro,EP_MT

requests are reordered, and an embedding-prediction mapping
table (EP_MT) will be used to record the mapping informa-
tion between the re-ordered embedding phase and the intact
prediction phase, so that GLIST can correctly execute the
prediction phase.

Requests decomposition and reordering. The sub-
graphs associated to the GL requests may overlap with each
other to different extent, and contribute to different degree
of locality. Thus, to maximize the temporal data locality in-
between embedding requests that hit the same graph, the
runtime scheduler reorders the primitive requests according
to the affinity of their sampled regions in the graph. Though
there are different categories of reusable data worth exploiting,
the scheduler prioritizes the reuse of intermediate embedding
data over that of input property data. For example, the requests
on graph edge analysis, all begins with the embedding of the
endpoints that can be reused while the latter prediction can be
done independently. Thus, the Edge-level analysis request is
decomposed by the scheduler into two primitive Node-level
Analysis requests and one prediction request. In this way, the
requests in embedding phase can be scheduled to maximize
data locality and the prediction phase of different requests can
reuse the embedding vectors of vertices in the DRAM cache.
As shown in Algorithm 1, the batch of requests is initially
separated into the primitive requests on vertices according
to the requested graphs and the type of requests (Line 2).
Then, the scheduler scans through the requests and reorders
the primitive requests that may hit different sub-graphs (Line
4 — Line 9). Because each primitive request is correlated
to a vertex as the analysis target, estimating the locality in
between requests is to measure the size of overlapping area of
the corresponding vertex sub-graphs, which includes all the
vertices that are n-hops away from the target vertex. Thereby,
in scheduling, the reorder_primitive_req() function is used
to obtain the vertex whose sub-graph share more vertices with
the previous scheduled requests than others. In practice, we
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Input Buffers

Result
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PE PE PE

PE PE PE

PEA

PE PE PE

ARM
Processor GLA

NVMe

...

...
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Flash Chip

Flash Controller

Figure 4: The GLA architecture and its integration to the
hardware system.

implement the function by simply finding the vertex that has
the minimum distance from the previously requested vertex.

Requests grouping. As mentioned above, the sub-graph
obtained by the Sample function for each requested vertex
usually causes random but small-footprint memory access,
which tends to cause low flash bandwidth. In addition, for
most of the GNN models, the bottom layers are witnessed to
contribute less computation overhead than the top layers [6,14,
43]. As a result, a single request hitting a vertex may not fully
utilize the Processing Element (PE) resources of the GLA
especially in the last layer of the GNN models. Therefore,
GLIST batches all the reordered requests obtained from the
request reordering stage into several groups as described in
Line 11 of Algorithm 1. By fusing multiple requests of the
same tasks into a batched task, both the utilization of flash
bandwidth and the GLA are improved.

4.3 In-storage Graph Learning Accelerator

4.3.1 The Accelerator Architecture

Based on the design presented in [27], the Graph Learning
Accelerator presented in Figure 4 is composed of a graph
Sampler, on-chip buffers, and a Processing Element Array
(PEA) to perform graph neural network inference.

The Sampler unit. For attributed graph analysis, the Sam-
pler unit samples the vertices and edges from a large graph
according to the predefined manner, before invoking GNN in-
ference. It supports uniform distribution sampling or other pre-
defined sampling functions [6, 14, 53]. In the sampling stage,
the property data and their connection of the sampled vertices
under request are loaded from flash devices to the DRAM
of the GLIST embedded platform and further to the corre-
sponding on-chip buffers. Besides, the Sampler in GLIST
also supports non-sampling based GNN models [21, 49] by
loading tiled graph sequentially according to the predefined
tiling configuration.

According to the GNN framework introduced in Figure 2.1,
the Combine and Aggregate functions should also be sup-
ported by the GLA. An Processing Element Array (PEA) is
designed to address the matrix operations in Combine func-
tion. Each column of the PEA handles a single dimension
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of the input property for all the input vertices while the PEs
in the same row are dedicated to one single vertex, so that
the PEA structure is independent to the dimension of graph
vertex properties.

To support the Aggregate function, we adopted a full mesh
topology in our design by fully connecting columns of PEs in
the array to achieve high-throughput message passing. Each
PE in the same column broadcasts its data to all other columns
and select data from other PEs’ output according to the control
signal generated by the controller in PEA.

