
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

Refurbish Your Training Data: Reusing Partially
Augmented Samples for Faster Deep Neural

Network Training
Gyewon Lee, Seoul National University and FriendliAI; Irene Lee,

Georgia Institute of Technology; Hyeonmin Ha, Kyunggeun Lee, and
Hwarim Hyun, Seoul National University; Ahnjae Shin and Byung-Gon Chun,

Seoul National University and FriendliAI
https://www.usenix.org/conference/atc21/presentation/lee

Refurbish Your Training Data: Reusing Partially Augmented Samples
for Faster Deep Neural Network Training

Gyewon Lee1,3 Irene Lee2 Hyeonmin Ha1 Kyunggeun Lee1

Hwarim Hyun1 Ahnjae Shin1,3 Byung-Gon Chun1,3∗

Seoul National University1 Georgia Institute of Technology2 FriendliAI3

Abstract
Data augmentation is a widely adopted technique for improv-
ing the generalization of deep learning models. It provides
additional diversity to the training samples by applying ran-
dom transformations. Although it is useful, data augmentation
often suffers from heavy CPU overhead, which can degrade
the training speed. To solve this problem, we propose data
refurbishing, a novel sample reuse mechanism that acceler-
ates deep neural network training while preserving model
generalization. Instead of considering data augmentation as a
black-box operation, data refurbishing splits it into the partial
and final augmentation. It reuses partially augmented samples
to reduce CPU computation while further transforming them
with the final augmentation to preserve the sample diversity
obtained by data augmentation. We design and implement
a new data loading system, Revamper, to realize data refur-
bishing. It maximizes the overlap between CPU and deep
learning accelerators by keeping the CPU processing time of
each training step constant. Our evaluation shows that Revam-
per can accelerate the training of computer vision models by
1.03×–2.04× while maintaining comparable accuracy.

1 Introduction

Deep learning (DL) is at the heart of modern AI-based ap-
plications, enabling various services such as computer vi-
sion [19, 20, 33, 34], automatic speech recognition [38], and
natural language processing [17, 35]. DL models are trained
by repeatedly adjusting the parameters of the models in or-
der to minimize their loss with regard to training samples.
The trained models must ensure generalization, the ability to
appropriately process previously unseen input data.

Recently, data augmentation has been widely used in deep
neural network (DNN) training to improve generalization of
DL models including image classification [14, 15, 36, 39], ob-
ject detection [15, 36], and automatic speech recognition [29].
By applying several transformations on training samples in

∗Corresponding author.

Augmentation

Augmentation

IMG X1

IMG X2

IMG X

Augmentation IMG X1

IMG X1

IMG X

Partial

Aug
IMG X1

IMG X3

IMG X

(a) Standard Training

Final

Aug

Final

Aug

(b) Echo After Augment

(c) Data Refurbishing (Ours)

Augmentation

Partial

Aug

Figure 1: A high-level introduction of (a) standard training, (b)
data echoing [9, 13] after augment, and (c) data refurbishing
(ours). The dotted rectangles indicate computation saved by
sample reuse.

a random manner [14, 15, 29], data augmentation provides
additional samples to model training and thus helps improve
model generalization. Because data augmentation is a stochas-
tic process, every augmented sample is unique (Figure 1 (a)).
Better model generalization from data augmentation, how-
ever, comes at the cost of expensive CPU operations. This
CPU overhead often causes data augmentation to become a
performance bottleneck of DNN training [4, 9, 13, 30].

To address the CPU overhead from data augmentation, re-
cent works such as NVIDIA DALI [4] and TrainBox [30]
utilize hardware accelerators such as GPUs and FPGAs for
optimizing data augmentation. However, the stochastic nature
of data augmentation makes it difficult to exploit accelera-
tors that are optimized for parallel execution of homogeneous
operations. Data echoing [9,13], on the other hand, tries to re-
duce the amount of computation by splitting training pipelines
into the upstream and downstream pipelines, and reusing pre-
viously prepared samples from the upstream pipeline in the

USENIX Association 2021 USENIX Annual Technical Conference 537

downstream pipeline. However, it considers augmentation as
a black-box operation and splits the DNN training pipeline to
only before or after the augmentation. If the pipeline is split
before data augmentation, the overhead from data augmen-
tation remains unchanged. However, with the other option,
the augmented samples are reused multiple times without
further transformations as shown in Figure 1 (b). This de-
creases the number of unique samples generated from data
augmentation—the sample diversity—to a great degree and
degrades the accuracy of trained models.

To solve this problem, we propose data refurbishing, a
novel sample reuse mechanism for fast DNN training data
preparation. Data refurbishing splits the original data aug-
mentation pipeline into the partial augmentation and final
augmentation according to the given split policy, and reuses
the intermediate results generated from the partial augmenta-
tion (Figure 1(c)). The partially augmented samples produced
from the partial augmentation are cached, reused for a desig-
nated number of times, and renewed to preserve the diversity
of augmented samples. The final augmentation applies the
remaining portion of the full augmentation pipeline to the
cached samples and produces fully augmented samples to be
used for gradient computation.

Although reused, each partially augmented sample under-
goes the final augmentation to produce a diverse set of aug-
mented samples to be used for gradient computation. The
number of unique samples, thus, remains almost the same, pre-
serving the original sample diversity and model generalization.
As such, data refurbishing is able to reduce CPU overhead
from data augmentation with little generalization loss. Reduc-
ing computation overhead while maintaining enough sample
diversity, this approach provides better trade-offs between
training speed and model generalization than data echoing.
We demonstrate these benefits both mathematically and empir-
ically. Such characteristics make data refurbishing especially
useful for exploration tasks, such as hyperparameter optimiza-
tion [10,27], which requires much DNN training with various
configurations.

We design Revamper, a new caching and data loading sys-
tem, to realize data refurbishing. Revamper shares similarity
with systems that adopt intermediate data caching [18,37], but
it differs from such systems in that Revamper addresses new
challenges that are specific to the context of DNN training.
Because with data refurbishing a mixture of cached and non-
cached samples is used for gradient computation, the CPU
processing time may fluctuate depending on the number of
cache misses in each step, which can deteriorate computa-
tion overlap between the CPU and DL accelerators. Revam-
per maintains a constant CPU computation overhead across
epochs with the balanced eviction and within each epoch with
the cache-aware shuffle, where an epoch denotes a complete
pass on the entire dataset. The balanced eviction resolves the
inter-epoch computation skew by evicting cached samples in
a way that the number of cache misses is evenly distributed

R.A.

Layer 1

R.A.

Layer 2

Random

Crop

Random

Horizontal

Flip

Read Decode Format Augment Collate Transfer

Figure 2: An illustration of a RandAugment [15] augmenta-
tion pipline in a typical data preparation pipeline. R.A. Layer
stands for a RandAugment layer.

across epochs. To address the intra-epoch computation skew,
the cache-aware shuffle utilizes information from the cache
store to prepare training samples for each step to make the
number of cache misses uniform over training steps.

Revamper is implemented on PyTorch 1.6 [31], a widely
used DL framework for DNN training. Its interface overrides
the existing PyTorch dataloader so that users can utilize Re-
vamper by giving a few additional parameters such as how to
split the given augmentation pipeline and how many times to
reuse each cached sample. Our evaluations on various com-
puter vision models and datasets demonstrate that Revamper
can reduce training time for DNN models by 1.03×–2.04×
while maintaining comparable top-1 validation accuracy. Al-
though we focused on evaluating Revamper on vision tasks
where data augmentation is most widely used, it is notable
that Revamper can also be applied to other domains such
as speech [29] and language tasks [32], when augmentation
pipelines can be split into multiple transformations.

