
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

Z-Journal: Scalable Per-Core Journaling
Jongseok Kim and Cassiano Campes, Sungkyunkwan University;

Joo-Young Hwang, Samsung Electronics Co., Ltd.; Jinkyu Jeong and
Euiseong Seo, Sungkyunkwan University

https://www.usenix.org/conference/atc21/presentation/kim-jongseok

Z-Journal: Scalable Per-Core Journaling

Jongseok Kim†, Cassiano Campes†, Joo-Young Hwang‡, Jinkyu Jeong† and Euiseong Seo†

†Sungkyunkwan University, Republic of Korea.
‡Samsung Electronics Co., Ltd.

Abstract
File system journaling critically limits the scalability of a
file system because all simultaneous write operations coming
from multiple cores must be serialized to be written to the
journal area. Although a few scalable journaling approaches
have been proposed, they required the radical redesign of file
systems, or tackled only a part of the scalability bottlenecks.
Per-core journaling, in which a core has its own journal stack,
can clearly provide scalability. However, it requires a journal
coherence mechanism because two or more cores can write to
a shared file system block, so write order on the shared block
must be preserved across multiple journals. In this paper, we
propose a novel scalable per-core journal design. The pro-
posed design allows a core to commit independently to other
cores. The journal transactions involved in shared blocks are
linked together through order-preserving transaction chaining
to form a transaction order graph. The ordering constraints
later will be imposed during the checkpoint process. Because
the proposed design is self-contained in the journal layer and
does not rely on the file system, its implementation, Z-Journal,
can easily replace JBD2, the generic journal layer. Our evalu-
ation with FxMark, SysBench and Filebench running on the
ext4 file system in an 80-core server showed that it outper-
formed the current JBD2 by up to approx. 4000 %.

1 Introduction

The number of concurrent cores accessing a file system is
ever increasing as the number of cores installed in a system
increases. However, existing file systems show poor scalabil-
ity for a few file system operations [16]. Especially, because
write requests coming from all cores must be serialized to
be written on the single journal, the journal layer acts as a
representative scalability bottleneck [8, 16, 17, 19, 20].

The serialization occurs at two points in journaling; writes
to the in-memory journal data structures, and to the on-disk
journal area. The in-memory data structure accesses are par-
allelizable to some degree by applying lockless parallel data

structures [19]. However, the parallelized memory operations,
in the end, should be serialized for the on-disk journal writes.
The serialization at the on-disk journal works as the more
serious inhibitor for the file system scalability because the
storage performance is still significantly slower than the main
memory. In addition, the serialized journal writes hinder the
performance gain earned from the ever-increasing internal-
parallelism of modern SSDs [4].

A few research results have been proposed to achieve scal-
ability in journaling. However, they require an explicit separa-
tion of the file system space [8], byte-addressible non-volatile
memory (NVM) as the journaling device [20], or tight cou-
pling of file system and journal layer [2]. Therefore, in order
to apply them to existing systems, application modification,
adoption of NVM, or radical changes to the file system design
are necessary, respectively.

Not only performance but also stability and reliability are
important criteria for choosing a file system. The file sys-
tems being used in production systems have obtained their
reliability and performance through decades of improvement
and refinement. Consequently, it is a difficult choice to mi-
grate to a radically redesigned file system. This leads to the
large demand for the scalable generic journal layer that can
replace the existing ones, such as Journaling Block Device 2
(JBD2) [22].

The most intuitive approach to realize a scalable journal
is having independent journal space and journal stack per-
core. If the thread running on a core can write to the journal
dedicated to the core independently to the other threads, the
file system can achieve the complete performance scalability
to the point of the maximum disk performance.

However, when two or more threads simultaneously per-
form write operations to the same file system block, incon-
sistency between write order to the in-memory buffers and
that to the on-storage journals may occur. For example, as
shown in Figure 1, let us suppose that core 01 modifies block
0 and block 1. In turn, core 1 updates block 0 and block 2.

1For brevity, we will use core to denote the thread running on the core
unless otherwise stated.

USENIX Association 2021 USENIX Annual Technical Conference 893

Memory

Core
1

Per-core Journal Centralized Journal

Journal

Centralized
Journal

Consistent

Per-core
Journal

Block 0 Block 1 Block 2

Block 0 Block 1 Block 2

Block 0 Block 1

Block 0 Block 2

Inconsistent

File System

Core 0

Core 1

Crash

After
Recovery

Block 1 Block 0 Block 2 Block 0Block 1 Block 2Block 0

Core
0

Core
1

Core
0

Crash

Figure 1: Inconsistency between write order to in-memory
data and that to on-storage journal caused by per-core jour-
naling without a coherence mechanism.

In this case, the journal commit issued by core 1 may finish
earlier than that by core 0 when they independently operate.
If a system crash occurs when core 1 committed, but core 0
did not, block 0 will be restored to a state that includes the
modifications from both core 0 and core 1 during the recovery
procedure. Because core 0 has not committed its modifica-
tions, the valid shape of block 0 after recovery must exclude
the modifications by core 0, or have no modifications at all.
This kind of inconsistency cannot happen in the conventional
centralized journal.

Commonly, cores share metadata or files. Two cores have
to share the metadata blocks even when they do not share
any files if their files happen to be stored in the same block
group [1], which is false sharing in this case. Regardless of
whether being false or true, sharing blocks among cores is
inevitable when the multiple cores access the same file system.
Therefore, a scalable per-core journaling scheme must have a
journal coherence mechanism that keeps the write order for
the shared block modification.

This paper proposes Z-Journal, a scalable per-core journal
scheme. Z-Journal includes a novel coherence mechanism.
Z-Journal’s coherence mechanism allows each core to com-
mit transactions to its journal area independently to other
cores. However, when shared-block writes exist in the jour-
nal transactions, Z-Journal forms write-order graphs among
transactions sharing blocks through order-preserving depen-
dent transaction chaining and commits them with the trans-
actions. Imposing order-constraints over transactions will be
performed when checkpointing the committed transactions.
Through this journal coherence mechanism, Z-Journal enables
scalable per-core journaling while keeping crash consistency.

Z-Journal is designed to provide an identical interface to

JBD2. Therefore, it can be easily applied to the existing file
systems that use JBD2, such as ext4 and OCFS2 [6], as their
journal mechanism. However, to maximize the effectiveness
of per-core journaling, it is desirable to eliminate false sharing
among files coincidentally placed in the same block group.
For this, we additionally propose a core-aware block-group
allocation algorithm for the ext4 file system.

We implemented Z-Journal in the Linux kernel and applied
it to the ext4 file system as its journal layer. For evaluation,
we measured the performance and scalability of the Z-Journal
and ext4 combination while executing FxMark [16], Sys-
Bench [12] and Filebench [21, 23] in an 80-core server.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the background and motivation of this re-
search. Section 3 proposes the design and implementation
of Z-Journal, and Section 4 evaluates the proposed scheme
using various benchmark workloads. After the related work
is introduced in Section 5, Section 6 concludes our research.

2 Background and Motivation

2.1 Design of JBD2
A file system operation usually relates to the modification
of multiple file system blocks. The conventional storage de-
vices are unable to guarantee atomic writes of multiple blocks.
When a sudden crash occurs during a file system operation,
only a part of the modifications may be reflected on the stor-
age, and the file system metadata and actual data may eventu-
ally mismatch each other. The partial update of the metadata
or the mismatch between metadata and data can destroy the
validity of the file system.

