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Abstract
A computational storage device incorporating a computa-

tion unit inside or near its storage unit is a highly promising
technology to maximize a storage server’s performance. How-
ever, to apply such computational storage devices and take
their full potential in virtualized environments, server archi-
tects must resolve a fundamental challenge: cost-effective vir-
tualization. This critical challenge can be directly addressed
by the following questions: (1) how to virtualize two differ-
ent hardware units (i.e., computation and storage) and (2)
how to integrate them to construct virtual computational stor-
age devices, and (3) how to provide them to users. However,
the existing methods for computational storage virtualization
severely suffer from their low performance and high costs due
to the lack of hardware-assisted virtualization support.

In this work, we propose FCSV-Engine, an FPGA card de-
signed to maximize the performance and cost-effectiveness
of computational storage virtualization. FCSV-Engine intro-
duces three key ideas to achieve the design goals. First,
it achieves high virtualization performance by applying
hardware-assisted virtualization to both computation and
storage units. Second, it further improves the performance
by applying hardware-assisted resource orchestration for the
virtualized units. Third, it achieves high cost-effectiveness
by dynamically constructing and scheduling virtual computa-
tional storage devices. To the best of our knowledge, this is
the first work to implement a hardware-assisted virtualization
mechanism for modern computational storage devices.

1 Introduction

A modern computational storage device incorporating a com-
putation unit inside or near its storage unit is becoming
a highly promising solution for high-performance storage
servers as it can minimize the data movement overhead with
near-storage processing [10,15,17,21,27,33,35,39]. A server
equipped with a computational storage device can offload
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Figure 1: Percentage of execution time spent on a paravirtual-
ized computational storage device.

data-intensive routines to the computation unit and enable it
to access the data stored in the storage unit without software
intervention. For example, current off-the-shelf computational
storage devices incorporate high-end field-programmable gate
arrays (FPGAs) for computations and adopt an NVM Express
(NVMe) storage protocol to allow the FPGAs to directly ac-
cess the solid-state drives (SSDs) [6, 24, 33, 35].

In addition to the advances in the hardware devices, recent
studies have proposed flexible FPGA overlay architectures
and POSIX-like APIs to improve the usability of modern com-
putational storage devices [33, 35]. Their stream-based over-
lay architectures contain user-specified operators (e.g., stream
processing units) and activate them selectively through an
in-FPGA crossbar switch and control logic. At the same time,
their custom software stacks provide abstraction layers to hide
the complexity of the underlying FPGA implementations. For
example, a recent computational storage implementation takes
advantage of Linux file and pipe abstractions to allow users
to easily orchestrate their near-storage processing [35].

However, the existing virtualization mechanisms for com-
putational storage severely suffer from their low performance
and high costs. First, the software-based virtualization mech-
anisms (e.g., paravirtualization) cannot take full advantage of
near-storage processing due to their (1) heavy hypervisor and
host OS stacks to emulate virtual computational storage de-
vices and (2) indirect resource orchestration mechanisms via
guest and host OSes. To profile the software overhead of par-
avirtualized computational storage devices, we measured the

USENIX Association 2021 USENIX Annual Technical Conference    729



end-to-end execution time of near-storage processing bench-
marks on a virtual machine (VM). The near-storage process-
ing benchmarks read 4-KB pages from an NVMe SSD and
perform four different stream operations (encryption, hash,
filter, grep) on an FPGA. Figure 1 shows the percentage
of execution time spent on the paravirtualized near-storage
processing benchmarks. The hypervisor and guest/host OSes
account for a significant portion of their overall execution time
(72%–81%) due to the software-centric device emulation and
resource orchestration.

Second, the existing virtualization mechanisms which stati-
cally allocate both computation and storage units for each
VM will incur high hardware costs due to the inefficient
use of the shared device resources. (1) The existing SSD-
FPGA coupled architectures suffer from their limited scalabil-
ity when multiple VMs share a single computational storage
device. For example, concurrently running many VMs and
their near-storage processing workloads on a single compu-
tational storage device result in the performance bottleneck
at the single shared SSD. (2) Moreover, their static resource
allocation methods cannot handle the dynamic behavior of
VM workloads efficiently, which incurs the extra costs for
the additional hardware resources to meet quality-of-service
(QoS) requirements.

In this paper, we propose FlexCSV, a new hardware vir-
tualization mechanism to maximize the performance and
cost-effectiveness of computational storage virtualization.
FlexCSV combines the following key ideas. First, FlexCSV
implements hardware-assisted virtualization and resource or-
chestration. Through a standard single-root I/O virtualization
(SR-IOV) layer at the hardware level, FlexCSV provides a
fast and host-bypassing virtualization stack and allows mul-
tiple VMs to exploit near-storage processing capabilities. In
addition, FlexCSV manages user-requested stream operations
at the hardware level to mitigate the software burden to or-
chestrate near-storage processing.

Second, FlexCSV achieves high cost-effectiveness by dy-
namically constructing and scheduling both computation and
storage units. To improve its scalability, FlexCSV adopts
an SSD-FPGA decoupled architecture and allows the FPGA
accelerator card to construct many virtual computational stor-
age devices with multiple PCI Express (PCIe) attached SSDs.
Moreover, its dynamic resource allocation from a shared hard-
ware operator pool and partial reconfiguration support can
capture the dynamic behavior of VM workloads and reduce
QoS violations significantly at minimum hardware costs.

For evaluation, we implemented our FlexCSV prototype
on a Xilinx FPGA accelerator card [7], NVMe SSDs [3],
and an existing KVM/QEMU virtualization stack [4, 5]. We
implemented a hardware-assisted virtualization stack for com-
putational storage on the same FPGA card and connected
its hardware modules through advanced extensible interface
(AXI) interconnects. An in-FPGA AXI crossbar switch or-
chestrates data movements between the processing units and

the FPGA’s on-board DRAM. In this work, we implemented
eight hardware near-storage processing operators and allowed
them to be shared by four VMs.