Algorithm 2: Graph Reorganization
Input: Graph G, Hop count h, Degree threshold T d, Center vertex number

threshold Cn
Output: Reorganized Graph

1 important_vertices = Top Cn nodes whose in degree < T d of G
2 for i→ important_vertice do
3 workingset[i] = Sample from workingset[i]
4 end
5 vertex_sequence = []
6 i = 0
7 while workingset is non-empty do
8 Add vertex j that has the maximum intersection with vertex i in

workingset[] to vertex_sequence
9 Remove workingset[i] from workingset

10 i = j
11 end
12 map_table = map()
13 for i→ vertex_sequence do
14 Assign new ID to vertex i and its h hop neighbors
15 Record the mapping information in map_table
16 end
17 new_graph = Construct new graph with G and map_table
18 return new_graph

4.3.2 Graph Reorganization

When analyzing a vertex in a Sampling based graph learning
workflow, its closer neighbors are more likely to be accessed,
which shows the existence of spatial locality in GL work-
loads. However, the property of the vertices usually takes hun-
dreds of bytes or few KB, which is much smaller than a flash
page size and may cause flash bandwidth under-utilization.
Therefore, we designed a heuristic algorithm to re-index the
vertex IDs in a graph to maximize the spatial locality of GL
requests as Algorithm 2 shows. Firstly, the reorganization
algorithm selects the top Cn highest in-degree vertices with
in-degree below the threshold T d as important vertices, where
the threshold T d is used to exclude excessively high degree
vertices since their neighborhood footprint often outsize the
flash page and their locality can hardly be exploited. After
that, it fetches each important vertex’s h hop neighbors as
its working set. To reduce the complexity, the algorithm usu-
ally randomly samples a subset of the true working set (i.e.

Table 4: FPGA Resource Uasge
Module LUT FF BRAM DSP

Flash Controller 44141 30156 80 0
NVMe Interface 8586 11455 28 0
GLA Accelerator 66287 51527 172 514

In Total 136506 117261 293 514
Percent(%) 62.45 26.82 53.76 57.11

sqrt(N) from N vertices in our implementation) to represent
the whole set. Then the important vertices are sorted accord-
ing to the size of overlapping working set with others so that
the potential spatial locality associated to the vertices are kept
in the vertex sequence. Finally, the chosen important vertices
and their corresponding h hop neighbors are assigned new
IDs in sequence.

A tiny example shown in Figure 5 illustrates the graph re-
organization procedure with given parameters: h = 1, Cn = 3,
T d = 0. The procedure chooses three important vertices:
V 5, V 2, and V 1 according to the number of adjacent ver-
tices and their one-hop neighbors are recorded as working-set
respectively, as the shades shown in Figure 5. Then the al-
gorithm sorts the three important vertices according to the
size of overlapping working-set and obtains the sequence:
V 5→V 2→V 1 (V 5’s working set has three common vertices
with V 2’s, and V 2’s working set has two common vertices
with V 1’s). After that, each important vertex and the corre-
sponding working set are assigned new IDs in the previously
sorted order. Specifically, V 5 and its five one-hop neighbors
V 0, V 4, V 2, V 7, and V 9 are assigned new IDs: V 0∼V 5. Then
V 2 and V 1 follows. Finally, the procedure finds the remain-
ing vertex that does not belong to any working set (V 6) and
assigns new ID to it to make sure that all the vertices in the
graph are re-indexed.

5 Evaluation

5.1 GLIST Overall Evaluation
Experiment Setup. The Cosmos Plus OpenSSD platform
was employed for the proposed GLIST system implemen-
tation, and it consists of an XC7Z045 FPGA chip (ARM-
FPGA), 1 GB DRAM, an 8-channel NAND flash interface,
an Ethernet interface, and a PCIe Gen2 8-lane interface. We
implemented the GLA with Chisel [2] and integrated it in the
hybrid ARM-FPGA processor as the major GL processing en-
gine. The hardware project was synthesized and implemented
with Vivado 2016.2 and the design works at 150MHz. Table 4
shows the logic resource usage of our hardware project. The
firmware of the prototype runs on Dual 1GHz ARM Cortex-
A9 core of XC7Z045. The board was connected with the host
server via a PCIe link. We also profiled the prototype system
and built a simulator for scalable evaluation.