2 Background

2.1 DNN Training
DNN training "trains" a DL model to perform a certain task
by repeatedly adjusting the model weights with regard to
the given set of training samples. Broadly speaking, training
DNNs consists of two steps: data preparation and gradient
computation. Until a certain termination condition is satisfied
(e.g. target validation accuracy is met), the two steps are
repeated for multiple epochs.
Data Preparation The data preparation step prepares train-
ing data to be fed to the DL model. Figure 2 describes a
typical data preparation procedure, which is generally per-
formed on CPU [8, 31]. The process starts with reading in
the training data residing on a local or a remote storage in a
random order in order to give randomness for each epoch. In
general, each training data entry is a tuple of (xi,yi), where
xi represents the training sample at index i (e.g. an image, an
audio clip, and a text snippet) and yi the corresponding target
of xi (e.g. class and original text). The loaded training data
are decoded and formatted into tensors, multi-dimensional
arrays of numbers used in gradient computation.

538 2021 USENIX Annual Technical Conference USENIX Association

Often, training data undergo random transformations called
data augmentation (§ 2.2) in the next step. This optional step
gives greater variation in the training set and helps train a
more generalized DL model. The decoded and transformed
data are collated into mini-batches before being sent to DL
accelerators such as GPU and TPU. This mini-batching is
necessary to perform stochastic gradient descent or its vari-
ants.
Gradient Computation The gradient computation step
actually trains a DL model by adjusting the model parame-
ters with regard to the gradients computed from the training
data. This is done via forward computation and backward
propagation. Forward computation calculates the loss, or the
deviation of the produced result from the target value, for
the given mini-batch of training samples. Backward propa-
gation traverses the model in a reverse order and recursively
computes the gradient of each layer with respect to the loss.
The model parameters are then adjusted proportional to the
gradients to minimize the loss.

It is important to note that the data preparation and the
gradient computation steps can be overlapped, as they are
typically executed on different hardware. Thus, ideally the
processing time of data preparation can be hidden by that of
gradient computation, and so the former has not been consid-
ered to have a significant impact on the speed of DNN training.
However, recent development of specialized hardware accel-
erators [2, 3] has dramatically reduced the processing time
required for the gradient computation step. Accordingly, the
data preparation step is becoming the bottleneck of DNN
training as pointed out in the recent works [9, 13, 30].

2.2 Data Augmentation

During the data preparation step, several random distortions,
referred to as transformations, are applied to increase the ef-
fective number of training samples and thus to improve the
generalization of DL models. These data transformation steps
are collectively called data augmentation. Data augmentation
is a common technique in many domains of DL, including
computer vision [14, 15, 36, 39], automatic speech recogni-
tion [29] and natural language processing [12, 32].

A data augmentation pipeline is usually a sequence of mul-
tiple transformations. Here, each transformation is referred
to as a layer. For example, RandAugment [15] consists of a
sequence of RandAugment layers (Figure 2), each of which
randomly applies one of the 14 distortions (e.g., shear, rotate,
and solarize) to each sample. AutoAugment [14] searches a
set of effective transformation sequences before training, and
applies a sequence randomly selected from the set in every
training step. As an example of an extreme use of data aug-
mentation, Karas et al. [23] deployed at most 18 consecutive
transformation layers when training generative adversarial
network (GAN) models with limited data.

Multi-layered augmentations can also be seen in other do-

0 2 4 6 8

of Randaugment Layers

0

100

200

300

400

Tr
a
in

in
g
 S

p
e
e
d
 (

im
a
g
e
s
/s

e
c
)

Gradient Computation Speed on GPU

Figure 3: ResNet-50 training speed on ImageNet varying the
number of RandAugment layers. The horizontal line indicates
the gradient computation speed on GPU.

mains. For example, SpecAugment [29], an augmentation
method for automatic speech recognition tasks, can be decom-
posed into three transformation layers (time warp, frequency
masking, and time masking). Such transformations are known
to be computationally expensive, which is why popular speech
recognition frameworks such as DeepSpeech provides an op-
tion that caches and reuses previously augmented samples [7].
Another example is CoSDA-ML [32] in natural language
processing, which translates N random tokens into different
languages. CoSDA-ML can be decomposed into N consec-
utive random transformation layers, each of which selects
a token and translates it to a token in a randomly chosen
language.

3 Motivation

3.1 Overhead of Data Augmentation
Data augmentation improves model generality, but it is often
a bottleneck in DNN training due to its heavy CPU over-
head from the multiple layers of transformations. To analyze
the overhead of data augmentation, we measure the training
throughput of ResNet-50 [19] model, a widely-used DL model
for image classification, using the ImageNet [16] dataset with
an example data preparation pipeline. As for data augmen-
tation, we apply varying number of RandAugment [15] lay-
ers along with the random crop and random horizontal flip
transformations. The number of RandAugment layers (N) is
adjusted from zero to eight to investigate the CPU overhead
from various loads of data augmentation. When N is zero,
only the random crop and random horizontal flip are applied
to training samples. We employ one NVIDIA V100 GPU
and four physical CPU cores for the training, which is similar
to an Amazon Web Service (AWS) p3.2xlarge instance, a
standard cloud virtual machine used for DNN training.

Figure 3 plots the measured throughput of data preparation
pipelines with different number of data augmentation layers.
When only the random crop and flip are applied (N = 0), the

USENIX Association 2021 USENIX Annual Technical Conference 539

throughput of data preparation exceed that of gradient compu-
tation on GPU, making the data preparation step completely
overlap with GPU operations. On the other hand, when the
number of RandAugment layers is set to 2, which is known to
produce the highest validation accuracy when training ResNet-
50 on the ImageNet dataset [15], the DNN training process is
bottlenecked by the data preparation. This problem becomes
more severe as the number of data augmentation increases and
the CPU overhead from data augmentation becomes heavier.
From the result, we observe that the CPU overhead from data
augmentation can be too large to be fully overlapped with the
gradient computation, and thus data augmentation can be the
main bottleneck in DNN training process.

3.2 Limitations of Existing Approaches

As the data preparation step is becoming the bottleneck for
DNN training, there has been effort to reduce this overhead.
However, due to the stochastic nature of data augmentation,
such effort has failed to efficiently reduce the CPU overhead
introduced by data augmentation pipelines.
Utilizing Hardware Accelerators Recent works such as
NVIDIA DALI [4] and TrainBox [30] leverage hardware
accelerators like GPUs and FPGAs for data augmentation.
Unlike the gradient computation, which applies identical and
deterministic computations to each training sample, data aug-
mentation applies stochastic operations to each sample in a
random fashion. Hence, it is difficult for data augmentation
to efficiently utilize such hardware accelerators, which are
optimized for massive parallel execution of homogeneous
operations [9]. In addition, because such accelerators are fre-
quently used for gradient computation, this approach may
make the data preparation and gradient computation not over-
lapped.
Data Echoing Data echoing [9, 13] splits DNN train-
ing pipelines into the upstream and downstream pipelines,
and reuses previously produced samples from the up-
stream pipeline in the downstream. For example, if we
split the pipeline in Figure 2 between Format and
Augment operations, the upstream pipeline would be
Read-Decode-Format and the downstream pipeline would
be Augment-Collate-Transfer. This approach is useful
when the deterministic part of the data preparation pipeline,
such as I/O from a remote storage, is the bottleneck. However,
data echoing becomes less effective when stochastic data aug-
mentation is the slowest part. With data echoing, the entire
data augmentation pipeline is considered as a black-box oper-
ation, and so the samples are reused either before or after the
augmentation process. If a sample is reused before the data
augmentation, the reused sample needs to be re-augmented,
and thus the overhead from data augmentation remains the
same. Or, when fully augmented samples are simply reused
for gradient computation, the number of unique augmented
samples significantly decreases. As a result, data echoing fails

to reduce the CPU overhead from data augmentation without
severely harming the generalization of trained models. We
further demonstrate this limitation in § 7.