Our experimental results show that our FlexCSV pro-
totype obtains 2.0x–2.8x higher near-storage processing
performance in virtualized environments than the exist-
ing software-centric virtualization mechanisms. Moreover,
FlexCSV’s SSD-FPGA decoupled architecture can connect
four PCIe-attached SSDs and provide 3x more scalable perfor-
mance over the coupled computational storage architectures.
Through its dynamic resource allocation for both computa-
tion and storage units, FlexCSV can reduce QoS violations
significantly at minimum hardware costs when a computation
storage device is oversubscribed by many VMs.

In summary, we make the following contributions:

• Novel virtualization stack for computational storage:
We propose a fast and flexible hardware-assisted virtualiza-
tion mechanism for modern computational storage devices.

• High performance: FlexCSV achieves high virtualization
performance by bypassing software stacks and leveraging
near-storage processing.

• High cost-effectiveness: FlexCSV achieves high hardware
cost-effectiveness by dynamically constructing and schedul-
ing both computation and storage units at minimum costs.

• Prototyping: We implement and evaluate our FlexCSV pro-
totype with off-the-shelf devices and open-source software
virtualization stacks.

2 Background

2.1 SSD-FPGA Computational Storage
2.1.1 Hardware Architecture

SSD-FPGA hardware platform. A modern computational
storage device incorporates its computation and storage units
together and couples them through an on-board intercon-
nect [24,33,35]. Figure 2 (bottom) shows the typical hardware
platform of modern SSD-FPGA computational storage de-
vices. It utilizes an FPGA for computations and allows it to
directly access an attached NVMe SSD. For near-storage data
processing, it also supports peer-to-peer (P2P) data communi-
cations between the computation and storage units through
its internal switches (e.g., on-board PCIe switch). For exam-
ple, by exposing an FPGA’s DRAM space to an SSD and
implementing a routing policy in an internal crossbar switch,
a computational storage device can enable the computation
and storage units to exchange data directly without software
arbitration [35].
FPGA overlay architecture. The FPGA overlay architec-
tures implemented on computational storage devices offer
programmable near-storage processing [33, 35]. They consist
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Figure 2: Full software and hardware stacks for a modern
FPGA-based computational storage device.

of reconfigurable operators, crossbar stream switches, and
on-board DRAM. The operators are reconfigurable stream
processing units, and each of them can be selectively acti-
vated to configure full stream operations. The on-board cross-
bar switches orchestrate data movements between the op-
erators and the FPGA’s DRAM. Figure 2 (middle) shows
an example overlay architecture for programmable near-
storage processing. This overlay architecture contains eight
operators and three of them are activated to serve the user-
specified stream workloads (hash, filter, encryption).
Then, a routing policy is installed in the stream switch to
properly route an incoming data stream to the target operators
(hash→filter→encryption) or DRAM buffers.

The FPGA overlay architectures also implement storage
interfaces to allow their operators to directly access storage
units [24,33,35]. Modern computational storage devices adopt
an NVMe standard storage protocol to offer fast and parallel
storage access [24]. NVMe has the following key advantages.
First, NVMe supports multiple I/O queues to fully utilize
the high-bandwidth storage units. NVMe can run multiple
storage operations concurrently by assigning separate NVMe
submission queue (SQ)/completion queue (CQ) pairs to dif-
ferent processing cores. Second, NVMe enables fast storage
operations by minimizing the number of memory-mapped
I/O (MMIO) operations. For example, NVMe devices expose
a set of SQ/CQ doorbell registers and require only a single
MMIO write operation (i.e., doorbell register write) to submit
storage operations or to notify their completions.

2.1.2 Software Support

Abstraction layer. To improve the usability of near-storage
processing in modern computational storage devices, recent
studies provide custom software stacks utilizing Linux file
and pipe abstractions and allow users to easily orchestrate
near-storage processing [33,35]. Their software stacks expose
the operators implemented on their FPGA overlay architec-

1 typedef struct {
2 a p _ u i n t <64> d a t a ;
3 a p _ u i n t <4> d e s t ;
4 a p _ u i n t <1> l a s t ;
5 } s t r e a m _ d a t a ;
6 typedef h l s : : s t r eam < s t r e a m _ d a t a > s t r e a m _ t ;
7

8 void a c c e l _ u n i t (
9 s t r e a m _ t &in , s t r e a m _ t &out , a p _ u i n t <4> d e s t ) {

10 s t r e a m _ d a t a i n p u t , o u t p u t ;
11 do {
12 i n p u t = i n . r e a d ( ) ;
13 o u t p u t . d a t a = p r o c e s s ( i n p u t , d a t a ) ;
14 o u t p u t . d e s t = d e s t ;
15 o u t . w r i t e ( o u t p u t ) ;
16 } while ( ! i n p u t . l a s t ) ;
17 }

Listing 1: Example HLS code for an operator implemented
on an FPGA overlay architecture.

tures as executable files to an OS. Then, a user program can
initiate near-storage processing through POSIX-like APIs
or a pipe command from data to executable (i.e., operator)
files. Figure 2 (top) shows an example user program and its
software-to-hardware mapping process. In this example, the
application performs a hash→filter→encryption stream
operation on the input file stored in the computational storage
device. In this way, the software support can hide the complex-
ity of the underlying FPGA implementations and coordinate
user-specified near-storage data processing.
High-level synthesis support for operators. The software
support also allows users to customize operators using an
FPGA’s reconfigurability and high-level synthesis (HLS)
tools [35]. Listing 1 shows an HLS code snippet to implement
an example accel_unit operator. First, users can define a
stream data structure. In this example, dest and last signals
are delivered along with a data stream. The dest field indi-
cates its next destination operator and the last field indicates
a last word in the data stream. Second, users can define the
input and output ports of an operator. In this example, the
accel_unit module has the in/out data stream ports and
the dest configuration register to determine its next destina-
tion operator. This example operator reads a word through the
in stream port and forwards it through the out stream port
after manipulating the dest field of the output stream.