We take a set of Node-level, Edge-level, and Graph-level
GL workloads shown in Table 2 as benchmarks. The models
used for benchmark are all quantized to 8bit fixed point. We
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Figure 6: Energy consumption of a single request on different
GL systems.

have the benchmark implemented with GLIST on Cosmos
Plus OpenSSD platform to gain insight into the advantages
of the in-storage graph learning. We compared GLIST with
DGL [45] on a CPU-based platform and a GPU-based plat-
form respectively. The CPU-based platform is equipped with
two Intel Xeon E5-2690 V3 processors and 64 GB DRAM.
The GPU-based platform includes two Intel Xeon E5-2690
V3 processors and an NVIDIA V100 GPU. Both platforms
have all the graphs and GNN models initially stored in a Sam-
sung 970 EVO 1 TB SSD with 3.5 GB/s peak read bandwidth
because the large graphs used in many graph learning applica-
tions can exceed the capacity of the main memory. To evaluate
the different systems, we randomly generated 10,000 graph
learning requests over the graph and measured the average
processing latency and energy consumption.

Performance. The performance of the proposed GLIST-
based GL system is illustrated in Figure 7. It shows 13.2× and
10.1× average speedup compared to the CPU baseline and
GPU baseline, respectively. Particularly, GLIST shows signif-
icant higher performance speedup on GS-Pool and PinSage
which need to sample over the large input graphs. The main
reason is that the random sampling over large input graphs
incurs substantial random accesses to the flash and rather low
flash bandwidth utilization when GS-Pool and PinSage are
deployed on the CPU platform and the GPU platform. We
also measured the flash bandwidth, and it shows only 100
MB/s, which is much lower than the peak bandwidth of the
device and dramatically bottlenecks the computing capability
of CPUs and GPUs accordingly. As a result, the performance
of the CPU platform and the GPU platform is also similar.
In contrast, GLIST with intensive data layout optimization
and intra-request reuse optimization greatly improves the data
reuse and reduces the random accesses over the flash. Thereby,
it benefits most on GS-Pool and PinSage. Different from GS-
Pool and PinSage, GCN and GIN operate on the entire graph
instead of sampling sub-graphs. In this case, the graph will
be accessed sequentially and the flash bandwidth can be fully
utilized. With sufficient data supply from the flash, the GPU
platform with more parallel processing engines shows much
higher performance over the CPU platform according to the
experiment. GLIST takes advantage of the specialized accel-
erator and still outperforms the CPU platform and the GPU
platform given the same flash bandwidth provision.

Energy Consumption. In this experiment, we utilized a
power meter to measure the power consumption of the pro-
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Figure 7: Single node performance of GLIST

posed GLIST system, the CPU-based, and the GPU-based
graph learning systems respectively. Then, we obtained the
energy consumption by calculating the production of the av-
erage power got by power meter and the benchmark execu-
tion time. The resulting energy consumption of the different
benchmark GNN models are illustrated in Figure 6 and the
per-request average power and benchmark time of different
settings are listed in Table 5. It shows that GLIST reduces
the average energy consumption by 98.7% and 98.0% respec-
tively when compared to the CPU-based platform and the
GPU-based platform. The significant energy reduction can
be attributed to both the lower power consumption brought
by the dedicated GLA in GLIST and the much lower exe-
cution time of GLIST as discussed in prior subsection. At
the same time, we also noticed that the GPU-based platform
shows higher energy consumption on PinSage and GS-Pool
over the CPU-based platform. This is mainly caused by the
fact that GPU fails to exploit its massive parallel process-
ing engines due to the massive random access induced flash
bandwidth bottleneck and much higher power consumption
over the CPU-based platform. When the flash bandwidth uti-
lization is improved for GCN and GIN that include more
sequential data accesses, the execution time dominates the
energy consumption in the GPU-based platform. Hence, the
GPU-based platform exhibits lower energy consumption in
these cases.