The journaling mechanism is a measure to ensure con-
sistency by logging the file system changes caused by an
operation in the predetermined location. After the file sys-
tem commits the series of changes caused by a file system
operation, the journal reflects the logged changes to the file
system through the checkpoint operation. Once a file system
operation is committed to the journal, the journal guarantees
that the changes are reflected in the file system because it can
replay the committed changes even after a system failure.

JBD2 is a generic journaling layer used in the Linux kernel.
JBD2 groups a series of file system changes during an interval
together into a unit called a transaction. A transaction is com-
mitted to the journal area, periodically, or on the conditions
explained later. When a transaction is successfully committed
to the journal, JBD2 leaves the commit block at the end of the
journal record. When JBD2 performs recovery after crash or
failure, it checkpoints the transactions having a commit block
and discards the transactions without a commit block.

A transaction undergoes a few phases during its life cycle
from its creation to checkpoint. Figure 2 shows the organi-
zation of transactions in different phases. A transaction is in
one of the four states: 1 running, 2 locked, 3 committing,

894 2021 USENIX Annual Technical Conference USENIX Association

Running
TX

Committing
TX

T

T

Journal area

JH

JH

JH

BH

BH

BH

BH

BH

BH

T

Checkpoint
TX

CP
TX

CP
TX

Locked
TX

Buffer data

Frozen
Copy

Create
TX

T

T

Blocked

JH

JH

BH

BH

Main area

Buffer data

Buffer data

Free
TX

T

Commit

Checkpoint

BHJH

BHJH

BHJH

T

BH

BH

BH

kjournald

Journal
structure

JH

Storage

TX state transition

Thread
Add to TX

Buffer head
with main area block info

Buffer head
with journal area block info

Journal head

Dirty-flagged buffer head
with main area block info

kworker
(write-back)

Figure 2: Organization and life cycle of a transaction in JBD2.

and 4 checkpoint, respectively. (The intermediate states are
omitted here for brevity.) The journal structure is the central
data structure of JBD2, and has three pointers pointing to the
running transaction, committing transaction and checkpoint
transaction list, respectively. There can be up to a single run-
ning transaction and up to a single committing transaction at
a time point. The checkpoint transaction list pointer points to
the head node of the doubly linked list of transactions to be
checkpointed. Its head node is the oldest transaction in the
list.

The buffered image of a file system block in the main mem-
ory is called a buffer. A buffer in the main memory is unique
for a file system block. Therefore, all cores share and access
the same buffer when accessing the same file system block.
A buffer has its buffer head. The buffer head contains the
information about the buffer and its corresponding file system
block, such as the block device, logical block number, data
size, etc. A buffer head is inserted in a transaction through
a journal head data structure. A journal head is allocated for
and bidirectionally connected to a buffer head. In a transac-
tion, the journal heads of modified buffers are chained in a
doubly-linked circular list, as shown in the upper left side of
Figure 2. The oldest journal head in a transaction becomes its
list head. Modifications of buffers grouped in a transaction
are considered an atomic operation.

Since JBD2 only allows a single transaction to run at a
time, it is trivial to order the writeback of the updated buffers.
It simply writes them back they were inserted into the list of
committed transactions. Later, we will explain how Z-Journal
relaxes these requirements and allows multiple transactions
to run concurrently.

The running transaction accommodates the modified
buffers produced by file system operations. If there is no

running transaction when an operation is issued, a new trans-
action is created and becomes the running transaction. When
a core writes to a buffer, its buffer head will attach to a new
journal head, and the journal head will be inserted into the
journal head list of the running transaction. At this moment,
the journal space must be reserved for the inserted buffers
so that later the running transaction can be committed with-
out space allocation. If the journal space is insufficient, the
user-level thread performs checkpoint to free up the journal
space.

Later, kjournald, which is a kernel thread in charge of the
commit operation, starts to commit the running transaction
upon one of these three conditions: (1) the transaction timeout
occurs, which is by default 5 seconds; (2) the transaction
capacity, which is by default a quarter of the journal area,
is exhausted; or (3) the fsync system call is invoked by a
process. Once the commit operation begins kjournald turns
the running transaction to the locked transaction.

When the transaction enters the locked state, it cannot ac-
commodate any more updated buffers, except the ones from
the file system operation accepted to join the transaction but
did not finish yet. When the last modified buffer is inserted
into the locked transaction, its state is changed to the commit-
ting state. A new running transaction cannot be created while
the locked transaction is waiting for its closure. Therefore, a
thread issuing a new file system operation should be blocked
until a new running transaction becomes available after the
locked transaction becomes the committing transaction.

As shown in the bottom right corner of Figure 2, kjour-
nald creates another buffer head for each buffer. This buffer
head contains the information of the journal block to which
the corresponding buffer will be committed. After this, kjour-
nald writes the buffers of the committing transaction to their
assigned journal blocks.

Usually, the original buffers remain attached to the buffer
heads in the committing state. However, when a thread tries
to modify the buffer included in the committing transaction
before kjournald begins writing to the journal, the thread
makes a replica of the buffer called a frozen copy, and replaces
the original buffer with the frozen copy. The original buffer
can then be freed from the committing process, and the thread
can modify the buffer.

When the commit is finished, the buffer heads will be
marked as dirty to denote that their buffers are required to be
written to their originated file system blocks during check-
pointing. After this, kjournald finally converts the committing
transaction to a checkpoint transaction and insert it at the end
of the checkpoint transaction list.

The checkpoint operation is handled by the write-back ker-
nel thread, kworker, every 5 seconds, or by a user-level thread
performing file operations when it finds out that there is not
enough space left in the journal area for the write operation.
kworker moves the dirty buffers of the transactions that have
stayed in the checkpoint list for longer than 30 seconds to

USENIX Association 2021 USENIX Annual Technical Conference 895

their originated file system blocks and mark them as clean.
Because a journal head uses a separate pointer to be con-

nected to a checkpoint transaction, a buffer can belong to a
running transaction and a checkpoint transaction at the same
time. When a thread tries to modify a buffer already in a
checkpoint transaction, it will be inserted to the running trans-
action, and at the same time, its dirty flag will be cleared so
that it will not be checkpointed. In this situation, the running
transaction is allowed to modify the buffer.

kjournald later frees the clean buffers from the checkpoint
transaction. It also frees the empty checkpoint transactions
from the checkpoint list and the corresponding commit trans-
actions from the journal area to make free space.

In case of a system crash, kjournald initiates the recovery
process. It searches for the committed transactions in the
journal area, and replays them in order. This guarantees that
the file system remains consistent and committed data are
preserved in the file system.

2.2 Scalability Bottlenecks in JBD2
The current JBD2 design has multiple scalability bottleneck
points as follows.

At a given time point, there is only a single running transac-
tion, which is the only transaction that can accept the modified
buffers. Therefore, when multiple cores perform file opera-
tions in parallel, they have to compete for the lock acquisition
for the running transaction [19].

Secondly, when the running transaction is closed, a new run-
ning transaction can be created only after the current commit-
ting transaction finishes, and the closed transaction becomes
the committing transaction. Therefore, when the locked trans-
action waits for the committing transaction to finish, all cores
that issue file operations must wait altogether. The larger the
number of waiting cores, the more this convoy effect adversely
impacts the overall file system throughput.

Last but not least, the current JBD2 does not fully utilize
the internal-parallelism provided by the modern NVMe SSDs
because the kjournald thread solely issues a serialized stream
of buffer writes to the storage. To utilize the high-performance
of modern storage devices, the journal mechanism should be
able to commit in parallel.