2.2 I/O Virtualization
2.2.1 Software-based Virtualization

The existing software-based I/O virtualization presents virtual
device instances and enables device sharing across multiple
VMs. Full virtualization, which is one of the software-based
virtualization mechanisms, utilizes a trap-and-emulate ap-
proach to provide virtual device instances to VMs without
changing the guest OSes. However, this virtualization mech-
anism significantly suffers from excessive VM exits when
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guest OSes access their virtual device resources.
In contrast to full virtualization, paravirtualization enables

efficient virtual device emulation by creating VM-friendly
virtual device interfaces between guest OSes and hypervisors
(e.g., virtio [34]). This paravirtualization mechanism incurs a
fewer number of VM exits by minimizing MMIO operations
for device access, but it still relies on software traps to a
hypervisor and CPU mode switches. Moreover, guest OSes
should be aware that they are being virtualized and modified
to interact with a hypervisor in this efficient manner.

To virtualize modern fast and high-bandwidth devices, re-
cent sidecore approaches dedicate multiple CPU cores for
device emulation [29, 38]. As dedicated sidecores in the host
software keep polling guest I/O operations via shared memory
regions, VMs do not have to incur VM exits to submit device
operations. In this way, the sidecore approaches minimize the
performance overhead incurred by VM exits and CPU context
switches [23]. However, the sidecore approaches demand a
large amount of computing resources of a host server machine
to execute their polling-based device emulation [22, 25, 29].

2.2.2 Hardware-assisted Virtualization

To overcome the performance overhead and host inefficiency
of the software-based virtualization mechanisms, hardware-
assisted virtualization mechanisms allow guest OSes to ac-
cess target PCIe devices directly without any software arbi-
tration. To enable the direct assignment of PCIe devices (i.e.,
passthrough virtualization), an I/O memory management unit
(IOMMU) and its direct memory access (DMA) and interrupt
remapping mechanisms are introduced. The DMA remapping
mechanism allows DMA operations from virtual devices to
be accomplished with guest physical addresses. Similarly, the
interrupt remapping mechanism translates interrupt vectors
caused by the virtualized devices into VM contexts. However,
this approach requires a physical device to be exclusively
assigned to a single VM and does not support device sharing
across multiple VMs.

To address such shortcomings, PCIe SR-IOV allows a phys-
ical device to be shared by many VMs at the hardware level.
An SR-IOV capable device presents multiple physical func-
tions (PFs) and virtual functions (VFs) (i.e., virtual device
instances) at the device interface. Since VFs have separate
PCIe configuration registers, including base address registers
(BARs), SR-IOV can enforce resource isolation while serving
multiple VMs. Moreover, an SR-IOV capable device imple-
ments how to multiplex itself at its internal bridge module
and thus does not rely on any host software to multiplex its
virtual device instances.

3 Motivation

The increasing density and performance of modern com-
putation and storage devices create new opportunities for
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FPGA and SSD products over time [3, 8]. The data are nor-
malized to the values at 2012. The latency of the SW stack
is set to 20 µs [30, 33], and the current SSD access time is
assumed to be 5 µs based on recent studies [33, 41].

virtualization. Figure 3 shows the increase in SSD capac-
ity and FPGA resources over the recent eight years. The
available commodity SSD and FPGA resources have in-
creased 3x–6x over the years, which creates a high potential
to serve many VMs on a single computational storage de-
vice [19, 22, 25, 29, 40]. Furthermore, the significant improve-
ments in storage device access time (65 µs→5 µs [33]) have
moved the performance bottlenecks to the software stacks.

However, the existing software-based SSD and FPGA vir-
tualization mechanisms have the following limitations when
providing near-storage processing between the virtualized
computation and storage units. First, the software-based vir-
tualization mechanisms cannot take full advantage of near-
storage processing due to their indirect device-control and
data paths to emulate virtual computational storage devices.
Second, their static resource allocation for each VM incurs
high hardware costs due to the inefficient use of the shared
device resources.

3.1 Indirect Device-Control and Data Paths
Employing software-centric virtualization to SSD and FPGA
devices separately suffers from indirect device-control and
data paths between the virtualized hardware units and fails to
take full advantage of near-storage processing. To measure
the software overhead of paravirtualized SSD and FPGA op-
erations, we implemented a virtio-based virtualization stack
on KVM/QEMU and profiled the end-to-end execution time
of SSD-FPGA near-storage processing. Figure 4 shows two
software-centric implementations for computational storage
virtualization. In the full software implementation, SSD and
FPGA operations involve VM exits and traps to a hypervisor.
In the optimized software implementation, accessing an SSD
from a VM can bypass the hypervisor and host OS stacks
through to an IOMMU and SR-IOV support. However, utiliz-
ing an FPGA still relies on the software-centric virtualization
mechanisms and suffers from the software-side performance
overhead. Moreover, since a guest OS cannot obtain host
physical addresses of the FPGA’s BARs, its input and output
data must be transferred via the guest and host OS stacks.
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Figure 5 shows the execution time spent in paravirtualized
SSD-FPGA near-storage processing. The benchmark reads
a 4-KB page from the NVMe SSD and executes Blowfish
encryption [28] on the FPGA. To emulate a coupled computa-
tional storage device, we installed an Intel Optane SSD [3] and
Xilinx Alveo U250 FPGA [7] and connected them through
PCIe Gen-3 lanes. The SSD read latency is 10 µs, and the
encryption operation takes 14 µs to process the 4-KB data. In
this environment, the hypervisor and guest/host OSes account
for a significant portion of overall execution time due to the
software-centric device emulation and resource orchestration.
The optimized software virtualization implementation miti-
gates host OS overhead because the SSD access bypasses the
host software. Also, as there is no need for KVM/QEMU to
emulate the SSD, the hypervisor and guest kernel overhead
also decrease. However, the overhead for the virtual FPGA
emulation and the data movements between the virtualized
units still remains.

3.2 SSD-FPGA Coupled Architecture

An SSD-FPGA coupled computational storage architecture
severely suffers from its limited scalability due to its board-
level SSD-FPGA integration [6, 17, 33, 35]. Such tight device
integration makes it challenging to merge diverse SSD-FPGA
resource combinations into a single device while supporting
direct device-control and data paths among all the consoli-
dated devices. Moreover, their architectural limitations be-
come increasingly apparent as the gaps between SSD and
FPGA resource capacity and performance increase.