5.2 The GLIST Optimizations

Experimental Setup. To gain insight into the advantages of
the GLIST optimization including graph reorganization (R),
request scheduling (S), request grouping (G), and caching
(C), we conducted a request generation server to continuously
issue different graph analysis requests to the GLIST system
for evaluating the above optimization strategies. In order to
make the distribution of requests issued by generation servers
closer to the real production system, we first analyze the real-
world request trace from the commercial data center. The
analysis results indicate that the requests have different levels
of locality depending on the services provided by the data
center and the data types accommodated in the warehouse
nodes. Thereby, for simplicity, we introduce the N%-Locality,
denoted as N-L, to describe the degree of locality in between
the batch of requests that arrives in a fixed time window sent
to GLIST. This term represents the N% neighbor vertices and
edges can be reused between any adjacent request on average,
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Table 5: Per-request average power and benchmark time of different platforms.
Node Edge Graph

Dataset OP SL TW OP SL TW OCi OW SF OCi OW SF OM OCo OP OM OCo OP
Model GS-Pool GCN GS-Pool PinSage GCN GIN

PGLIST (W) 25 25 25 26 25 26 25 24 25 26 26 24 25 25 26 25 26 25
TGLIST (ms) 0.05 0.09 0.16 497.25 2252.24 30060.62 0.05 0.06 0.11 0.05 0.05 0.08 23.77 122.09 408.09 22.65 132.94 570.97
PCPU (W) 280 281 280 201 200 - 311 282 280 292 202 288 282 202 219 202 202 219
TCPU (ms) 0.60 3.80 1.03 5159.58 6191.28 - 0.58 1.17 4.37 0.13 0.33 0.68 0.027 0.11 0.32 0.037 0.13 0.42
PGPU (W) 316 316 266 250 - - 316 271 312 296 256 301 225 247 298 242 258 304
TGPU (ms) 0.58 3.79 1.03 506.54 - - 0.58 1.17 4.37 0.13 0.33 0.68 0.0043 0.024 0.079 0.0045 0.027 0.096
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Figure 8: Throughput of GLIST w.r.t. page cache size.

which is defined as the follows:

N-L =
NCommon vertices o f subgraph related to the two requests

NVertices in subgraph related to the latter request
(7)

We randomly generated 10,000 vertex classification re-
quests on the ogbn-papers100M dataset, whose property data
is over 50 GB in size. We shuffled the requests to evaluate
the advantages of the above optimization approaches. First,
as discussed in Section 4.2, the benefits brought by the graph
reorganization (R) and request scheduling (S) optimization
methods are impacted by the cache size and the feature di-
mension. Thereby, in order to evaluate the influence of these
factors on system performance, we evaluate the throughput
of the GLIST system under different Page Cache sizes. After
that, we adjusted the dimension of the vertex property data to
distinguish the gains brought by the graph reorganization and
request scheduling optimizations. Second, due to the locality
level that can influence the performance of request schedul-
ing, we fixed the property size of the vertices to 16 KB and
adjust the locality level of the generated requests to show
the variation of the gain of the request scheduling. Third,
we explored the performance variation of the GLIST system
under the different group size configurations of the GLIST
runtime. Finally, we fixed the Page Cache size and measured
the performance speedup of the GLIST system under differ-
ent combinations of optimization methods compared to the
GLIST system without optimization methods.

Evaluation. Figure 8 shows the throughput of the GLIST
system under the three configurations including GLIST with-
out optimization (N), GLIST with graph reorganization (R),
and GLIST with graph reorganization and request scheduling
(RS). It can be observed that the throughput of the system with
RS and R increases as the Page Cache size increases because
larger cache size can avoid vertex access being dispatched
to flash memory and reduces access latency. Meanwhile, the
GLIST system that adopts reorganization methods R pos-
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Figure 9: Throughput of GLIST w.r.t. property dimension.

sesses higher spatial data locality, which highly exploits the
data reusability in each flash pages and alleviates the penalty
of Page Cache misses, thereby, it performs better than the
system without any optimizations, though the Page Cache
is large. Furthermore, when both the request scheduling and
graph reorganization are adopted in RS configuration, the spa-
tial data locality of each single request can be exploited and
released. In this case, as shown in Figure 8, the GLIST system
with RS methods gains the highest throughput compared to
N and R settings.

Figure 9 illustrates the system throughput of the GLIST
system under the three configurations mentioned in the above
paragraph with respect to various configurations on the prop-
erty dimension. It can be observed that the GLIST with R and
RS optimization methods achieve 19.5% and 24.2% higher
throughput compared to the system without optimization N,
respectively. As the feature dimension increases, a flash page
can only accommodate a few property vectors, which results
in the graph reorganization methods fails to exploit spatial
data locality. Thereby, the system performance with R and
RS optimization methods drops sharply and the RS still out-
performs R because of the gain brought by request schedul-
ing method. In addition, as the dimension of property vector
increases, the performance gap between the R and N op-
timization methods gradually disappears until the property
dimension arrives at the size of a flash page (16 KB). In this
case, the system with request scheduling still maintains 4%
higher throughput than the other settings.