Our observation suggests that it is necessary to devise
a mechanism to reduce the computation overhead of CPU-
heavy data augmentation techniques, while preserving gener-
alization of the model obtained by data augmentation.

4 Data Refurbishing

We propose data refurbishing, a simple and effective sample
reuse mechanism for input pipelines of DNN training that
alleviates CPU computation for data augmentation while pre-
serving the generalization of trained models. Data Refurbish-
ing caches and reuses partially augmented samples generated
from the partial augmentation, which consists of the first few
transformations in the full augmentation pipeline. The rest of
the augmentation pipeline—the final augmentation—is ap-
plied to the partially augmented samples from the cache in
order to produce fully augmented samples. Reusing partially
augmented samples reduce CPU computation while further
transforming them with the final augmentation maintains the
sample diversity obtained by data augmentation.

Data refurbishing introduces two additional configurations,
the reuse factor and the split policy. The reuse factor rep-
resents how many times to reuse each cached sample, and
the split policy determines how to split the full augmentation
pipeline into the partial and final augmentations. Note that
configuring Revamper is simple since its configuration space
is small. The reuse factor is an integer that is typically smaller
than five, and the number of split strategies, which is identical
to the number of augmentation layers, does not exceed twenty
even in extreme cases [23]. Applying data augmentation with-
out reusing data—the standard data augmentation—and data
echoing are both special cases of data refurbishing, as will be
explained later in this section.

Data refurbishing can reduce the CPU computation re-
quired for data augmentation with minimal loss of the gen-
eralization of the trained model, given that the final augmen-
tation provides enough sample diversity. In the rest of this
section, we mathematically explain how data refurbishing
preserves the sample diversity produced from the standard
data augmentation.
Problem Formulation Let X and X ′ denote the sam-
ple space before and after augmentation, respectively. An
augmentation A can then be represented as a finite set of
functions such that A := { f1, f2, . . . , f|A|} for ∀i fi : X →X ′.
Note that, in the standard data augmentation, we randomly
choose fi ∈ A and produce an augmented sample fi(x) for
a given input sample x ∈X in every epoch. Then, the par-
tial augmentation AP and the final augmentation AF of A
can also be represented as some augmentations that satisfy
{ fF ◦ fP| fP ∈ AP, fF ∈ AF} = A. In the rest of this section,
we make the following assumptions to simplify our analysis.

540 2021 USENIX Annual Technical Conference USENIX Association

Assumption 1. Discrete Uniform Distribution
For an augmentation A, the probability of choosing f ∈ A

is uniform.

∀ f∈A P(f) =
1
|A|

Assumption 2. Balanced Eviction
All the cached samples are reused exactly r times before

being evicted from the cache.

Assumption 3. Uniqueness of Composed Augmentation
Any composition of partial and final augmentation functions
always produces a unique fully augmented sample.

∀ fP,gP∈AP ∀ fF ,gF∈AF ∀x∈X

((fP 6= gP) or (fF 6= gF))→ (fF ◦ fP)(x) 6= (gF ◦gP)(x)

Now let A(x) denote the set of all possible augmented
samples produced by an augmentation A given an in-
put sample x. Then, Assumption 3 implies that A(x) =
{ f1(x), f2(x), . . . , f|A|(x)} and |AP|× |AF |= |A|= |A(x)|.

Under the above formulation, applying data refurbishing
for k epochs with reuse factor r to an augmentation A for
an input sample x ∈X can be represented as a sampling
process such that the samples are taken r times from AF(y)
for every y sampled k

r times from AP(x), respectively. Given
k, data refurbishing can have any 1≤ r ≤ k by the definition.
Note that data echoing and the standard data augmentation
are both the special cases of data refurbishing, since data
echoing is equivalent to data refurbishing with ((AF = {I})
and (r > 1)), and the standard data augmentation is equivalent
to data refurbishing with ((AF = A) or (r = 1)), where I
denotes the identity function.

Therefore, the following theorem holds:

Theorem 1. Expectation of Unique Samples

E(U) = |A|

(
1−
(

1− |AF |
|A|

+
|AF |
|A|

(
1− 1
|AF |

)r) k
r
)

where U denotes the number of unique samples produced by
applying data refurbishing to A given a single input sample.

The proof is given in the supplemental material.
In Theorem 1, E(U) is maximized when the standard data

augmentation (r = 1 or |AF |= |A|) is applied, and minimized
when data echoing (r > 1 and |AF | = 1) is applied. The ex-
pected number of unique samples of data refurbishing lies
between the two.

Figure 4 visualizes the impact of r and log|AF |
log|A| to E(U)

E(U∗)
where E(U∗) denotes the expected number of unique samples
of the standard data augmentation. In this figure, we assumed
the same data augmentation pipeline used in our evaluation
(§ 7), which consists of two RandAugment layers followed by
a random crop and a random horizontal flip layers. Intuitively,
log|A| means the number of transformations comprising the

Figure 4: The normalized expected number of unique sam-
ples. The x-axis represents reuse factor r, y-axis log |AF |

log |A| , and
z-axis the normalized expected number of unique samples
with respect to that of the standard data augmentation, E(U∗).
Intuitively, the y-axis means the ratio of the number of trans-
formations of final augmentation to that of full augmentation
pipeline.

data augmentation pipeline, since |A| grows exponentially as
the number of transformations increases. Therefore, the y-
axis means the ratio of the number of transformations of final
augmentation to that of full augmentation pipeline, assuming
each transformation can produce the same number of unique
outputs from a given input.

As the figure shows, data refurbishing is robust to the
growth of reuse factor r given that log|AF |

log|A| is greater than

0.4. However, when log|AF |
log|A| decreases below 0.4, the expected

number of unique samples decreases sharply as r grows. This
suggests that we can save computation without significant loss
of the model generalization as long as the final augmentation
provides sufficient sample diversity.

Based on the above analysis, the goal of a good split policy
is to find a split where the final augmentation provides suffi-
cient sample diversity above some threshold with the minimal
amount of computation. To do so, it is most desirable for
the final augmentation to consist of the transformations that
provide high sample diversity with little computation. In our
evaluation setup in § 7, for example, one RandAugment layer
is computationally heavy but can produce only 14 possible
augmented samples from an input sample; on the other hand,
random crop (padding = 3) along with random horizontal
flip can produce a total of 98 augmented samples from an
input sample with fewer CPU cycles.

However, if this property does not hold (i.e., the last few lay-
ers do not provide sufficient diversity or are computationally
heavy), achieving both fast training speed and high accuracy

USENIX Association 2021 USENIX Annual Technical Conference 541

with data refurbishing might be difficult. In this case, one can
consider reordering transformations inside the augmentation
pipeline given that the transformations are interchangeable or
such reordering puts negligible effect on augmented samples.