For example, concurrently executing many VMs and their
near-storage processing workloads on a computational stor-
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Figure 6: Performance comparison of near-storage processing
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latency. NV M indicates the number of concurrently running
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age device can lead to the performance bottleneck at the single
shared SSD. To show the performance impact of resource con-
tention in a coupled architecture, we emulated an on-board
consolidated storage unit by dedicating an NVMe SSD to an
FPGA board through PCIe P2P. In this experiment, we imple-
mented an example operator whose throughput is 100 MB/s
and measured the end-to-end latency on a target VM with the
increasing number of I/O-intensive VMs and their block I/O
intensities (i.e., queue depth). Figure 6 shows the normalized
end-to-end latency of the target near-storage processing on the
coupled architecture. When two or more I/O-intensive VMs
share the SSD, the near-storage processing latency becomes
2.1x slower than the single-VM execution case. When the
VMs demand higher I/O performance by increasing the queue
depth, the target VM and its near-storage processing suffer
from the more severe resource contention.

3.3 Static SSD/FPGA Resource Allocation
Static resource allocation and scheduling for both compu-
tation and storage units will incur high hardware costs be-
cause they cannot handle the dynamic behavior of VM work-
loads efficiently. To motivate dynamic resource allocation and
scheduling, we implemented two hardware operators on an
FPGA and allowed each of them to serve two VMs using time
multiplexing. Following the resource-sharing mechanisms
proposed by prior FPGA virtualization studies [19, 26], we
oversubscribed the hardware operators but statically assigned
them to a specific set of VMs.

Figure 7 shows the latency cumulative distribution function
of the four VM workloads with the static resource allocation
strategy. In this experiment, we executed four VMs concur-
rently and generated VM workloads by following Poisson
distribution with different expected request rates (λ). For the
first two VMs (V M1, V M2), we generated near-storage pro-
cessing workloads with the same execution time and wait time
(Texec = Twait , λA = 1

Texec+Twait
= 1

2T ). For the other two VMs
(V M3, V M4), we generated workloads with a longer period
between near-storage processing invocations (λB = 1

16T ). The
result demonstrates that the static operator allocation scheme
cannot guarantee a target QoS with the skewed workloads.
When the V M1 and V M2 share the same operator and invoke
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near-storage processing with a high request rate (λA), they
severely suffer from a larger number of QoS violations (>
1.5×Texec) than the other VM group (λB) due to the severe
resource contention between the VMs.

The static resource allocation and scheduling mechanisms
can lead to unacceptable QoS levels with the increasing num-
ber of VMs. Figure 8 shows the average latency of an encryp-
tion operator with varying request rates. If the total request
rate does not exceed the maximum throughput of the operator,
the operator can serve the requests within a reasonable latency
bound. For example, when the four VMs submit requests at
a rate of 50 requests per second each, the operator will show
reasonable latency bound and the VMs will not suffer from
the unexpected delay. However, when the total request rate
exceeds the maximum throughput, the operator latency and
the number of QoS violations increase quickly.

4 Design and Implementation

4.1 FlexCSV Architecture

In this work, we propose FlexCSV, a fast and cost-effective
virtualization mechanism for computational storage devices.
Its key idea is to implement FCSV-Engine, an FPGA card
designed to maximize the performance and cost-effectiveness
of computational storage virtualization. Figure 9 shows the
FCSV-Engine architecture and its main hardware components.
FCSV-Engine implements (1) a hardware-assisted virtualiza-
tion layer based on PCIe SR-IOV, (2) a hardware-level direct
device-orchestration mechanism, (3) an SSD-FPGA decou-
pled architecture, and (4) dynamic resource allocation through
its operator renaming and partial reconfiguration support.
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4.2 Hardware-assisted Virtualization

4.2.1 SR-IOV and VM Isolation

To mitigate the software overhead in computational storage
virtualization, FCSV-Engine offers hardware-assisted virtual-
ization under a standard PCIe SR-IOV layer. By incorporating
SR-IOV, FCSV-Engine can virtualize itself at the hardware
level and each VF can be assigned exclusively to a VM for
the direct access. Another advantage is that SR-IOV does
not demand extra server CPU cores for polling guest I/O ac-
tivities and indirect interrupt injections, which enables even
more scalable and cost-effective server configurations than
the conventional software-centric virtualization mechanisms
(e.g., trap-and-emulate, sidecore). In this work, we utilize a
single SR-IOV implementation at FCSV-Engine to virtualize
both computation and storage units. This design choice mini-
mizes the server costs for purchasing and operating SR-IOV
supported computation and storage devices.

In addition, we utilize non-overlapping address translation
to FCSV-Engine’s internal address space (i.e., PCIe-to-AXI
address translation) to guarantee isolated execution of mul-
tiple VMs. FCSV-Engine allocates a disjoint set of memory
regions and assigns different AXI address ranges for each VF
so that near-storage processing requests from two different
VMs do not interfere with each other. For example, we stati-
cally partition FCSV-Engine’s on-chip memory and off-chip
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DRAM regions, and apply different offset values to MMIO
requests from the VMs. Similarly, we allocate a different
set of available interrupt vectors of FCSV-Engine for each
VM. In this work, we allocate eight interrupt vectors per VM,
and each vector is dedicated to a single completion queue of
FlexCSV device driver running on a guest OS.

4.2.2 Device Interface

FCSV-Engine implements a multi-queue device interface
and a doorbell mechanism to interact with guest OSes. For
this multi-queue device interface, we arrange FCSV-Engine’s
PCIe BAR regions for doorbell registers of virtual FCSV-
Engine instances (i.e., each VF). From the software side,
FCSV-Engine’s device driver installed on a guest OS allo-
cates multiple SQ/CQ pairs and initializes the doorbell regis-
ters mapped at FCSV-Engine’s BARs. FCSV-Engine’s device
driver then delivers the guest physical addresses of the al-
located queue pairs to FCSV-Engine. The number of queue
pairs is dictated by FCSV-Engine’s BAR configuration and
FPGA on-chip resource budgets. In this work, we create eight
queue pairs per VM so that the same number of virtual CPUs
can offload near-storage processing in parallel.