These problems commonly stem from that there is only a
single running transaction and a single committing transac-
tion in the system. However, blindly parallelizing the running
and committing transactions or entire journal stack for achiev-
ing scalability complicates keeping the write orders of the
shared blocks as stated in Section 1 because a buffer head
can belong to only a single transaction in the current design.
If a buffer head is allowed to simultaneously exist in multi-
ple transactions, the coherence mechanism to guarantee the
write order consistency across multiple transactions to the
shared buffers is necessary. This problem was referred to as a
multi-transaction page conflict by Won et al. [24].

An approach that makes a frozen copy of a buffer whenever
the file system modifies it and inserts the copy to the journal
transaction instead may allow simultaneous writes to the same
buffer coming from multiple threads. However, it still requires
the ordering of block copies when committing a transaction
so that the preceding block modifications are guaranteed to
be committed before. This will be another serialization point.
In addition, adding buffer copy operations to the file system
write path will notably retard the write latency. Therefore,
journaling with a parallel transaction requires an efficient
coherence mechanism that can preserve the write orders to the
buffers, while allowing as much parallel buffer modification
and independent transaction management as possible.

3 Our Approach: Z-Journal

In Z-Journal, each core has its journal area on the storage
device, and its kjournald, which handles the commit operation.
Because kjournald is bound to each core and executed locally,
this also improves the memory access locality in non-uniform
memory access (NUMA) systems. The journal stack of each
core has the running transaction, committing transaction, and
the checkpoint transaction list the same as JBD2, and their
life-cycles are identical as well.

This per-core journal approach removes the aforemen-
tioned serialization points in the journal layer and thus obtains
scalability. First, because each core has its running transac-
tion, a thread does not need to compete with the other threads
for acquiring access to the running transaction. Second, when
the running transaction of a core closes, and the core waits
for the previous committing transaction to finish to create a
new running transaction, this waiting only applies to that core.
Therefore, this convoy effect is confined in the core bound-
ary. Finally, because multiple kjournald are able to commit in
parallel, Z-Journal can fully utilize modern high-performance
storage devices.

However, as stated earlier, the per-core journal approach
must deal with the mismatch between the in-memory buffer
write order and the on-disk transaction commit order to guar-
antee the crash consistency.

3.1 Analysis of Journal Coherence Problem

In the per-core journal design, a thread inserts modified
buffers to the running transaction allocated for the core it
runs on. However, the buffer may have already belonged to
a transaction of other cores as shown in Figure 1. Figure 3
categorizes this situation into three cases. In Figure 3, two
cores modify two unrelated buffers, but also both modify a
shared buffer. The same as JBD2, when a core tries to write to
a buffer that is in a checkpoint transaction, the buffer can be in-
serted to the running transaction of the core without breaking
the crash consistency because its last image is safely stored

896 2021 USENIX Annual Technical Conference USENIX Association

Running
TX

JH BH1

JH BH0

Running
TX

JH

BH2

Thread Thread
1. Modify

BH0 and BH1

2. Modify
BH0 and BH2

Journal 0 Journal 1

Core 0 Core 1

(a) From a running transaction

Committing
TX

JH BH0

BH
0’

Thread

Running
TX

1. Access to BH0

2. Copy
BH0

3. Modify
BH0

4. Write to journal

Journal 0 Journal 1

Core 0 Core 1

(b) From a committing transaction before
issuing commit writes

Committing
TX

JH BH0

BH
0’

Thread

Running
TX

2. Wait for
end of writing

1. Write to journal

Journal 0 Journal 1

Core 0 Core 1

(c) From a committing transaction after
issuing commit writes

Figure 3: Three different cases that a running transaction tries to access a buffer head that already belongs to another transaction
in the per-core journal system.

in the journal area. Therefore, this case is not considered in
the journal coherence mechanism.

In Figure 3a, both cores modify the shared buffer before
either begins to commit. Since we only maintain one copy of
the shared buffer, we can no longer separate the updates made
by the two cores. However, if we treat both transactions of
these two cores as parts of one large transaction, we can allow
uninterruptible parallel access to the shared buffers while
guaranteeing the crash consistency. Their commits should be
considered as valid only when both are committed; otherwise,
both must be voided.

In Figure 3b and Figure 3c, one core begins to commit
its running transaction before the other touches the shared
buffer. In Figure 3b, the buffer has not yet been scheduled for
commit, so we can create a frozen copy. In JBD2, the frozen
copy will be attached to the buffer head for the commit to
the journal area, and the buffer head for the original buffer
is kept in the committing transaction. Because the original
buffer head is no longer used by the committing transaction, it
can be modified by the other cores. This allows an immediate
update of the shared buffer in Figure 3b. In Figure 3c, the
shared buffer is already being written to the journal area by
the first core. At this point, it is too late to make a copy of
the buffer for concurrent modifications, since the file system
page cache would continue to point to the copy that is being
written. Therefore, core 1 must wait for core 0 to complete
its commit operation before modifying the shared buffer. If a
committing transaction always creates frozen copies for all of
its buffers and use them for commit block writes, this waiting
can be eliminated.

However, in both Figure 3b and Figure 3c, to guarantee
crash consistency, core 1’s commit must be performed after
core 0’s commit finishes. This serialization may suspend core
1’s file system operations because a new running transaction
can be created only after core 1’s current running transaction

turns into the committing transaction, which again can be
possible only after the current committing transaction finishes.
If there is a long chain of transaction dependency, this will
result in poor scalability. However, if we can enforce a rule
that a committed transaction can be checkpointed only after
the transactions it depends on are committed, we can allow
both of core 0’s committing transaction and core 1’s running
transaction to be committed independently.

Analysis of the three conflicting cases revealed that the
conditional recognition of the committed transactions, which
checkpoints the committed transactions only when their de-
pendent transactions are committed as well, allows them to
be committed independently to each other. In addition, the
proactive use of frozen copies for committing allows imme-
diate writes to the buffers being shared with the committing
transaction. Based on this observation, we propose the journal
coherence mechanism for Z-Journal.

3.2 Journal Coherence Commit

The journal coherence mechanism of Z-Journal imposes the
write order between transactions during checkpoint so that
each core can commit its transactions without being inter-
rupted by activities of other cores. In Z-Journal, the com-
mitted transaction will be considered as valid only after all
transactions preceding the transaction in the write order are
committed. Z-Journal checkpoints only the valid commits.

To realize this, Z-Journal should be able to identify the
ordering relationships between transactions, and to record
them in the transaction commit. We propose order-preserving
transaction chaining for this.

In Z-Journal, a transaction maintains the information about
the transactions having ordering relationship with it by record-
ing their unique identifiers into its chained-transaction lists
as shown in Figure 4. The number of lists in a transaction is

USENIX Association 2021 USENIX Annual Technical Conference 897

Core
0

Core
1

core 2 (BH 4, 5)
=> core 2 (commit start)
=> core 1 (BH 2, 3, 4)
=> core 0 (BH 0, 1, 3)
=> core 1 (BH 0)

Core
2

Running
TX (7)

J
H

B
H
2

J
H

B
H
3

Committing
TX (2)

J
H

B
H
4

Running
TX (4)

J
H

B
H
0

J
H

B
H
1

J
H

B
H
5

Empty

Empty

Empty Empty Empty
1, 7 1, 7

0, 4 2, 2

0, 4

Sequence
of operations

B
H
4

J
H

Chained-transaction list

Chained-transaction mark

Core 0 Core 1 Core 2

Core 0 Core 1 Core 2

Core 0 Core 1 Core 2

Figure 4: Example of order-preserving transaction chaining.

equal to the number of cores in a system; hence each core
can update its corresponding list in any transactions without
acquiring a lock. A transaction has a transaction identifier
(ID), which monotonically increases in a per-core journal.
Accordingly, a unique identifier of a transaction is a pair of a
core ID and a transaction ID. When a transaction has an entry
of (j, t) in its chained-transaction lists, the transaction is valid
only after transaction t of core j is committed.