5 Revamper Design

We design Revamper, a new data loading system that effi-
ciently implements data refurbishing. It incorporates data
refurbishing to existing data preparation procedures of DL
frameworks such as PyTorch [31] and TensorFlow [8] by
replacing existing data loading systems such as PyTorch dat-
aloader and tf.data [28].

In traditional data loading systems, all the samples in each
epoch and step undergo the same data-preparation pipeline.
However, with data refurbishing, a mixture of cached and non-
cached samples are used to prepare fully augmented samples
for the gradient computation. Because cached samples only
need the final augmentation to be further applied whereas
non-cached samples require both partial and final augmen-
tation, the amount of computation needed for each step and
epoch may fluctuate with the number of cache misses. This
then causes fluctuation in the CPU processing time. However,
the gradient computation time on DL accelerators is consis-
tent throughout the training process, both with and without
data refurbishing. For this reason, the CPU processing time
may not be effectively overlapped with the DL accelerator
processing time when data refurbishing is implemented in a
naïve fashion.

Revamper overcomes this challenge by keeping the number
of cache misses constant both across epochs and within each
epoch, which effectively makes the CPU processing time for
each mini-batch consistent throughout the training. First, the
balanced eviction strategy evenly distributes the number of
cache misses across epochs while ensuring that every cached
sample is used for gradient computation for the same number
of times. Within an epoch, the cache-aware shuffle leverages
the cache information to choose training samples for mini-
batches in order to keep the CPU computation time constant
for each step.

We explain broader contexts where Revamper can be used.
Revamper is applicable to both local (i.e., only one DL accel-
erator is used) and distributed (i.e., multiple DL accelerator or
machines are used) training environments, because indepen-
dent Revamper processes are created for each DL accelerator
or machine. However, it assumes that training data is accessi-
ble from the local disk of each machine, which requires the
size of training data that are assigned to each machine to be
smaller than the capacity of its local disks. Hence, Revamper
currently does not consider network overhead from fetching
training data from a shared cloud storage. For such environ-
ments, one can consider using distributed caching systems for
DNN training [25] along with Revamper.

 Main Process

 Worker Process

Batch

Shuffler

Request

Queue

Mini-batch

Indices

Data Store

0
. . .

1 N-1

Original Original Original

Fully Augmented
Samples

Gradient

Calculator

Original
Samples

Read & Decode
& Formatting

CollateAugment

Figure 5: The architecture of a traditional data loading system
(PyTorch dataloader).

5.1 Revamper Overview

Before going into Revamper, we briefly explain the existing
data loading systems with the architecture of PyTorch dat-
aloader as an example. Figure 5 explains the architecture of
PyTorch dataloader, which consists of one main process and
one or more worker processes. Each training sample is typi-
cally represented with a sequential integer spanning from 0
to N−1, where N denotes the total number of samples. The
order of training samples within each epoch is decided by the
batch shuffler, which randomly chooses the sample indices
for mini-batches. The mini-batch indices are transferred to
a worker process. After receiving them, the worker process
reads, decodes, and formats the corresponding training sam-
ples from the data store. The read samples are then augmented
following the user-given augmentation pipeline, making fully
augmented samples. The augmented samples are then collated
to make a batched sample and transferred to DL accelerators
for gradient computation.

The architecture of Revamper (Figure 6) differs from those
of traditional data loading systems, mainly in that (1) it has a
cache store that stores partially augmented samples in mem-
ory or on disk and (2) its main process maintains a separate
shuffler that selects the indices to be evicted from the cache.
In addition, Revamper adopts the balanced eviction and cache-
aware shuffle to stabilize the data preparation time of each
mini-batch. Even with such modifications, the epoch bound-
aries are still intact, meaning that all the original training
samples are used exactly once within each epoch of DNN
training.
Data Preparation Procedure Figure 6 illustrates the end-
to-end data preparation procedure of Revamper in detail. (1)
Before starting each training epoch, the evict shuffler selects
the samples that need to be evicted from the cache store, fol-
lowing the balanced eviction strategy. By doing so, Revamper
balances the number of non-cached samples across epochs
while ensuring that each cached sample is reused for the same
number of times. (2) The cache store then invalidates the
selected samples. (3) After the eviction, the main process

542 2021 USENIX Annual Technical Conference USENIX Association

 Main Process

 Worker Process

Batch

Shuffler

Evict

Shuffler

Cache Store

0

. . .

1 N-1

Partially
Augmented

Evicted
Partially

Augmented

Cached
Samples

Request

Queue

Mini-batch

Indices

Data Store

0
. . .

1 N-1

Original Original Original

Hit

Miss

New
Partially Augmented

Samples

Fully Augmented
Samples

Gradient

Calculator

Original
Samples

Indices

To be evicted1

3

5

4

6 8

8

7

9

2

Read & Decode
& Formatting

Collate

Augment Augment

Augment
Read

& Decode

Figure 6: The architecture of Revamper and its end-to-end
data preparation procedures.

allocates mini-batch indices to each worker sampled from
the batch shuffler. When sampling mini-batch indices, the
batch shuffler adopts the cache-aware shuffle in order to make
the CPU processing time of each mini-batch stable. (4) Each
worker process fetches mini-batch indices from the request
queue and reads the corresponding cached samples from the
cache store. (5) For the missed samples, the worker process
reads the original training samples from the data store and
(6) applies the partial augmentation. (7) The worker process
then stores the new partially augmented samples in the cache
store in order to reuse them in the future epochs. (8) Once all
the partially augmented samples for the requested indices are
ready, the worker process applies the final augmentation to
them. (9) Finally, the fully augmented samples are collated
and transferred for the gradient computation.
Cache Store The cache store provides an interface similar
to that of key-value stores. It supports get(I), put(I, S),
and remove(I) methods, where I denotes an index and S
denotes a partially augmented sample to be cached. Partially
augmented samples are either stored in memory or on disk
according to the user-given store_disk. If the store_disk
is turned off, partially augmented samples are stored in an
in-memory hash map that maps indices and the corresponding
cached samples. Hash maps are appropriate for DNN training,
because it provides O(1) data access by sacrificing perfor-
mance of range access (i.e., reading all the indices from k1 to
k2), which is not necessary during DNN training.

Storing partially augmented data on disk is useful when
training models with a large dataset whose size exceeds a
hundred of GBs [16]. Revamper performs disk I/O in one of
the following two ways depending on the size of partially aug-
mented samples. If the size of each sample is below threshold

2 2 2 2 2 2Epoch 1

1 1 1 1 1 1Epoch 2

Epoch 3 0 0 0 0 0 0

Epoch 4 2 2 2 2 2 2

Epoch 1

Epoch 2

Epoch 3

Epoch 4

(a) Reference Count (b) Balanced Eviction

Cached index Non-Cached index

Epoch 5 1 1 1 1 1 1 Epoch 5

Figure 7: An example distribution of cache misses with (a)
reference count algorithm and (b) the balanced eviction.

(16KB by default), Revamper batches multiple I/O requests
to reduce system call overhead. To batch write requests, the
cached samples are firstly written to in-memory write buffers
and flushed to shared log files when the buffers are full. Re-
vamper also batches multiple sample reads within a mini-
batch by packing multiple read requests into a single system
call using the AIO library of Linux [26]. The cache store
periodically clears up invalidated data through background
compaction [5], which makes new log files that contain only
the valid samples. If the size of each sample is large enough,
on the other hand, system call overhead becomes negligible.
In this case, Revamper stores each sample in a separate en-
coded file in order to avoid compaction overhead.