FCSV-Engine polls its on-chip memory space for doorbell
registers using its host interfaces. To serve near-storage pro-
cessing requests from multiple VMs concurrently, we instan-
tiate multiple host interfaces and dedicate them to each VF.
They get newly updated doorbell values by polling the door-
bell register regions and utilize an internal DMA engine and
an IOMMU to access a target SQ in guests’ memory space.
By incorporating an IOMMU and its guest-to-host address
translation mechanism, each virtual FCSV-Engine instance
can safely access target queue pairs allocated in the guest
memory space without software intervention. Alternatively,
FCSV-Engine can manage a guest-to-host address mapping
table in itself, but this design incurs significant memory over-
head to store the translation tables for every VM.

4.3 Hardware-level Resource Orchestration
4.3.1 Near-storage Processing Command

To offload resource orchestration routines to FCSV-Engine,
FlexCSV extends a standard NVMe protocol and defines a
new command format for near-storage processing. FlexCSV’s
NVMe-extended computational storage protocol minimizes
software modifications to support near-storage processing in
virtualized environments. Since major cloud providers are
allowing NVMe storage devices to be used as primary storage
for VMs, our NVMe-extended protocol can be easily applied
in modern cloud and datacenter infrastructures.

Figure 10 shows a near-storage processing command struc-
ture. First, op_chain specifies which operators should be
activated and the target stream order of the activated opera-
tors. For this, every operator type implemented on an FPGA

Byte3 Byte2 Byte1 Byte0

NVMe read/write command FlexCSV data processing command

Byte3 Byte2 Byte1 Byte0
OpFlagsCID

Namespace Identifier

Reserved

Metadata

ApptagAppmask
Appmask
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LengthControl

SLBA

PRP1

PRP2

Operator Chain Indentifier

Source Address

Destination Address
Source size

Destination size
Request Identifier

Physical Device Identifier
Direct Param. Type

Direct Parameter Pointer

File Parameter Pointer

File Param.

Figure 10: Near-storage processing command in FlexCSV.
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Figure 11: Control flow in FCSV-Engine.

has a unique identifier. src_addr/size and dst_addr/size
represent the addresses and sizes of the source and destina-
tion in the FPGA’s DRAM space. Additionally, if an oper-
ator needs parameters to process, a user can carry the pa-
rameters either directly or indirectly with direct_param or
file_param fields. A user can also manage dependency be-
tween near-storage processing commands by manipulating
a request_id field. If a request contains the same rid as in
the previous requests, the current request cannot be issued
before the earlier requests finish their near-storage processing.
type determines whether a current request involves storage
access or not.

4.3.2 Resource Orchestration

FCSV-Engine involves a resource orchestration mechanism
to manage both computation and storage resources. To orches-
trate two different hardware units without frequent software-
hardware crossings, FCSV-Engine schedules user-requested
computation and storage operations at the hardware level.
Figure 11 shows the hardware-level scheduling mechanism.
First, FCSV-Engine identifies a newly issued command by
polling submission doorbell registers. If the command re-
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quires near-storage processing, FCSV-Engine reads the data
processing command and saves its contexts (e.g., source/des-
tination FPGA DRAM addresses). After that, FCSV-Engine
manipulates the DMA buffer addresses of the received NVMe
command so that the SSD can transfer the user-requested data
to/from the FPGA’s DRAM. FCSV-Engine also enforces a
correct order of computation and storage operations depend-
ing on the direction of user-requested data movements (i.e.,
read or write) and target operators.

FCSV-Engine executes user-requested stream data process-
ing without software orchestration. In contrast to the existing
static routing mechanisms, FCSV-Engine adopts a dynamic
routing mechanism between hardware operators. For this,
FCSV-Engine’s control logic determines the order and routing
path dynamically when it executes near-storage processing.
FCSV-Engine parses the op_chain field of a data processing
command and reserves the shortest routing path by manipu-
lating the dest configuration registers of the user-requested
operators. The operators then manipulate the dest field of
the output stream data and FCSV-Engine’s internal crossbar
switch redirects the incoming stream to the correct next op-
erator. If the requested operators are used and their paths are
already reserved, FCSV-Engine stalls their executions until
the earlier requests finish their near-storage processing.

4.3.3 Software FCSV-Engine

FCSV-Engine’s resource orchestration mechanism can be
implemented at the hypervisor level, but it still suffers from
frequent software-hardware layer crossings to orchestrate two
different hardware units. Figure 12 illustrates the software
and hardware FCSV-Engine implementations. In the software
implementation, a guest OS can leverage an NVMe-extended
near-storage processing protocol and thus reduce the number
of guest-host layer transitions. It also allows a device to di-
rectly transfer data to another device’s internal memory by
manipulating the DMA buffer addresses to the target device
memory addresses. However, this design suffers from the in-
evitable hypervisor and host OS overhead due to the indirect
orchestration for SSD and FPGA devices and a large number
of software-hardware layer transitions.

Because of the indirect resource orchestration routines
through the host software (e.g., MMIO, interrupt), the soft-

0 5 10 15 20 25 30

On-chip
PCIe
SW

Latency (us)

SSD RTTOn-chip ICN SSD RTT

Figure 13: Storage latency and round-trip time through SW,
PCIe, and on-chip ICN.

ware FCSV-Engine implementation fails to achieve the full
potential of near-storage processing [21]. To profile the perfor-
mance overhead of the software FCSV-Engine implementa-
tion, we measured the SSD access latency through (1) the host
software, (2) PCIe P2P, and (3) on-chip interconnect (ICN).
Figure 13 shows their round-trip time for access to an Intel
Optane SSD. The result indicates that the major performance
bottleneck is moved to the software stacks when the host
software manages a device operation. Such performance over-
head will get worse when we exploit near-storage processing
between faster computation and storage units. On the other
hand, the round-trip time of the PCIe P2P and on-chip ICN
is still much faster than the software MMIO and interrupt
mechanisms.