When two running transactions share a buffer, as discussed
on Figure 3a, they should form a bi-directional transaction
chain. If a running transaction tries to write to a buffer that
belongs to a committing transaction as in Figure 3b, they
should form a uni-directional chain that the running transac-
tion follows the committing transaction.

For example, in Figure 4, buffer 4, written by transaction 2
of core 2, is about to be modified by transaction 7 of core 1.
Because transaction 2 of core 2 is already in the committing
state, core 1 leaves (2,2), which means transaction 2 of core
2, in core 1’s list of transaction 7. By this, an uni-directional
chain is formed between (1,7) and (2,2).

When core 0 writes to buffer 3, core 0 is allowed to do so
while buffer 3 remains in journal 1’s running transaction. In
such case, these two running transactions must be considered
as a single super-transaction. Therefore, core 0 leaves (0,4)
in core 0’s list of journal 1’s running transaction and (1,7)
in core 0’s list of journal 0’s running transaction at the same
time. This forms an all-or-nothing relationship on the two
running transactions. Later, when core 1 writes to buffer 0,
core 1 will leave (1,7) in core 1’s list of journal 0’s running
transaction and (0,4) in that of journal 1’s because core 1 is
not aware of the chained-transaction marks left by core 0 at
this moment.

When each core independently modifies non-shared files,
no chain will be created over their transactions. In this situa-

tion, the order in which the transactions are committed may be
different from the original write operation order. For example,
a process can perform metadata operations to different files
on two different cores, respectively, and the second may com-
mit when the first does not. The POSIX semantics does not
guarantee the durability of write operations before finishing
fsync of the corresponding file descriptor. Therefore, revers-
ing the commit order between the transactions that have no
ordering relationship does not violate the POSIX semantics.
Even when the first invokes fsync before the second com-
mits, the second may commit before the first and this is also
allowed in the POSIX semantics because fsync is supposed
to commit write operations only of a given file descriptor.

When a synchronous write from O_SYNC or O_DSYNC, is
issued, the transaction chains related to the current write, if
existing, should have been already formed or will be formed
by the current write. Therefore, after every write operation,
Z-Journal commits only the running transactions chained to
the running transaction of the current write. However, when a
core calls fsync, Z-Journal enforces all cores to commit their
running transactions because fsync is supposed to flush all
transactions related to the given file descriptor, and they can be
in any core without being chained to the running transaction
of the current core.

Since fsync does not add a new buffer head to the transac-
tion nor allocate journal space, the commit time takes up most
of the fsync latency. In Z-Journal, the commit operation must
be performed in all cores to finish fsync, but the delay from it
is not significant because the commit operation is executed in
parallel in each core. Rather, when fsync is called in parallel
on multiple cores, it is significantly advantageous in terms of
throughput because multiple fsync invocations, which must
be serialized in JBD2, can be parallelized in Z-Journal.

When a transaction enters the committing state, Z-Journal
proactively creates frozen copies of its buffers regardless of
their sharing states to prevent buffer update from waiting
for finishing the commit operation as shown in Figure 3c.
Through this proactive frozen copy approach, a committing
transaction is disconnected from the original buffers and ac-
cesses only their frozen copies. Therefore, in Figure 4, when
core 1 writes to buffer 4, buffer 4 can be inserted to transac-
tion 7 without waiting because transaction 2 of journal 2 is
using the frozen copy of buffer 4.

The proposed order-preserving transaction chaining
scheme enables Z-Journal to keep track of write orders among
transactions in a scalable and efficient way. Based on this, Z-
Journal puts off the enforcement of write-order constraints
to the checkpoint time and allows cores to independently
commit transactions regardless of their sharing status. Be-
cause the usual checkpoint interval is a lot longer than the
transaction life span, it is highly likely that almost all transac-
tions become valid at the time of the checkpoint. Therefore,
Z-Journal’s journal coherence mechanism to the checkpoint
duration is expected to be minimal.

898 2021 USENIX Annual Technical Conference USENIX Association

The proactive frozen copy approach enables the immediate
sharing of a buffer that is currently in use of a committing
transaction. Combined with the order-preserving transaction
chaining, this enables all transactions to simultaneously pro-
ceed to the checkpoint state without waiting. However, the
proactive frozen copy generates a significant amount of mem-
ory copy operations and increases memory consumption. In
addition, the order-preserving transaction chaining requires
additional writes to the lists, although they are lockless. Nev-
ertheless, because these overheads involve the in-memory
structures, not the on-disk journal structures, their impact on
the scalability and overall performance will be negligible
compared to the expected benefits.

3.3 Journal Coherence Checkpoint

The same as JBD2, in Z-Journal, there is a single kworker
thread in the system, and it periodically performs the check-
point operation. Also, the same as JBD2, a user-level thread
can conduct checkpoint when its write operation is delayed
due to the insufficient free journal space.

As stated earlier, not all committed transactions become ob-
jects of checkpointing in Z-Journal. To implement this, when
kjournald changes the state of a transaction to the checkpoint
state, it skips over setting dirty flags of transaction’s buffers.
Instead, when kjournald converts its running transaction to the
committing transaction, it checks whether the transactions in
its checkpoint transaction lists are valid. If a transaction turns
out to be valid, its buffers will be marked as dirty. Later, they
will be checkpointed by kworker, which periodically iterates
and checkpoints dirty buffers in the background.

For a committed transaction to be valid, its direct preced-
ing transactions must be not only committed but also valid.
Therefore, to check the validity of a committed transaction,
kjournald traverses the transaction chain graph, which was
created from the chained-transaction marks of the transaction
and its ancestors, and checks whether all of their ancestors are
valid. Every transaction has a field that shows its validity. If
every ancestor of a transaction is identified as valid during the
search, kjournald sets its validity field to prevent redundant
search over its ancestors in the future.

This validity check is performed not only by kjournald,
but also by user-level threads. When kjournald finds out an
uncommitted ancestor, it stops the search and starts processing
the next checkpoint transaction. However, in such a case, a
user-level thread will initiate committing the uncommitted
ancestor. It continues after the commit finishes because it
cannot proceed with its file system operation without freeing
journal space.

A valid transaction can be checkpointed anytime indepen-
dently from its chained transactions. Therefore, the check-
point order of valid transactions may be different from their
dependent transaction orders. However, the removal of a trans-
action from a journal can be allowed only after its chained

Core
0

Core
1

Core
2

TX
6

TX
3

Block
0

TX
4

Block
0

TX
7

Block
1

TX
8

Block
5

Block
1

Block
7

Commit
Block

Commit
Block

Commit
Block

2,7TS1

TS2

Figure 5: Snapshot of per-core journals after system crash.

transactions are all checkpointed because all chained transac-
tions must be replayed together during the recovery.

The commit operation is conducted using frozen copies.
However, the journal heads of a checkpoint transaction point
to their original buffers. Therefore, checkpointing a valid
transaction always updates the file system blocks with the
up-to-date images of dirty buffers regardless of the checkpoint
order.