5.2 Balanced Eviction
The balanced eviction is a cache eviction policy that maintains
an even spread of computation overhead across the training
epochs as well as ensures that each sample is reused for the
same number of times. Preparing data from the non-cached
samples requires more computation than doing so from the
cached samples, because the former needs both the partial
and final augmentations to be applied. The computation over-
head of each epoch may thus vary depending on the number
of cache misses in the epoch when a naïve design of data
refurbishing such as the reference count algorithm is used.
The reference count algorithm maintains the remaining ref-
erence for each cached data and evicts the cached data when
a sample’s corresponding reference becomes zero. Although
this algorithm ensures that each sample is reused for the same
number of times, this approach results in uneven distribution
of computation overhead across epochs. As shown in Fig-
ure 7 (a), some epochs need to prepare a large number of
non-cached samples while others do not, because the remain-
ing references of all the indices decrease at the same rate
and become zero at the same time. Such uneven distribution
of non-cached samples increases the blocking time between
CPU and DL accelerators. Because computation required for

USENIX Association 2021 USENIX Annual Technical Conference 543

Time

Time

CPU

DL

Acc.

CPU

DL

Acc.

(a) Without Cache-Aware Shuffle

(b) With Cache-Aware Shuffle

Data Preparation Gradient Computation

Wait

Wait

Figure 8: An example illustration of CPU and DL accelerator
utilization with and without the cache-aware shuffle. The
bidirectional arrow blocking time caused by uneven mini-
batch processing time. Each block represents the computation
time for corresponding batches.

data augmentation is skewed to a small number of epochs, DL
accelerators may wait CPU in such epochs and vice versa in
the other epochs.

To solve this problem, we propose the balanced eviction.
At the start of each training epoch, the evict shuffler samples
N
r indices to be evicted, where N denotes the number of train-
ing samples and r denotes the reuse factor. In addition, the
shuffler samples the indices without replacement and repeats
the same sampling order until the end of training process. By
adopting this strategy, the balanced eviction evenly distributes
the computation overhead across epochs after the first epoch,
by evicting the same number of partially augmented samples
in each epoch. It also ensures that except for the the first r
epochs, each cached sample is reused exactly r times. Figure 7
(b) illustrates an example of the data loading procedure with
N = 6 and r = 3. After the first epoch, two (N/r = 2) samples
are evicted from the cache and replaced with new partially
augmented samples. All the cached samples are also evicted
every three (r = 3) epochs, because the evict shuffler always
selects indices in a same order.

5.3 Cache-Aware Shuffle
While the balanced eviction effectively addresses the inter-
epoch computation skew, the intra-epoch computation skew
may still slow down the training speed. Figure 8 (a) illustrates
a worst-case example that can happen when the batch shuffler
does not adopt the cache-aware shuffle. The non-cached in-
dices are skewed to the first and the third mini-batch, whereas
the second batch only contains cached indices. Because the
processing time of the data preparation fluctuates while that
of the gradient computation remains the same, this results in
unnecessary blocking between CPU and DL accelerators.

The cache-aware shuffle solves this problem by leveraging
cache information when deciding the indices of the samples
for each mini-batch. Because cached samples are evicted
only before starting each training epoch, Revamper knows the
indices of the evicted samples by the beginning of each epoch.
By utilizing this knowledge, the cache-aware shuffle prepares
mini-batches in a way that each mini-batch has the same ratio
of cached to non-cached samples. Figure 8 (b) shows that
the cache-aware shuffle makes the processing time for all
mini-batches stable and helps avoid blocking time between
CPU and DL accelerators. We ensure the randomness of the
mini-batch indices by randomly sampling from both non-
cached indices and cached indices. This does not adversely
affect the validation accuracy of trained models as shown
in § 7.4, because the training order has little impact on the
model accuracy as long as it is random [25].

6 Implementation

We implement Revamper with 2000+ lines of code based on
PyTorch 1.6 [31] with Python 3.7. Revamper overrides the
existing PyTorch dataloader with almost identical interface
except for additional parameters such as the reuse factor, the
final and partial augmentation, and whether to store cached
samples to disk or not. To use Revamper, users only need to
override the existing torch.utils.data package with our
code.

Due to the global interpreter lock (GIL) of Python [11],
Revamper workers are executed on separate processes, which
makes it hard to share cached samples among the workers if
the samples are stored in memory. As a workaround, Revam-
per puts cached samples inside the main process and transfers
them to necessary workers. Such inter-process tensor trans-
fer may cause frequent shared memory allocation, because
PyTorch’s multiprocessing.queue puts tensors inside the
shared memory region when they are transferred between pro-
cesses, To avoid this problem, Revamper preallocates buffers
in the shared memory region and reuses those buffers for
inter-process communications.

7 Evaluation

Environment We perform our evaluation on a dedicated
training server equipped with 2×Intel Xeon E5-2695v4
CPU (18 cores, 2.10GHz, 45MB Cache), 256GB DRAM, a
NVIDIA V100 GPU, and a Samsung 970 Pro 1TB NVMe
SSD. We adjust the ratio of the number of CPU cores to the
number of GPUs by setting different numbers of CPU cores
using a docker container [6] and fixing the number of GPUs
to one. By default, we set the CPU-GPU ratio to four, which
effectively emulates the ratio in AWS P3 instances [1], but
we also evaluate Revamper on different CPU-GPU ratios.
Our evaluation is done on PyTorch 1.6. We replace PyTorch

544 2021 USENIX Annual Technical Conference USENIX Association

0 100 200 300

Training Throughput (images/sec)

76.6

76.8

77.0

77.2

77.4

77.6

77.8

V
a
li
d
a
ti

o
n
 A

c
c
u
ra

c
y
 (

%
)

Standard

Revamper

Simplified

Echoing

Figure 9: Training throughput and model validation accuracy
of ResNet50 trained on ImageNet with diverse settings using
RandAugment. Different points of the same setting represent
the results under different reuse factors (2 or 3).

dataloader with Revamper for data preparation.
DNN Models and Datasets We evaluate Revamper on sev-
eral DNN models for image recognition and on two datasets,
ImageNet [16] and CIFAR-10 [24], which represent large
and small datasets respectively. We train ResNET-50 [19] on
ImageNet. On CIFAR-10, we train VGG-16 [33], ResNET-
18 [19], MobileNet [20], and EfficientNet-B0 [34].
Baselines We evaluate data refurbishing implemented in
Revamper against the following baselines.

• Standard: The standard setting represents the canonical
DNN training with full augmentation without any reuse
mechanism. The accuracy of the model trained under this
setting serves as the target accuracy for the other data
reusing mechanisms.

• Data Echoing: We evaluate data echoing [9, 13] with
echo-after-augment strategy, in which each fully aug-
mented sample is reused r times, where r denotes the user-
given reuse factor. We do not evaluate the other two strate-
gies, echo-before-augment and echo-after-batch,
since they are less relevant and/or not a good baseline.
When the training data resides in local SSDs, data echoing
with echo-before-augment strategy is almost identical
to the standard setting with additional encoding and disk
write. echo-after-batch is reported to result in a lower
accuracy with little training throughput improvement [13].
To make a fair comparison, we keep the size of the cache
store for data echoing equal to that of Revamper.