4.4 SSD-FPGA Decoupled Architecture
In this work, we introduce a decoupled computational storage
architecture for scalable near-storage processing with mul-
tiple PCIe-attached SSDs. To allow multiple NVMe SSDs
to combine with FCSV-Engine through PCIe P2P, the host
software remaps their queue pairs onto FCSV-Engine’s BAR
regions. By doing so, the decoupled storage units can seam-
lessly exchange NVMe commands and their completions with
FCSV-Engine. The SSDs are unaware of being interacting
with FCSV-Engine, but an external PCIe switch delivers their
PCIe read and write transactions to FCSV-Engine directly.
In addition, FlexCSV can nicely scale with a large number
of PCIe-attached SSDs leveraging its large on-chip memory
space. As a result, FlexCSV can mitigate the performance
bottleneck at a single FPGA or SSD by flexibly combining
PCIe-attached computation and storage devices in the same
server.

Moreover, FCSV-Engine implements PCIe message arbitra-
tion and transaction modules to encapsulate local NVMe re-
quests (e.g., NVMe doorbell write) with PCIe transactions and
allow multiple storage interfaces to share a single PCIe/DMA
IP core. In this arbitration module, FCSV-Engine leverages
PCIe transaction queues for each VM and adopts a round-
robin algorithm to serve PCIe access from multiple VMs. The
PCIe transaction module translates an internal AXI address
to an associated host physical address (e.g., AXI-to-PCIe ad-
dress translation). For this address translation, the PCIe/DMA
IP core manages an AXI-to-PCIe address mapping table. The
current Xilinx-provided PCIe/DMA IP core supports up to
six mapping entries, and this design point can be a serial
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Critical Path FPGA Resource Usage
Submission Completion LUT FF BRAM

Static 656 ns 72 ns 20370 6702 11

Renaming 728 ns 96 ns 20693 6892 11

Table 1: Renaming overhead analysis.

point when it handles concurrent near-storage processing from
many VMs.

4.5 Dynamic Resource Allocation
4.5.1 Operator Renaming

To maximize the hardware resource efficiency, FCSV-Engine
implements dynamic resource allocation through its opera-
tor renaming support. FCSV-Engine implements a shared
operator pool and dynamically maps user-requested opera-
tions onto available physical operators. In this way, FCSV-
Engine can quickly capture the dynamic behavior of VM
workloads and thus reduce QoS violations significantly. Our
current resource scheduling mechanism is similar to a re-
source availability-based FCFS algorithm because we focus
more on cost-effectiveness and resource utilization of com-
putation and storage units. However, we can also improve
storage fairness and performance by adopting more fairness-
oriented scheduling methods [16, 36].

In the renaming stage, every operator request from VMs
is mapped onto physical operators via an operator renaming
table. The operator renaming table manages the availability
of physically implemented operators. FCSV-Engine looks up
the renaming table to find and allocate available physical in-
stances of user-requested operators. If it succeeds in allocating
the physical operators, the scheduler executes near-storage
processing and manipulates the operator renaming table to
record the resource allocation status. When the requested
near-storage processing finishes, the scheduler collects the
completions from all the activated operators and deallocates
the recorded resources by manipulating the renaming table.

We measured the area and performance overhead when
the operator renaming mechanism is implemented in FCSV-
Engine’s scheduler module. We first implemented the sched-
uler without the renaming capabilities in which virtual op-
erators have a one-to-one mapping with physical operators,
and implemented operator renaming logic on top of it. In this
work, our operator renaming logic can remap a virtual opera-
tor onto four physical operator instances. Table 1 shows the
increase in the area and critical path for our operator renaming
logic. The area overhead is 2%–4% and the total critical path
overhead is around 100 ns, which is negligible compared to
the original scheduler area and operator delay.

4.5.2 Operator Partial Reconfiguration

Partial reconfiguration (PR) support for FPGA operators fur-
ther improves the hardware utilization by capturing the dy-
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Figure 14: Partial reconfiguration latency with the host soft-
ware and an FPGA.

CLB CLB Block RAM Clock speedLUTs Registers Tiles

FCSV-Engine 313,069 487,333 441 250 MHz(18%) (14%) (16%)

PCIe / SR-IOV 46,970 51,487 61

DRAM 18,592 20,817 26

Host Interface 74,886 124,761 266(4 VMs)

Storage Interface 22,927 39,403 39

Scheduler 2,507 3,050 4

Interconnect 115,073 203,827 0

Others 32,114 43,988 45

Table 2: FCSV-Engine FPGA resource utilization.

namic behavior of VM workloads. If there exist enough op-
erator slots to serve all requested near-storage processing
workloads, their target operators can be assigned to available
slots in FCSV-Engine’s operator pool. However, if the de-
mand from near-storage processing workloads exceeds the
maximum number of operator slots, they can be partially re-
configured to serve the current user requests. As a result, such
a dynamic resource allocation mechanism enables the FPGA
to support more operators than its physical resource limit.

Figure 14 shows the latency of partially reconfiguring the
FPGA operators from the host software and from the FPGA
itself. Reconfiguration from the host software incurs long
latency because the software has to send the bitstream from
the host DRAM to the FPGA. Alternatively, to achieve agile
operator reconfiguration, we can store the partial bitstreams
in the FPGA DRAM and implement a PR controller to allow
the FPGA to reconfigure its operator slots. In this way, the
PR latency is reduced by 99.7% and the scheduler in FCSV-
Engine can dynamically generate the operators on demand
with low overhead.

5 Evaluation

5.1 Experimental Setup

To evaluate FlexCSV, we implemented our FCSV-Engine pro-
totype on a Xilinx Alveo U250 board and installed its SW
support on the Linux KVM/QEMU virtualization stack. Our
FCSV-Engine prototype provides eight stream-based opera-
tors with the partial reconfiguration support and allows the
operators to be shared by four VMs through the hardware-
assisted virtualization and resource allocation mechanisms.

USENIX Association 2021 USENIX Annual Technical Conference    737



Operators LUTs Registers BRAMs Performance
Encryption (E) [28] 38,031 19,246 168 211 MB/s

Decryption (D) [28] 37,655 19,126 168 212 MB/s

Hash (H) [37] 50,620 13,541 0 285 MB/s

Aggregate (A) [35] 2,292 1,539 2 4.70 GB/s

Filter (F) [35] 41,823 5,428 116 278 MB/s

Grep (G) [15] 37,288 5,647 6 426 MB/s

KNN (K) [32] 14,052 4,091 8 4.22 GB/s

Bitmap (B) [33] 63,570 5,588 31 4.24 GB/s

Table 3: Operators’ FPGA resource utilization.