3.4 Recovery Procedure

A committed transaction stored in a journal area has three
kinds of blocks the same as JBD2: transaction descriptor
blocks, data blocks, and a commit block. The transaction
descriptor blocks, which store the information about the fol-
lowing data blocks, are located at the head of a committed
transaction. Next, the data blocks are stored. Finally, The
commit block is written to indicate the successful completion
of the commit.

In Z-Journal, the commit block also stores the chained-
transaction lists of the transaction. In addition, the commit
block also has the timestamp [9] of the commit start time for
the global ordering of transaction commits across multiple
journals.

The recovery process first searches for the transactions with
the commit block from all journals to find the valid transac-
tions. After this, it creates the transaction order graphs based
on their chained-transaction lists. Similarly to the checkpoint
procedure, the recovery process traverses the graphs to find
valid transactions. Finally, it updates the file system blocks
with the latest buffer images from the valid transactions.

When a buffer redundantly appears in two valid transac-
tions connected through an ordered chain, the buffer image
from the latter transaction in the graph is the latest one, which
will be used for recovery. If two transactions are tied together
through a bi-directional chain constructed from sharing be-
tween two running transactions, a buffer cannot exist in both
transactions simultaneously. Finally, when two transactions

USENIX Association 2021 USENIX Annual Technical Conference 899

are not chained together but have the same buffer, the buffer
image of the latter transaction, which is determined by the
timestamp, will be chosen because this case means that the
latter transaction overwrote the buffer after the former trans-
action completely committed. These rules are transitively
applied to the cases involving multiple transactions.

Figure 5 shows the snapshot of the per-core journals after
a system crash. Transaction 8 of core 1 is invalid, although
it has the commit block because the transaction 7 of core 2,
which must precede it, is not written in the journal. Therefore,
it is discarded in the recovery process. Block 0 is in transac-
tion 3 and 4 of core 0, both of which are valid transactions.
However, transaction 4 has the larger transaction ID, block
0 of transaction 4 will be restored. Block 1 also appears in
transaction 7 of core 1 and transaction 6 of core 2 at the same
time. They do not have a dependency relationship. Therefore,
the recovery process compares the timestamps of both trans-
actions to determine the latest buffer image to restore, which
is that of transaction 6 of core 2 in this case.

3.5 Core-Aware Block Group Allocation

Block grouping is leverage inherited from the legacy spinning
disks to provide a faster seek time [5]. The block group allo-
cator of ext4 decides which block group a new inode or data
block should be allocated in. The current block group allo-
cator aims at increasing the access locality and minimizing
seek times to obtain performance benefit from the underlying
spinning disks [13].

The block group allocator of ext4 disperses the directory
allocation over as many block groups as possible. However,
when creating a file, it tries to place the inode of the new file
in the same or nearby block group with its parent directory. It
allocates file’s data blocks in the same block group with the
file inode when the file size is smaller than a predefined value,
stream_req. When larger than that, data blocks will be allo-
cated from the last block group in which the data blocks for a
large file were allocated. If the block group cannot accommo-
date the request, the block group allocator will sequentially
try the following block groups.

The current block group allocator does not benefit when
using a flash SSD because it does not have seek time. On the
contrary, it increases false sharing of metadata among cores
because the allocated blocks are unevenly distributed over a
few block groups, and the block group placement of files and
directories are blind to who will access them.

In Z-Journal, as sharing between transactions gets more
frequent, the lengths of transaction chains tend to be longer.
The large transaction order graphs will incur large checkpoint
overhead. Therefore, we propose a core-aware block group
allocator for ext4 that allows the group of blocks requested
by one core to be allocated exclusively to other cores as much
as possible.

When i-th core requests a block or metadata entry, the pro-

Specification

Processor
Model Intel Xeon Gold 6138 × 4 sockets

Number of Cores 20 × 4
Clock Frequency 2.00 GHz

Memory DDR4 2666 MHz 32GB × 16
Storage Samsung SZ985 NVMe SSD 800GB

OS Kernel Linux 4.14.78

Table 1: System configurations for evaluation.

posed block group allocator sequentially checks from block
group b number of block groups

number of cores c× i to find a block group that can
accommodate the requested item. The data block allocation
for a file is served in the same way regardless of the file size.

This simple core-aware block group allocator is proposed
for analyzing the benefit from reduced false sharing, not for
production use, and does not consider the long-term conse-
quences from the core-partitioned distribution of allocated
blocks and the interactions with other performance-sensitive
factors. The in-depth research on core-aware or sharing-aware
block group allocators is beyond the scope of this paper.

4 Evaluation

In this section, we evaluate Z-Journal to verify its perfor-
mance and scalability for various file system operations under
different sharing conditions. In addition, We also analyze the
overhead and benefit of the proactive frozen copy scheme and
Z-Journal’s fsync handling mechanism. Finally, we show the
overall file system performance and scalability of Z-Journal
for benchmarks imitating real-world workloads.

4.1 Evaluation Environment
Table 1 shows the system configurations used for the evalu-
ation. We implemented Z-Journal in the Linux kernel2 and
modified the ext4 file system to recognize per-core journals
and to use Z-Journal instead of JBD2. We also modified the
block group allocator of ext4 as described in Section 3.5. In
addition, we modified mke2fs to format an ext4 file system
to have multiple journals. The ext4 file system was modi-
fied so that the super block can have multiple journal control
structures and the mount operation recognizes them.

We compared the performance of Z-Journal (denoted as
ZJ on the graphs) with ext4 with JBD2 (denoted as JBD2
on the graphs), and ext4 without journaling (denoted as no-
journal on the graphs). Because we are not aiming at the
scalability of the overall file system, the performance of ext4
without journaling can be considered the best possible value
Z-Journal can achieve. We also measured the performance of
Z-Journal without proactive frozen copy (denoted as w/o PFC
on the graphs), and without core-aware block group allocator

2The source code of the Z-Journal-patched Linux kernel is available at
https://github.com/J-S-Kim/journal

900 2021 USENIX Annual Technical Conference USENIX Association

https://github.com/J-S-Kim/journal

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 4 10 20 30 40 50 60 70 80

M
 o

p
s/

se
c

#cores

No Journal
JBD2
ZJ (w/o PFC)
ZJ (w/o BGA)
ZJ

(a) Overwrite (low)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2 4 10 20 30 40 50 60 70 80
#cores

(b) Append (low)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 10 20 30 40 50 60 70 80
#cores

(c) Create (low)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

2 4 10 20 30 40 50 60 70 80
#cores

(d) Rename (low)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2 4 10 20 30 40 50 60 70 80
#cores

(e) Unlink (low)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2 4 10 20 30 40 50 60 70 80

M
 o

p
s/

se
c

#cores

(f) Overwrite (medium)

0.0

0.1

0.2

0.3

0.4

0.5

2 4 10 20 30 40 50 60 70 80
#cores

(g) Fsync (low)

0.04

0.05

0.06

0.07

0.08

2 4 10 20 30 40 50 60 70 80
#cores

(h) Create (medium)

0.04

0.05

0.06

0.07

0.08

2 4 10 20 30 40 50 60 70 80
#cores

(i) Rename (medium)

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

2 4 10 20 30 40 50 60 70 80
#cores

(j) Unlink (medium)

Figure 6: Throughput of FxMark write workloads while varying number of cores under different sharing conditions.