• Simplified: In this setting DNN models are trained with
no reuse mechanism but with fewer transformation layers
compared to those of the standard setting. This approach
is a baseline optimization for reducing the computation
overhead of data augmentation by simply removing one or
more transformations.

We use the identical model hyperparameters (e.g., the num-
ber of training epochs, learning rate, batch size, and optimizer)
for each setting.

We do not evaluate a baseline without augmentation, since
random crop and random flip are considered as the norm for
training computer vision models. Such baseline only results in
a lower accuracy with little improvement on training through-
put compared to the simplified setting, as training models
without augmentation has been reported to result in a signifi-
cantly lower accuracy [30], and the simplified setting already
makes training throughput bounded by GPUs.
Augmentation and Split Policy We apply RandAug-
ment [15] and AutoAugment [14], the two state-of-the-art
data augmentation techniques, accompanied with the random
crop and random horizontal flip. After § 7.2, we use Ran-
dAugment for the data augmentation methodology.

In most of the experiments except for § 7.2, we use a single
split policy: RandAugment or AutoAugment layers for the
partial augmentation, and the rest of augmentation (i.e., ran-
dom crop and random horizontal flip) for final augmentation.

7.1 Comparison with Baselines

ImageNet Training with RandAugment We first evaluate
the training throughput and the top-1 accuracy of ResNet-50
trained on ImageNet dataset with RandAugment using Re-
vamper and the other baselines. We follow the model hyper-
parameters (or configurations) from [15]. We set the number
of RandAugment layers (N) to 2 and the distortion magni-
tude (M) to 9. Then we have a total of four transformation
layers, including random crop and flip layers. We also follow
the original paper when configuring other hyperparameters,
such as the learning rate per batch size, the optimizer and its
configurations, and the number of total epochs. We evaluate
Revamper and data echoing with two different reuse factors,
2 and 3. For the simplified setting, we use a simpler data aug-
mentation pipeline consisting of a random crop and a random
horizontal flip layers. We execute three runs for each point
and report the averaged results.

As shown in Figure 9 (a), when training ResNet-50, Re-
vamper achieves top-1 accuracy comparable to the accuracy
of 77.82% under the standard setting with better training
throughput. With the reuse factor of 2, 77.81% accuracy is
achieved with 1.59× training speed-up. With the reuse factor
increased to 3, the training throughput improves by 2.04×
while maintaining a comparable accuracy of 77.77%. On the
other hand, data echoing fails to achieve comparable valida-
tion accuracy, having only 77.37% and 76.93% top-1 accu-
racy for the reuse factor of 2 and 3, respectively. The result
demonstrates that Revamper is beneficial over data echoing
in that Revamper can maintain comparable accuracy to that
of the standard setting, whereas data echoing cannot avoid ac-
curacy degradation even with the smallest reuse factor 2. For
example, Revamper with the reuse factor 3 provides 0.84%
validation accuracy improvement compared to data echoing
with the same reuse factor.

The result also shows that Revamper provides better trade-

USENIX Association 2021 USENIX Annual Technical Conference 545

0 2000 4000 6000 8000

Training Throughput (images/sec)

93.5

94.0

94.5

95.0

95.5

V
a
li
d
a
ti

o
n
 A

c
c
u
ra

c
y
 (

%
)

(a) VGG16

Standard

Revamper

Simplified

Echoing

0 2000 4000 6000 8000

Training Throughput (images/sec)

94.5

95.0

95.5

96.0

96.5

(b) ResNet-18

0 2000 4000 6000 8000

Training Throughput (images/sec)

92.0

92.5

93.0

93.5

94.0

(c) MobileNet-V1

0 2000 4000 6000 8000

Training Throughput (images/sec)

91.5

92.0

92.5

93.0

93.5

(d) EfficientNet-B0

Figure 10: Training throughput and top-1 validation accuracy of DNN models trained on CIFAR-10 using RandAugment.
Different points of the same setting represent measurements under different reuse factors (2 or 3) for Revamper and data echoing
and under different numbers of removed transformation layers (1 or 2) for the simplified setting.

0 2000 4000 6000 8000

Training Throughput (images/sec)

93.5

94.0

94.5

95.0

V
a
li
d
a
ti

o
n
 A

c
c
u
ra

c
y
 (

%
)

(a) VGG16

Standard

Revamper

Simplified

Echoing

0 2000 4000 6000 8000

Training Throughput (images/sec)

94.5

95.0

95.5

96.0

(b) ResNet-18

0 2000 4000 6000 8000

Training Throughput (images/sec)

92.0

92.5

93.0

93.5

(c) MobileNet-V1

0 2000 4000 6000 8000

Training Throughput (images/sec)

91.5

92.0

92.5

93.0

(d) EfficientNet-B0

Figure 11: Training throughput and top-1 validation accuracy of DNN models trained on CIFAR-10 using AutoAugment.
Different points of the same setting represent the results under different reuse factors (2 or 3).

off points between training throughput and accuracy than data
echoing. For example in ResNet-50, compared to data echo-
ing with the reuse factor 2, Revamper with the reuse factor
3 provides faster training throughput (299.66images/sec vs.
285.25images/sec) and better validation accuracy (77.77%
vs. 77.37%).

The simplified setting achieves the worst validation accu-
racy with the training throughput similar to that of Revamper
with the reuse factor 3, demonstrating that naïvely removing
transformations from the pipeline does not provide a good
trade-off between training throughput and accuracy.
CIFAR-10 Training with RandAugment Next, we
present the performance of our evaluation of training mod-
els on a small dataset. We set the number of RandAugment
layers (N) to 2 and the distortion magnitude (M) to 10. Same
as ImageNet training, we evaluate data refurbishing and data
echoing with two reuse factors, 2 and 3. For the simplified
setting, we evaluate two different augmentations: one with
random crop and random horizontal flip and the other with
an additional RandAugment layer. We execute three runs for
each point and report the averaged results.

The evaluation results are summarized in Figure 10. For
VGG-16 (Figure 10 (a)) and MobileNet-V1 (Figure 10 (c)),
Revamper achieves 1.42×–1.73× speed-up while maintain-
ing validation accuracy comparable to the standard setting.
However, for ResNet-18 (Figure 10 (b)) and EfficientNet-B0
(Figure 10 (d)), Revamper does not show significant train-

ing throughput improvement, exhibiting only 1.03×–1.08×
speed-up. This is because these models require more GPU
computation time for the gradient computation, and so the
training process is bottlenecked by the GPUs rather than the
CPUs. Such results suggest that Revamper is beneficial only
when DNN training tasks are CPU-bound, but we predict
that more training tasks will benefit from Revamper in near
future considering rapid performance improvement of DL
accelerators [2, 3].

Although data echoing and the simplified setting show
an improved training throughput, their validation accuracy
deviates much from that of the standard setting. Figure 10 also
shows that at many points Revamper demonstrates both higher
accuracy and faster training throughput compared to those of
data echoing and the simplified setting. Likewise, Revamper
provides better trade-offs between training throughput and
accuracy than the other baselines.
CIFAR-10 Training with AutoAugment We then evaluate
DNN models trained with AutoAugment [14] on CIFAR-10.
We use the same configuration we used in the RandAugment
evaluation except for the augmentation method. For the sim-
plified setting, we evaluate a data augmentation pipeline with
random crop and random horizontal flip, since we cannot
manually adjust the number of layers once the policy is found
by AutoAugment. We execute three runs for each point and
report the averaged results.