To enable FCSV-Engine to interact with CPUs and PCIe-
attached NVMe SSDs, we utilized Xilinx-provided PCIe and
DMA engine implementations (PCIe Gen3 4-lane, 4 GB/s per
direction) [9] and configured VFs to virtualize FCSV-Engine
itself. For intermediate data buffers between computation and
storage units, FCSV-Engine leverages its on-board DDR4
DRAM and on-chip AXI-stream FIFO queues.

Table 2 shows FCSV-Engine’s FPGA resource utilization
using Xilinx Vivado and HLS (v2019.2). The on-chip inter-
connect logic consumes the major portion of FPGA LUTs
and registers as it connects all the VFs (i.e., host interfaces
for each VM) and operators through all-to-all crossbars. On
the other hand, the host and storage interfaces consume many
on-chip memory tiles for their device register regions of the
NVMe-extended protocol (e.g., doorbell registers) and for
NVMe I/O queue regions to orchestrate PCIe-attached NVMe
SSDs. Note that the FPGA has enough remaining resources
to add more operator slots for near-storage processing.

Our software-hardware full-system prototype is built on a
host server with two Intel’s Xeon Gold 5118 CPUs, each
with 12 physical cores running at 2.3 GHz, and 256-GB
DDR4 DRAM (Supermicro SuperServer 4029GP-TRT2). The
host server machine is equipped with four Intel Optane 900P
NVMe SSDs and connects them to FCSV-Engine through
PCIe Gen3 4-lane interconnects (4 GB/s per direction). The
Optane SSD can offer up to 550k IOPS in random-read and
500k IOPS in random-write with 10 µs latency. For soft-
ware support, we installed a Ubuntu 18.04 OS and Linux
kernel (version 5.3) on VMs and implemented custom FCSV-
Engine’s device driver.

To generate various near-storage processing scenarios, we
implemented eight representative computational storage oper-
ations from the previous FPGA acceleration and near-storage
processing studies [15, 28, 32, 33, 35, 37]. We utilized the Xil-
inx HLS tool (v2019.2) to generate their hardware operators.
The implemented hardware operators perform stream oper-
ations through 512-bit input and output data links (16 GB/s
interconnect bandwidth with 250-MHz clock frequency). In
this work, we dedicated 4x more on-chip bandwidth than the
configured PCIe link capability (4 GB/s per direction) to avoid
the bottleneck at the on-chip crossbars and to obtain the full
potential of near-storage processing in multi-VM workloads.
However, the proper data stream width may vary depending
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Figure 15: SSD and FPGA operation performance with dif-
ferent virtualization mechanisms.

on the target operators and resource budgets.
The FPGA operators have a broad spectrum of resource

utilization and data-processing throughput based on their al-
gorithm complexity and synthesis strategies. Table 3 shows
the benchmarks and their FPGA implementation results. The
Blowfish data encryption and decryption operators consume
a large number of registers, but demonstrate the lowest data
processing performance among the benchmarks. On the other
hand, the aggregate, K-nearest neighbors (KNN), and bitmap
operators show the highest ideal performance due to their
algorithmic simplicity.

5.2 Device Virtualization Performance
In this experiment, we measured the performance of the
hardware-assisted virtualization mechanism and compared it
with the native device performance. For this evaluation, we
installed the SSD and FPGA devices through PCIe and imple-
mented the Blowfish encryption and decryption operators [28]
on the FPGA. To fairly compare the performance for both de-
vice types, we measured the performance of the computation
and storage units separately. To measure the storage perfor-
mance, we ran flexible I/O tester (FIO) [2] in both native and
FlexCSV virtualization environments with an increasing data
block size. In contrast, we leveraged the NVMe-extended
protocol to measure the FPGA virtualization performance
without invoking storage operations. Similar to the storage
benchmarks, the FPGA benchmarks measured the end-to-end
performance in both native and FlexCSV environments with
an increasing data block size.

The experimental results show that our FCSV-Engine proto-
type delivers near-native NVMe SSD and FPGA performance.

738    2021 USENIX Annual Technical Conference USENIX Association



0.0
0.5
1.0
1.5
2.0
2.5
3.0

En
cr

yp
t

De
cr

yp
t

Ha
sh

Ag
gr

eg
at

e

Fi
lte

r

Gr
ep

KN
N

Bi
tm

ap

En
cr

yp
t

De
cr

yp
t

Ha
sh

Ag
gr

eg
at

e

Fi
lte

r

Gr
ep

KN
N

Bi
tm

ap

Read-and-Write Read-Only

Sp
ee

du
p

Full SW Opt SW FlexCSV (SW) FlexCSV (HW)

Figure 16: Speedup comparison in various virtualized envi-
ronments.

Figure 15 shows the native and virtualized SSD and FPGA
acceleration performance. Due to the hardware-assisted virtu-
alization mechanism (including SR-IOV), FCSV-Engine can
achieve the near-native performance when utilizing both SSD
and FPGA devices in virtualized environments. Moreover, as
the block size increases, the native and virtualized executions
of the SSD and FPGA operators demonstrate the ideal bare-
metal throughput (explained in Section 5.1 and Table 3). The
increasing data block size further mitigates the software over-
head by merging multiple near-storage processing requests
using NVMe’s scatter-gather list (SGL) support.

5.3 Near-Storage Processing Performance
In this experiment, we measured the performance of the near-
storage processing benchmarks through existing software
stacks and FlexCSV virtualization mechanisms. For this eval-
uation, we generated a 4-GB dataset as an input file of near-
storage processing, and each benchmark running on a guest
OS divides the dataset into multiple 4-KB blocks and iterates
them to cover the total dataset size. To compare the speedup
values over the existing software-centric mechanisms, we
also executed the same near-storage processing benchmarks
on the paravirtualization schemes with and without SR-IOV
support at the SSD side (described in Figure 4). In addition,
we measured the performance of software FCSV-Engine (de-
scribed in Figure 12) to highlight the benefits of FlexCSV’s
hardware-level resource orchestration.