(denoted as w/o BGA on the graphs). All experiments were
conducted in the data=journal mode [18] (The results obtained
in the data=ordered mode are also presented in the appendix).

4.2 Scalability of File System Operations

To assess the scalability of Z-Journal when performing file
operations under various block sharing conditions, we used
FxMark [16]. The write workloads of FxMark consists of over-
write, append, fsync, create, unlink, and rename operations
executed in the low and medium sharing level, respectively.
In the low sharing condition, each core performs the target
file system operation for private files in its dedicated directory.
In the medium sharing level, the overwrite workload lets all
cores access the same file, and the other workloads perform
the given operation in the same directory. The append and
fsync workloads provide only the low sharing level mode.
Figure 6 shows the experiment results.

The favorable condition for Z-Journal against JBD2 is
where the file system scalably performs, but the resulting per-
formance is poor for the serialization at the journal layer. over-
write (low) barely modifies metadata and frequently writes to
data blocks of files stored in non-shared per-core directories.
Therefore, it is the most favorable workload in FxMark.

Z-Journal showed a close performance to no-journal for
overwrite (low) excluding the slow down from the double
writing overhead, and its performance scaled well to the num-
ber of cores. Z-Journal showed 41 times higher throughput
in comparison to JBD2 at 80 cores. However, in the case of
overwrite (medium), the file system scalability was poor due
to sharing, and the performance of the journal layer was also
poor for the same reason. Even in this case, Z-Journal gained
30% of performance improvement at 80 cores compared to
JBD2 through its parallel journaling mechanism.

In the case of append (low), the difference between no

journal and journal group was very large. The metadata ma-
nipulation overhead without journaling is very low because
delayed allocation is possible when allocating a new data
block. Z-Journal without BGA scaled gently up to 20 cores,
but performance decreased after that. This was due to in-
creased false sharing caused by the current block group allo-
cator. When the core-aware block group allocator was used,
the performance steadily increased up to 80 cores. Z-Journal
showed 3.34 times the performance of JBD2 at 80 cores.

For create (low) and rename (low), the journal’s scalability
bottleneck was not revealed due to the scalability problem
of the ext4 file system [16]. However, since commits were
performed in parallel, there were 33 % and 24 % performance
improvements at 80 cores, respectively. In terms of create
(medium), Z-Journal without BGA obtained performance im-
provement of up to 15 % at 10 cores and about 4 % at 80 cores.
Z-Journal showed similar performance to no-journal. Because
it allocated block groups for each core, although the files were
in the same directory, metadata sharing was greatly reduced,
and this leads to improved performance. This performance
gain was mostly from the file system, not from the journal
layer. This result shows that the block group allocator in a file
system is one of the major obstacles to scalability.

In the case of unlink, no-journal also showed scalability
characteristics similar to create and rename. The big differ-
ence in performance between no-journal and the journaling
group is from the heavy checkpointing operations occurring
in the measurement interval caused by the preparation stage,
in which the large file set was created, and their data blocks
were written. For unlink (medium), Z-Journal achieved the
maximum performance improvement of 42 % at 10 cores, and
38 % at 80 cores compared to JBD2.

In the fsync workload, where all cores write to their files
and call fsync, Z-Journal also showed an average throughput
improvement of 70 % in comparison to JBD2. When a core

USENIX Association 2021 USENIX Annual Technical Conference 901

 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600
 1700

2 4 10 20 30 40 50 60 70 80

M
iB

/s

#cores

JBD2
ZJ (w/o PFC)
ZJ

(a) Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 4 10 20 30 40 50 60 70 80

Ti
m

e
 (

se
c)

#cores

Copy time, ZJ (w/o PFC)
Waiting time, ZJ (w/o PFC)
Copy time, ZJ
Waiting time, ZJ

(b) Copy and waiting time

Figure 7: Throughput and journaling delay of SysBench.

called fsync in Z-Journal, all cores were suspended because
they had to commit their running transactions together. How-
ever, the commit of each core in Z-Journal was a lot faster
than that in JBD2 because per-core kjournald could commit
in parallel while a single kjournald had to process alone.

Z-Journal showed a scalability pattern similar to that no-
journal when the file system’s scalability was good in a low
sharing situation. Even when the scalability of the file sys-
tem was poor, its parallel committing scheme achieved supe-
rior performance compared to JBD2. However, in the work-
loads where shared writes and metadata updates frequently
occurred, the performance gain was diminished due to the
validity check procedure during the checkpoint process.

In the experiment for each file operation, most of the perfor-
mance was better when proactive force copy was not applied.
Only, low sharing create and medium sharing create achieved
an average of 4 % and 5 % improvement by applying proac-
tive force copy, respectively. It was because FxMark’s write
workloads mainly produced metadata sharing and not much
file sharing. If write accesses to the shared block do not occur
frequently, proactive force copy will generate only meaning-
less overhead.

4.3 Analysis of Design Components
We used SysBench [12] to analyze the performance of Z-
Journal and the impact of proactive force copy when data
block write sharing frequently occurs. SysBench performs
random overwrites on files in the file set created in advance.
Therefore, when the number of cores increases, the occur-
rences of metadata block and data block sharing increase as
well. We configured SysBench to randomly overwrite 4 KB
data over 80 files, each of which has 1 GB size.

Figure 7a shows the throughput measured while increasing
the number of cores, and Figure 7b shows the sum of the
journal waiting time and the time to create frozen copies
in Z-Journal and Z-Journal without proactive frozen copy,
respectively. The waiting time refers to the time for a running
transaction to wait for the committing transaction having the
shared buffers to finish.

Both proactive frozen copy and waiting for shared buffers
can be carried out by kjournald as well as user-level threads

 100

 200

 300

 400

 500

 600

 700

1 5 10 20 30 40 50 60 70 80

M
iB

/s

#cores

JBD2
ZJ

(a) Throughput

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 5 10 20 30 40 50 60 70 80

m
se
c

#cores

JBD2
ZJ

(b) 99th percentile latency

Figure 8: Throughput of fsync-invoking SysBench and tail
latency of fsync operations observed.

writing to files. However, proactive frozen copy is mostly
performed by kjournald in the background. Because it is off
from the write path, the proactive frozen copy has little impact
on the user-perceived performance. At 50 cores in Figure 7b,
the copy time in Z-Journal and the waiting time in Z-Journal
without PFC are similar, but unlike Z-Journal without PFC
waiting in the write path, proactive frozen copies are mostly
conducted by kjournald. Therefore, Z-Journal showed a 22 %
better performance than Z-Journal without PFC.

The sudden increase in waiting time at 50 cores in Fig-
ure 7b was because, as mentioned in Section 3.1, long chains
of dependent transactions were created. On the other hand,
the copy time did not significantly increase even though the
throughput of Z-Journal increased. This is because SysBench
writes to the same file set repeatedly, and therefore, the num-
ber of shared buffers is limited.

As a result, as shown in Figure 7a, up to 40 cores Z-Journal
without PFC outperformed Z-Journal by an average of 13
%. However, after 50 cores, proactive frozen copy improved
the average throughput by 19 %. Based on this observation,
we conclude that the proactive frozen copy scheme should be
applied adaptively to the degrees of parallelism and cross-core
file sharing.

To assess the throughput and latency of fsync on Z-Journal,
we altered SysBench so that it calls fsync once every 100
write operations, and measured its throughput and 99th per-
centile tail latency of the fsync operation. Considering that
fsync is intensively performed while cores are writing on
a shared data set, this can be regarded as a notably hostile
condition for Z-Journal.