Figure 11 demonstrates the results. Compared to the stan-

546 2021 USENIX Annual Technical Conference USENIX Association

0 1 2 3 4

of Layers in the Final Augmentation

4000

4500

5000

5500

6000

6500

(a) Training Throughput(img/sec)

0 1 2 3 4

93.3

93.4

93.5

93.6

93.7

(b) Validation Accuracy(%)

Figure 12: The training throughput and the top-1 validation
accuracy for different split policies (MobileNet-V1 on CIFAR-
10).

dard setting, Revamper shows 1.08×–1.75× speed-up while
achieving comparable top-1 accuracy within ±0.16% range.
Similar to the RandAugment evaluation, models that require
less GPU computation (VGG16, MobileNet) has shown
greater training throughput gain compared to the models
(ResNet-18, EfficientNet-B0) that need heavy GPU compu-
tation. Revamper again has better trade-off points between
training throughput and accuracy compared to data echoing
and the simplified setting.

7.2 Augmentation Split Policy

We evaluate and analyze the trade-offs between training
throughput and accuracy for different split policies. The final
augmentation contains the last one to three transformation
layers of the RandAugment pipeline from Figure 2. Figure 12
summarizes how the number of final augmentation layers af-
fects training throughput and accuracy. Training throughput
decreases as the number of the transformations in the final
augmentation increases due to heavier CPU overhead. On the
other hand, the top-1 accuracy peaks when the final augmen-
tation consists of two transformations and does not increase
with additional transformations. This is because the final aug-
mentation with two transformations provides enough sample
diversity. As we describe in § 4, once enough sample diversity
has been achieved, further providing sample diversity does
not significantly improve the model generalization but only
degrades the training throughput.

7.3 CPU-GPU Ratio

We evaluate the training throughput change of training
MobileNet-V1 on the CIFAR-10 dataset and ResNet50 on the
ImageNet dataset with CPU-GPU ratios varying from two to
six. As summarized in Figure 13, the training throughput of
Revamper scales well upon the increasing number of CPUs,
as long as it is not bottlenecked by DL accelerators. Also, the
performance gain from Revamper is maximized in training
environments with fewer CPUs.

2 4 6
0

50

100

150

200

250

300

350

T
h
ro

u
g
h
p
u
t

(i
m

g
/s

e
c
)

(a) ResNet50 on ImageNet

2 4 6
0

1000

2000

3000

4000

5000

6000

7000

8000

(b) MobileNet-V1 on CIFAR-10

Standard

Refurbishing (r=2.0)

Refurbishing (r=3.0)

Figure 13: The training throughput of ResNet50 on ImageNet
and MobileNet-V1 on CIFAR-10 for varying CPU-GPU ra-
tios.

Balanced + CAS Naïve Standard

VGG-16 5839.08 4746.91 4125.07

ResNet18 4098.36 3884.40 3813.30

Table 1: The comparison of the throughput (images/sec) of
data refurbishing with and without Revamper’s key features,
balanced eviction and cache-aware-shuffle (CAS).

7.4 Revamper Key Design Features

Revamper provides distinctive features—the balanced evic-
tion and cache-aware shuffle—in order to efficiently support
data refurbishing. We evaluate how these features further im-
prove the DNN training throughput compared to the naiv̈e
approach with the reference count algorithm and the random
shuffle. As Table 1 shows, the naïve approach provides 1.15×
faster training throughput for VGG-16 training on CIFAR-10
than the standard data loading system, but with the balanced
eviction and cache-aware shuffle, the speed-up gain can be as
much as 1.42× compared to the standard one. For ResNet18,
however, there is no evident additional speed-up gain with
the balanced eviction and the cache-aware shuffle. Since the
heavy GPU computation needed for ResNet18 training causes
the gradient computation to be the main bottleneck, data re-
furbishing itself has no significant improvement in the train-
ing throughput. In summary, the balanced eviction and the
cache-aware shuffle of Revamper contributes much to train-
ing throughput improvement whenever the DL accelerator is
not the main bottleneck. Cache-aware shuffle, although it ad-
justs the sample order when preparing each mini-batch, does
not adversely affect the accuracy of the model, as evidenced
in Figure 14. As such, the balanced eviction strategy and
cache-aware shuffle help Revamper support data refurbishing
efficiently without negatively affecting the model generaliza-
tion.

USENIX Association 2021 USENIX Annual Technical Conference 547

0 50 100 150 200 250 300

Epochs

65

75

85

95

V
a
li
d
a
ti

o
n
 A

c
c
u
ra

c
y
 (

%
)

Cache-Aware Shuffle

Random Shuffle

Figure 14: The change in validation accuracy over training
epochs of ResNet18 trained on CIFAR-10 with different shuf-
fle strategies.

0.0 0.1 0.2 0.3 0.4

95.4

95.8

96.2

96.6

V
a
l.
 A

c
c
u
ra

c
y
(%

)

(a) Initial Learning Rate

5 10 15 20 25

95.4

95.8

96.2

96.6

(b) Augmentation Magnitude

Standard

Revamper

Figure 15: The top-1 validation accuracy of ResNet18 trained
with different hyperparameter configurations.

7.5 Robustness to Hyperparameter Change
In this evaluation, we show that Revamper preserves the
model accuracy of the standard setting under various hyper-
parameters. We have varied two hyperparameters–the initial
learning rate and the distortion magnitude of RandAugment.
As shown in Figure 15, the accuracy of the model trained
with Revamper is well aligned with the one trained with the
standard setting. This indicates that Revamper can achieve
the validation accuracy comparable to that of the standard
setting on various hyperparameter configurations.

8 Related Work

We discussed the limitations of existing approaches that accel-
erate data augmentation in § 3.2. In this section, we introduce
other works that are closely related to our system.
Accelerating Data Preparation Quiver [25] proposes a
caching system between local and remote storage shared by
multiple DNN training jobs, in order to optimize slow data
read from remote storage with limited cache. To achieve this
goal, it leverages internal information of DL frameworks to
optimize cache loading and eviction. Quiver and Revamper
differ in that Quiver focuses on sharing cached training data
among multiple tasks while ensuring randomness of training
order, whereas Revamper focuses on reusing partially aug-
mented data while keeping sample diversity obtained from
data augmentation. OneAccess [21] proposes to use a shared
data preparation pipeline to train multiple DNN models with

the same dataset. Revamper, on the other hand, focuses on
optimizing data augmentation within a single DNN training
task. SMOL [22] dynamically adjusts the fidelity of input
data to avoid data preparation bottleneck at inference time.
Unlike SMOL, Revamper focuses on fast DNN training with
data augmentation rather than DNN inference.
Intermediate Data Caching Many data processing sys-
tems such as Spark [37] and Nectar [18] adopts intermediate
data caching, which caches and reuses frequently used in-
termediate results in order to reduce computation overhead.
Similarly, Revamper reuses intermediate results in the aug-
mentation pipeline but instead handles stochastic data. In
the context of DL pipelines, it is necessary to consider new
aspects that have not yet been considered in previous work,
such as maintaining the diversity of augmented samples and
maximizing computation overlap between CPU and DL ac-
celerators. In this work, we propose complete system design
and implementation that address these new challenges.