Each near-storage processing benchmark listed in Table 3
is executed in two VM workload scenarios. The first sce-
nario reads a data block from the SSD directly, performs data
processing using the FPGA’s stream operator, and writes its
output data to the SSD (read-and-write). The other scenario,
on the other hand, follows the same routines for every data
block, but does not write back the output data for further
near-storage processing (read-only).

The experimental results show that FlexCSV can achieve
2.1x (geomean) faster near-storage processing in virtualized
environments over the software virtualization mechanisms.
Figure 16 shows the speedup values compared to the full soft-
ware virtualization mechanism. In contrast to the software-
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Figure 17: The aggregated bandwidth with a different number
of VMs and SSDs.

based virtualization mechanisms, FlexCSV allows the VM to
access the underlying devices and orchestrates the data move-
ments between the virtualized units without any software
intervention. The encryption and decryption benchmarks ob-
tain 2.2x speedup (33 MB/s→72 MB/s) in the read-and-write
case and 2x speedup (48 MB/s→95 MB/s) in the read-only
case. The KNN benchmark, which shows the highest speedup
values among the benchmarks, achieves 2.8x speedup over
the full software virtualization (38 MB/s→105MB/s in the
read-and-write case). Compared to the software FCSV-Engine
implementation, the hardware FCSV-Engine implementation
achieves 1.4x speedup on average.

5.4 Multi-SSD Performance

In this work, we evaluated FlexCSV’s decoupled architecture
by executing an I/O-intensive VM workload with an increas-
ing number of VMs and PCIe-attached SSDs. The result is
shown in Figure 17. In this experiment, the VMs utilize about
2 GB/s storage bandwidth, similar to the maximum bandwidth
of a single SSD. A single SSD can meet the performance re-
quirements of a single VM workload as there is no storage
interference. However, when we utilize a single SSD and run
two or more VMs, the aggregate bandwidth of all the VMs
is limited by a single SSD. So, the tightly-coupled architec-
tures suffer from such bandwidth imbalances and unexpected
delays as the available storage bandwidth cannot be scaled
easily. However, with the FPGA and SSD decoupled, the re-
quired bandwidth of multiple VMs can be met by adding
more SSDs. In this work, FCSV-Engine supports attaching
up to four SSDs to a single FPGA and achieves the scalable
performance with the increasing number of VMs and SSDs.

5.5 Dynamic Resource Scheduling

In this experiment, we evaluated the effectiveness of FCSV-
Engine’s dynamic resource allocation and scheduling mecha-
nisms. For this evaluation, we ran four VMs concurrently and
generated the VM workload by following Poisson distribu-
tion with diverse expected request rates (λ = 1

T = 1
Texec+Twait

).
We ran four VMs and grouped the VMs into two groups (A,
B) that have different request rates (Twait/Texec). After that,
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Figure 18: QoS violation ratios with different request rates from multiple VMs.

we compared their QoS violation ratios with four different
resource scheduling strategies: (1) static-worst, (2) static-best,
(3) dynamic, and (4) dynamic + partial reconfiguration (dy-
namic+pr). The static-worst, static-best, and dynamic schedul-
ing methods utilize two physical operators, and dynamic+pr
can support up to four physical operators through partial re-
configuration. The VMs in the experiment perform an encryp-
tion operation with near-storage processing capabilities.

Figure 18 shows the QoS violation ratios (> 1.5 × Texec)
with diverse request rate combinations of the two VM groups.
Except when the request rate between the two groups is the
same, the static-best scheduling methods achieve lower the
QoS violation ratios compared to the static-worst method.
Also, the dynamic scheduling significantly lowers the QoS
violation ratios over the static-worst and static-best strategies
for all the workload scenarios. When both VM groups invoke
the operators frequently (e.g., [A=0.5, B=0.5]), FCSV-Engine
can increase the number of available operators using its partial
reconfiguration support and further reduce the QoS violation
ratios. If the request rate is low (e.g., [A=4, B=8]), the dy-
namic scheduling can drop QoS violations, but increasing the
number of operators has a minor impact.

6 Related Work

Near-storage processing. Recent near-storage processing
studies have proposed flexible FPGA overlay architectures
and improved the usability of computational storage de-
vices [33, 35]. Their FPGA overlay architectures can imple-
ment user-specified operators and activate them selectively
through the crossbar switches and control logic. Also, their
custom software stacks provide abstraction layers to hide the
complexity of the underlying FPGA implementations.
NVMe SSD virtualization. NVMe virtualization becomes
one of the most critical components in cloud environments to
meet the performance demand from modern server workloads.
For example, Amazon Web Services (AWS) accelerates I/O
virtualization through dedicated hardware components. To
make full use of its parallel and high-performance storage
protocol, storage performance development kit (SPDK) vhost-

nvme extends the SPDK library to provide virtual NVMe
controllers to QEMU-based VMs [38]. Similarly, another
implementation provides a mediated passthrough mechanism
in kernel space with an active polling mode [29]. In addition,
current hardware-assisted virtualization studies demonstrate
offloading NVMe virtualization stacks to a programmable
FPGA or SmartNIC device [22, 25].
FPGA virtualization. The existing FPGA virtualization stud-
ies introduce abstractions for FPGA logic cell and intercon-
nection components [19, 20, 40]. First, user logic is encap-
sulated in flexible operators to be dynamically scaled and
remapped to the physical fabric. Second, the host software
manages the mapping between operators and physical FP-
GAs. To enable flexible mapping, high-level operators en-
capsulate information to enable the host software to generate
new FPGA implementations on demand. Moreover, the host
software maintains a registry to hide the latency of partial
reconfiguration for dynamic scalability.

7 Conclusion

In this work, we propose a fast, flexible, and cost-effective
mechanism to virtualize computational storage devices. The
key idea is to use FCSV-Engine, an FPGA card designed
to maximize the performance and cost-effectiveness of com-
putational storage virtualization. It achieves high virtualiza-
tion performance by applying hardware-assisted virtualization
and resource orchestration. In addition, it achieves high cost-
effectiveness by dynamically constructing many virtual com-
putational storage devices and scheduling their near-storage
processing at the hardware level.
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