As shown in Figure 8a, Z-Journal still performed better
than JBD2 at all core counts. However, as the number of
cores increased, unlike the results of the original SysBench,
the throughput of Z-Journal also decreased similar to JBD2
because the validity check overhead of kjournald offset a
significant part of the performance improvement earned from
parallelized journaling. However, as shown in Figure 8b, the
tail latency of fsync on Z-Journal was significantly better
than that on JBD2. It was 18 % shorter at 80 cores even
though the difference between JBD2 and Z-Journal narrowed
as the number of cores increased as expected in Section 3.2.

902 2021 USENIX Annual Technical Conference USENIX Association

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

2 4 10 20 30 40 50 60 70 80

M
B

/s
e
c

#cores

JBD2
JBD2 (with BGA)

ZJ (w/o BGA)
ZJ

(a) fileserver

 0

 200

 400

 600

 800

 1000

 1200

 1400

2 4 10 20 30 40 50 60 70 80
#cores

(b) varmail

Figure 9: Throughput of Filebench workloads.

4.4 Overall File System Performance

To assess the performance impact of Z-Journal in the envi-
ronment, which has a mixture of reads, writes, and metadata
operations, we used the fileserver and varmail workloads of
Filebench [21,23]. fileserver repeatedly conducts create, write,
append, read, and deletion operations over a file set of rel-
atively large files. varmail also continually performs create,
read, append, and fsync operations over a file set of small
files.

Figure 9a shows the throughput of fileserver. Since a large
number of cores repeatedly created and updated files in a
small number of directories, the throughput of JBD2 peaked
at 10 cores and decreased as the number of cores increased.
Z-Journal showed significantly better performance than JBD2
in every case. However, in the absence of BGA, false sharing
increased rapidly with the increase in the number of cores, and
the gap between the throughput of Z-Journal and that of JBD2
gradually shrunk as the number of cores increased. BGA
significantly reduced false sharing and enabled Z-Journal to
achieve 315 % performance improvement. When BGA was
applied to JBD2, no throughput improvement was observed.
This tells that the scalability of JBD2 was not limited only by
metadata sharing. Z-Journal performed best at 20 cores, and
the performance gently declined beyond that point due to the
NUMA effect [7] resulting from the rapid increase in remote
memory access across domains.

Figure 9b shows the throughput of varmail. varmail also
showed a similar throughput change pattern with fileserver,
and Z-Journal improved performance by 58 % at 80 cores.
However, unlike fileserver, varmail frequently called fsync,
and the performance improvement for fsync by Z-Journal
is smaller than that for other file operations. Therefore, the
performance gap between JBD2 and Z-Journal was smaller
than that in fileserver. The effect of false sharing reduction
from applying BGA was mostly concealed by the frequent
suspension for processing fsync. As a result, BGA could
obtain only 9 % performance improvement in comparison to
Z-Journal without BGA. Rather surprisingly, when BGA was
applied to JBD2, the performance deteriorated by up to 26
%. This was because the number of committed blocks was
significantly amplified from reduced metadata sharing.

5 Related Work

Min et al. studied the scalability of file systems on manycore
systems and left insights to design scalable file systems [16].

SpanFS [8] achieved scalability by partitioning files and
directories into multiple domains. While this partitioning en-
ables parallel write operations to each domain, careful data
partitioning is important to achieve scalability. When two
cores each write to two files in the same domain, SpanFS
needs to serialize the write operations although they are inde-
pendent of each other. In contrast, Z-Journal does not require
explicit data partitioning and minimizes the serialization of
journaling operations.

IceFS [15] also partitioned files and directories for perfor-
mance isolation but its main goal was not multi-core scala-
bility since multi-threads on a single partition (called a cube)
can cause scalability bottleneck.

ScaleFS [2] decouples an in-memory file system from an
on-disk file system and allows scalable file system operations
since highly concurrent data structures are used in the in-
memory file system. File system modifications are flushed
to on-disk file system structures through per-core parallel
journaling. However, the dual file system approach with the
integrated journal layer of ScaleFS cannot be applied to the
existing file systems. For example, journaling in ScaleFS
can have multiple images of a buffer in memory by logging
changes to the buffer per-core. This allows parallel journaling.
However, in ext4 and most other conventional file systems, a
buffer in memory must be unique and up-to-date. Z-Journal
maintains this invariant while allowing parallel commits.

A few studies have addressed the scalability bottleneck
caused by coarse-grained locking during write operations.
They proposed to use a fine-grained range lock to increase
the concurrency of write operations [10, 14]. The use of a
file-grained lock is complementary to our approach.

iJournaling [17] proposed to use a per-file journal trans-
action for fsync. Accordingly, only necessary blocks need
to be flushed to reduce the fsync latency. Since the per-file
transaction uses a logical logging scheme, concurrent fsync
processing can be possible. However, it also maintains the
original file system journaling, causing serialization during
write operations.

Son et al. [19] proposed to improve the concurrency of
JDB2 by aggressively using concurrent and lock-less data
structures and multi-threaded journal writes. While their ap-
proach enhanced the concurrency of journaling, the inherent
serialization from committing to a single journal area remains.

BarrierFS [24] improved the concurrency of journaling by
allowing multiple committing transactions in a journal file,
which improves the concurrency of journaling. However, it
has a limited concurrency due to waiting-based dependency
handling, which is eliminated by Z-Journal’s journal coher-
ence mechanism.

The journaling mechanism for block devices is unsuitable

USENIX Association 2021 USENIX Annual Technical Conference 903

for NVM due to the write amplification of metadata journal.
Chen et al. [3] proposed a fine-grained metadata journal mech-
anism optimized for journaling in NVM aiming at reduction
in write amplifiction.

Sul et al. [20] proposed an NVM-optimized journaling
scheme in which the use of parallel journals is similar to our
proposal. However, its journaling operation aggressively ex-
ploits NVM’s byte-addressable characteristic, which hinders
its application to block devices.

Koo et al. [11] analyzed blocking of I/O operations due
to the transaction in the locked state. To resolve this issue,
they proposed a transaction lock-up elimination scheme that
optimizes the transaction commit procedure.

6 Conclusion

Most modern file systems use the journal to guarantee
crash consistency. However, because conventional journaling
schemes are performed serially from transaction generation
in memory to journal commit on disk, it acts as a serious
scalability bottleneck when file system operations are run
simultaneously in many cores.

In this paper, we proposed Z-Journal, a scalable journal
design using per-core journals, which retains the interface of
JBD2. Z-Journal includes a journal coherence mechanism,
which provides complete parallelism for unshared buffer mod-
ification and guarantees crash consistency by order-preserving
transaction chaining for shared buffer modification.

Our evaluation showed that Z-Journal achieves a steady
increase in throughput in journal-bottlenecked workloads,
showing up to approximately 4000 % improvement in com-
parison to JBD2. It also showed 29% throughput improvement
on average even under unfavorable conditions by allowing
parallel journaling.

Acknowledgements

We thank the anonymous reviewers and our shepherd, Rusty
Sears, for their valuable suggestions for improving this paper.

This research was supported by Samsung Electronics, and
by the Institute of Information and Communications Tech-
nology Planning and Evaluation funded by the Ministry of
Science and ICT (MSIT), Korean Government, (Research on
High Performance and Scalable Manycore Operating System)
under Grant 2014-3-00035.

References

[1] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces, chap-
ter 41, page 4. Arpaci-Dusseau Books, 1.00 edition,
August 2018.