Figure 10 (a) shows the speedup of the GLIST system
with request scheduling methods RS under different locality
level configuration compared to a system without optimiza-
tion methods. The increase of locality level indicates the rise
of data reusability, thus the GLIST system adopting request
scheduling method achieves performance improvement up to
2.65×. As shown in Figure 10 (b), the GLIST system achieves
performance improvement compared to the system without
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Figure 10: (a) Speedup of request scheduling w.r.t. locality level. (b) Performance improvement of different group size in request
grouping. (c) Performance improvement of different optimization enabled.

request grouping optimization with the increase of group size.
The reason can be attributed to two folders: (1) larger group
size can fully utilize the internal bandwidth provided by mul-
tiple flash channels; (2) large group size can fully exploit the
data parallelism and thus making the computation unit of the
graph learning accelerator in high utilization. In addition, the
limitation of internal flash bandwidth makes performance im-
provement slow down when the group size is larger than 200.
Figure 10 (c) shows the performance speedup of the GLIST
system under the combination of various optimization (R, S,
G, and C) compared to the system without optimization (N).
It can be observed that neither the combination of node em-
bedding caching and request grouping (12.94×), denoted as
CG, nor the combination of node embedding caching, graph
reorganization, and request scheduling (12.89×), denoted as
CRS achieves the best performance. This is because CG fails
to exploit the data locality brought the graph reorganization
and request scheduling methods under the high utilization of
flash bandwidth and graph learning accelerator, which results
in the Page Cache hit rate only reaches to 67.86%. Meanwhile,
although CRS can exploit the data locality using graph orga-
nization and make Page Cache hit rate reach to 94.73%. CRS
is unable to fully utilize the flash bandwidth and PE-Array in
GLA. Not only does the CGRS optimization method exploit
the data locality but also fully utilize the available resource,
making the GLIST system achieve the highest performance
improvement.

5.3 Bit-width Scalability Exploration

The bit-width of vertex feature vector and GNN model param-
eters has a great impact on performance, resource overhead,
and energy consumption of the GLIST prototype. To explore
an appropriate setting for quantization, we choose GCN [21]
and Cora [39] as target model and dataset respectively to eval-
uate how the four configurations including floating-point, 32
bit fixed-point, 16 bit fixed point, and 8 bit fixed-point im-
pact on accuracy, latency, energy consumption, and resource
usage. We leverage a static quantization method which enu-
merates every possible configuration at each layer and choose
the best one with the lowest loss. The results are as shown
in Table 6. Though floating-point and 32 bit fixed-point
achieve higher accuracy, the logic resource usage is extremely
high and can hardly be implemented on current FPGA plat-
form. And wider word size makes it hard to enable high-
throughput graph learning services because of high bandwidth

Table 6: Comparison of accuracy and resource utilization
Config. Acc. LUT FF DSP Latency Energy

float-32 79.1% 1891986 192372 1 - -
fixed-32 77.8% 632777 242506 889 - -
fixed-16 77.5% 125253 112730 513 2.74ms 5.7×10−2J
fixed-8 77.1% 66287 51527 514 1.80ms 3.6×10−2J

requirements. For the lower bit configurations, the latency de-
creases by 34.3% and the energy consumption decreases by
36.8% with only a 0.4% loss on accuracy when changing bit
width from 16 to 8. Moreover, the resource usage of 8-bit
GLA is significantly less than another one, making it possible
to implement more GLA cores in the GLIST system to per-
form higher throughput graph learning services. Note that the
quantization method used for evaluation is only a naive one
and the accuracy of low-bit configurations will show better
results when changing to state-of-the-art methods [9, 12, 13].

6 Conclusion

In this paper, we formulated that the conventional GPU+SSD
graph learning platforms are limited by I/O operations after
studying a diverse set of graph learning tasks. We then study
the data locality that exists in flash-based graph learning ap-
plications. To tackle the bottlenecks of conventional graph
learning systems, we proposed an in-storage graph learning
accelerating system, GLIST, which features multiple opti-
mizations proposed based on our observations to fully exploit
data locality. Finally, we implemented a GLIST prototype
with FPGA and showed it achieves 13.2× and 10.1× aver-
age speedup and reduces the power consumption by 98.7%,
98.0% compared to conventional CPU and GPU based graph
learning systems, respectively.
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