9 Conclusion

In this paper, we present data refurbishing, a novel sample
reuse mechanism that accelerates DL training while maintain-
ing model generalization. We realize this idea by designing
and implementing Revamper, a new caching and data loading
system that solves system-side challenges from caching par-
tially augmented data. Revamper has shown 1.03×–2.04×
speed-up in DNN training while maintaining comparable ac-
curacy. We hope that this work will encourage further research
to rethink well-studied topics like caching in systems in the
new context of deep learning.

Acknowledgments

We thank our shepherd Jonathan Mace and the anony-
mous reviewers for their insightful feedback. We also thank
Youngseok Yang, Taegeon Um, Soojeong Kim, Taebum Kim,
Yunmo Koo, Jaewon Chung, and the other members of the
Software Platform Lab at Seoul National University for
their comments on the draft. This work was supported
by the MSIT(Ministry of Science, ICT), Korea, under the
High-Potential Individuals Global Training Program (2020-
0-01649) supervised by the IITP(Institute for Information &
Communications Technology Planning & Evaluation), the
ICT R&D program of MSIT/IITP (No.2017-0-01772, Devel-
opment of QA systems for Video Story Understanding to pass
the Video Turing Test), and Institute for Information & com-
munications Technology Promotion(IITP) grant funded by
the Korea government(MSIT) (No.2015-0-00221, Develop-
ment of a Unified High-Performance Stack for Diverse Big
Data Analytics).

548 2021 USENIX Annual Technical Conference USENIX Association

References

[1] Amazon EC2 P3 - Ideal for Machine Learning
and HPC - AWS. https://aws.amazon.com/ec2/
instance-types/p3/.

[2] Cloud Tensor Processing Units (TPU). https://cloud.
google.com/tpu/docs/tpus.

[3] NVIDIA A100. https://www.nvidia.com/en-us/
data-center/a100/.

[4] NVIDIA DALI. https://github.com/NVIDIA/
DALI.

[5] RocksDB Compaction. https://github.com/
facebook/rocksdb/wiki/Compaction.

[6] Runtime options with Memory, CPUs, and GPUs.
https://docs.docker.com/config/containers/
resource_constraints/.

[7] Training Your Own Model—DeepSpeech 0.9.3 docu-
mentation. https://deepspeech.readthedocs.io/
en/r0.9/TRAINING.html#augmentation.

[8] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In USENIX OSDI, pages 265–283, 2016.

[9] Naman Agarwal, Rohan Anil, Tomer Koren, Kunal Tal-
war, and Cyril Zhang. Stochastic optimization with
laggard data pipelines. NeurIPS, 33, 2020.

[10] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In
ACM SIGKDD, pages 2623–2631, 2019.

[11] David Beazley. Understanding the python gil. In Py-
CON Python Conference, 2010.

[12] Jiaao Chen, Zichao Yang, and Diyi Yang. Mixtext:
Linguistically-informed interpolation of hidden space
for semi-supervised text classification. arXiv preprint
arXiv:2004.12239, 2020.

[13] Dami Choi, Alexandre Passos, Christopher J Shallue,
and George E Dahl. Faster neural network training with
data echoing. arXiv preprint arXiv:1907.05550, 2020.

[14] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay
Vasudevan, and Quoc V Le. Autoaugment: Learning
augmentation strategies from data. In IEEE CVPR,
pages 113–123, 2019.

[15] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and
Quoc V Le. Randaugment: Practical automated data
augmentation with a reduced search space. In NeurIPS,
2020.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In IEEE CVPR, pages 248–255. Ieee,
2009.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[18] Pradeep Kumar Gunda, Lenin Ravindranath, Chan-
dramohan A Thekkath, Yuan Yu, and Li Zhuang. Nectar:
Automatic management of data and computation in data-
centers. In USENIX OSDI, volume 10, pages 1–8, 2010.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
IEEE CVPR, pages 770–778, 2016.

[20] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[21] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phan-
ishayee, and Shivaram Venkataraman. The case for
unifying data loading in machine learning clusters. In
USENIX HotCloud, 2019.

[22] Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter
Bailis, and Matei Zaharia. Jointly optimizing prepro-
cessing and inference for dnn-based visual analytics.
VLDB, 14(2):87–100, 2020.

[23] Tero Karras, Miika Aittala, Janne Hellsten, Samuli
Laine, Jaakko Lehtinen, and Timo Aila. Training gener-
ative adversarial networks with limited data. NeurIPS,
33, 2020.

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. 2009.

[25] Abhishek Vijaya Kumar and Muthian Sivathanu. Quiver:
An informed storage cache for deep learning. In
USENIX FAST, pages 283–296, 2020.

[26] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. Kvell: the design and implementation of
a fast persistent key-value store. In ACM SOSP, pages
447–461, 2019.

USENIX Association 2021 USENIX Annual Technical Conference 549

https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://github.com/NVIDIA/DALI
https://github.com/NVIDIA/DALI
https://github.com/facebook/rocksdb/wiki/Compaction
https://github.com/facebook/rocksdb/wiki/Compaction
https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/config/containers/resource_constraints/
https://deepspeech.readthedocs.io/en/r0.9/TRAINING.html#augmentation
https://deepspeech.readthedocs.io/en/r0.9/TRAINING.html#augmentation

[27] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Eka-
terina Gonina, Jonathan Ben-Tzur, Moritz Hardt, Ben-
jamin Recht, and Ameet Talwalkar. A system for mas-
sively parallel hyperparameter tuning. In MLS, volume 1,
2020.

[28] Derek G Murray, Jiri Simsa, Ana Klimovic, and Ihor
Indyk. tf. data: A machine learning data processing
framework. arXiv preprint arXiv:2101.12127, 2021.

[29] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
Specaugment: A simple data augmentation method for
automatic speech recognition. Interspeech, pages 2613–
2617, 2019.

[30] Pyeongsu Park, Heetaek Jeong, and Jangwoo Kim.
Trainbox: An extreme-scale neural network training
server architecture by systematically balancing oper-
ations. In IEEE/ACM MICRO, pages 825–838. IEEE,
2020.

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS, pages 8026–8037, 2019.

[32] Libo Qin, Minheng Ni, Yue Zhang, and Wanxiang Che.
Cosda-ml: Multi-lingual code-switching data augmen-
tation for zero-shot cross-lingual nlp. In ICJAI, pages
3853–3860, 2020.

[33] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[34] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
NeurIPS, pages 5998–6008, 2017.

[36] Sangdoo Yun, Dongyoon Han, Seong Joon Oh,
Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cut-
mix: Regularization strategy to train strong classifiers
with localizable features. In IEEE ICCV, pages 6023–
6032, 2019.

[37] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In USENIX NSDI, pages
15–28, 2012.

[38] Albert Zeyer, Kazuki Irie, Ralf Schlüter, and Hermann
Ney. Improved training of end-to-end attention models
for speech recognition. Interspeech, pages 7–11, 2018.

[39] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk mini-
mization. In ICLR, 2018.

550 2021 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background
	DNN Training
	Data Augmentation

	Motivation
	Overhead of Data Augmentation
	Limitations of Existing Approaches

	Data Refurbishing
	Revamper Design
	Revamper Overview
	Balanced Eviction
	Cache-Aware Shuffle

	Implementation
	Evaluation
	Comparison with Baselines
	Augmentation Split Policy
	CPU-GPU Ratio
	Revamper Key Design Features
	Robustness to Hyperparameter Change

	Related Work
	Conclusion