[2] Srivatsa S Bhat, Rasha Eqbal, Austin T Clements,
M Frans Kaashoek, and Nickolai Zeldovich. Scaling a
file system to many cores using an operation log. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles (SOSP), pages 69–86. ACM, 2017.

[3] Cheng Chen, Jun Yang, Qingsong Wei, Chundong Wang,
and Mingdi Xue. Fine-grained metadata journaling on
NVM. In 32nd Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–13. IEEE, 2016.

[4] F. Chen, R. Lee, and X. Zhang. Essential roles of ex-
ploiting internal parallelism of flash memory based solid
state drives in high-speed data processing. In 2011 IEEE
17th International Symposium on High Performance
Computer Architecture (HPCA), pages 266–277, 2011.

[5] Kevin D Fairbanks. An analysis of Ext4 for digital
forensics. Digital investigation, 9:S118–S130, 2012.

[6] Mark Fasheh. OCFS2: The Oracle clustered file system,
version 2. In Proceedings of the 2006 Linux Symposium,
volume 1, pages 289–302. Citeseer, 2006.

[7] Fabien Gaud, Baptiste Lepers, Justin Funston, Moham-
mad Dashti, Alexandra Fedorova, Vivien Quéma, Re-
naud Lachaize, and Mark Roth. Challenges of mem-
ory management on modern NUMA system. Queue,
13(8):70–85, 2015.

[8] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu,
Lian Du, Shuai Ma, and Jinpeng Huai. SpanFS: a scal-
able file system on fast storage devices. In 2015 USENIX
Annual Technical Conference (ATC), 2015.

[9] Sanidhya Kashyap, Changwoo Min, Kangnyeon Kim,
and Taesoo Kim. A scalable ordering primitive for
multicore machines. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, New York, NY, USA,
2018. Association for Computing Machinery.

[10] June-Hyung Kim, Jangwoong Kim, Hyeongu Kang,
Chang-Gyu Lee, Sungyong Park, and Youngjae Kim.
pNOVA: Optimizing shared file I/O operations of NVM
file system on manycore servers. In Proceedings of the
10th ACM SIGOPS Asia-Pacific Workshop on Systems
(APSYS), pages 1–7, 2019.

[11] Kyoungho Koo, Yongjun Park, and Youjip Won.
LOCKED-Free journaling: Improving the coalescing
degree in EXT4 journaling. In Proceedings of IEEE
Non-Volatile Memory Systems and Applications Sympo-
sium (NVMSA), 2020.

[12] Alexey Kopytov. SysBench: A system performance
benchmark, 2004.

904 2021 USENIX Annual Technical Conference USENIX Association

[13] Aneesh Kumar KV, Mingming Cao, Jose R Santos, and
Andreas Dilger. Ext4 block and inode allocator improve-
ments. In Linux Symposium, volume 1, 2008.

[14] Chang-Gyu Lee, Hyunki Byun, Sunghyun Noh,
Hyeongu Kang, and Youngjae Kim. Write optimiza-
tion of log-structured flash file system for parallel I/O
on manycore servers. In Proceedings of the 12th ACM
International Conference on Systems and Storage (SYS-
TOR), pages 21–32, 2019.

[15] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. Physical disentanglement in a container-based
file system. In 11th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), pages
81–96, 2014.

[16] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and
Taesoo Kim. Understanding manycore scalability of file
systems. In 2016 USENIX Annual Technical Conference
(ATC), 2016.

[17] Daejun Park and Dongkun Shin. iJournaling: Fine-
grained journaling for improving the latency of fsync
system call. In 2017 USENIX Annual Technical Confer-
ence (ATC), 2017.

[18] Vijayan Prabhakaran, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Analysis and evolution of
journaling file systems. In USENIX Annual Technical
Conference, General Track, volume 194, pages 196–215,
2005.

[19] Yongseok Son, Sunggon Kim, Heon Y Yeom, and Hyuck
Han. High-performance transaction processing in jour-
naling file systems. In 16th USENIX Conference on File
and Storage Technologies (FAST), 2018.

[20] Woong Sul, Kihwang Kim, Minsoo Ryu, Hyungsoo
Jung, and Hyuck Han. Fast journaling made simple
with NVM. In Proceedings of the 35th Annual ACM
Symposium on Applied Computing (SAC), pages 1214–
1221, 2020.

[21] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A flexible framework for file system bench-
marking. USENIX; login, 41(1):6–12, 2016.

[22] Stephen C Tweedie et al. Journaling the Linux ext2fs
filesystem. In The Fourth Annual Linux Expo. Durham,
North Carolina, 1998.

[23] Andrew Wilson. The new and improved filebench. In
Proceedings of 6th USENIX Conference on File and
Storage Technologies (FAST), 2008.

[24] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek
Oh, Seongbae Son, Jooyoung Hwang, and Sangyeun
Cho. Barrier-enabled IO stack for flash storage. In 16th
USENIX Conference on File and Storage Technologies
(FAST), 2018.

USENIX Association 2021 USENIX Annual Technical Conference 905

Appendix

We also evaluated Z-Journal in the data=ordered mode. The
performance gain from Z-Journal was less in the ordered
mode than in the journal mode because the amount of buffers
written to the journals was significantly smaller in the ordered
mode. However, the patterns of performance improvement
from applying Z-Journal in the ordered mode were similar to
that in the journal mode. Figure 10 and Figure 11 show the
ordered mode counterparts of Figure 6 and Figure 9, respec-
tively. These are not included in Section 4 for the readability
of the graphs and the limited space.

 0
 10
 20
 30
 40
 50
 60
 70
 80

2 4 10 20 30 40 50 60 70 80

M
 o

p
s/

se
c

#cores

No Journal
JBD2
ZJ

(a) Overwrite (low)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

2 4 10 20 30 40 50 60 70 80

M
 o

p
s/

se
c

#cores

(b) Overwrite (medium)

0.4

0.6

0.8

1.0

1.2

1.4

2 4 10 20 30 40 50 60 70 80
#cores

(c) Append (low)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 10 20 30 40 50 60 70 80
#cores

(d) Fsync (low)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2 4 10 20 30 40 50 60 70 80
#cores

(e) Create (low)

0.05

0.06

0.07

0.08

2 4 10 20 30 40 50 60 70 80
#cores

(f) Create (medium)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

2 4 10 20 30 40 50 60 70 80
#cores

(g) Rename (low)

0.04

0.05

0.06

0.07

0.08

2 4 10 20 30 40 50 60 70 80
#cores

(h) Rename (medium)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2 4 10 20 30 40 50 60 70 80
#cores

(i) Unlink (low)

0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22

2 4 10 20 30 40 50 60 70 80
#cores

(j) Unlink (medium)

Figure 10: Throughput of FxMark write workloads while
varying number of cores under different sharing conditions.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

2 4 10 20 30 40 50 60 70 80
#cores

JBD2
ZJ

(a) fileserver

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

2 4 10 20 30 40 50 60 70 80
#cores

(b) varmail

Figure 11: Throughput of Filebench workloads.

906 2021 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background and Motivation
	Design of JBD2
	Scalability Bottlenecks in JBD2

	Our Approach: Z-Journal
	Analysis of Journal Coherence Problem
	Journal Coherence Commit
	Journal Coherence Checkpoint
	Recovery Procedure
	Core-Aware Block Group Allocation

	Evaluation
	Evaluation Environment
	Scalability of File System Operations
	Analysis of Design Components
	Overall File System Performance

	Related Work
	Conclusion

