
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

XFUSE: An Infrastructure for
Running Filesystem Services in User Space

Qianbo Huai, Windsor Hsu, Jiwei Lu, Hao Liang, Haobo Xu, and
Wei Chen, Alibaba Group

https://www.usenix.org/conference/atc21/presentation/hsu

XFUSE: An Infrastructure for Running Filesystem Services in User Space

Qianbo Huai∗, Windsor Hsu∗, Jiwei Lu∗, Hao Liang†, Haobo Xu∗ and Wei Chen∗
∗Alibaba Group †Alibaba Group

Sunnyvale, California Shenzhen, Guangdong
USA China

Abstract
Implementing the filesystem in user space reduces devel-

opment complexity [28, 30] and decreases dependency on
the underlying OS platform. Implementing the filesystem at
the user level as opposed to inside the OS kernel, however,
has traditionally meant lower performance [11, 17, 22]. This
performance overhead is increasingly limiting with high per-
formance storage devices based on new persistent memory
technology (e.g. 3D XPoint [13]) and advanced networking
techniques (e.g. RDMA [14]). User space file systems have
also been associated with poor reliability, availability and ser-
viceability (RAS) characteristics [26]. As a result, there is a
tendency to consider user space filesystems as prototypes and
proof-of-concepts. In this paper, we systematically analyze
the concerns with deploying user space filesystem to provide
production file storage services. We present XFUSE, a filesys-
tem in user space framework that addresses the performance
and RAS concerns, and that enables file storage services to
be effectively deployed at the user level. Our performance
analysis indicates that XFUSE enables filesystem requests
made through standard kernel interfaces to be processed at
the user level with latency in the 4 microseconds range, and
offers throughput exceeding 8 GB/s.

1 Introduction

User space code is generally easier to develop and maintain
than kernel code. Thus filesystems with advanced function-
ality tend to be developed as user space filesystems (e.g.
[3, 5, 24, 31, 32]). However, because filesystems are tradi-
tionally incorporated into the OS kernel, applications have
been largely developed using standard kernel filesystem in-
terfaces. This means that user space filesystems will incur
additional performance overhead from passing messages be-
tween the kernel and the user space filesystem [11, 17, 22].
This overhead is especially limiting with the use of high per-
formance storage devices and networking that routinely offer
latency in the microseconds range and throughput of several
GB/s [13, 14].

The use of user level networking [16, 18] and I/O helps
to reduce the overall impact of crossing into user space to
reach the filesystem but the performance hit is still signifi-
cant. In particular, metadata operations such as stat and other
operations that benefit from filesystem caching may be fast
in kernel mode filesystems, but will be slower in user space
filesystems due to additional communication cost between
the operating system kernel and user space file systems [22].

Moreover, ensuring reliability, availability and serviceabil-
ity (RAS) for user space filesystems has additional complexity
because the rest of the system may continue to operate when
the filesystem is down. For example, if a user space filesystem
aborts, the application using the filesystem may continue to
execute and wait for its requests to be completed. This par-
tial failure possibility requires additional handling but it also
provides a basis for the user space filesystem to be upgraded
without disrupting the application. Such non-disruptive up-
grade facilitates the deployment of new releases in production
environments. There has been some previous work [26] on
supporting restartable user space filesystems. However, the
prior work requires significant kernel changes and do not
support advanced filesystem features such as direct I/O and
multi-threading.

Workloads are increasingly executed on the cloud in virtual
machines(VMs) and sandboxed containers [4, 8, 12] to enable
efficient resource utilization and increase agility. Cloud ser-
vice providers can offer additional storage services to their
customers through a storage client such as a filesystem gate-
way to object storage, optimized NAS client, etc. For the
aforementioned reasons, it is advantageous to implement this
storage client in user space. Furthermore, if the storage client
can be deployed outside of the customer VMs and in the
VM host, cloud service providers will be able to clearly sepa-
rate the storage client from the user VM and independently
manage the client as part of the storage service. There has
been some recent work in this area. For example, virtio-fs [9]
builds upon FUSE to allow VMs to access a host filesystem
directory.

In this paper, we focus on enabling the deployment of pro-

USENIX Association 2021 USENIX Annual Technical Conference 863

duction storage services using user space filesystems. We
evaluate prior approaches to understand what remains to be
done to make this a reality. We propose XFUSE, a software
framework patterned after FUSE [7] that addresses the per-
formance and RAS concerns generally associated with user
space filesystems. We believe that the improvements that
XFUSE provides over FUSE can be applied to FUSE-based
approaches such as virtio-fs [9] to better support running the
user space filesystem in the VM host as opposed to inside the
VMs that are running user applications.

Our contributions include:

• Systematically analyze the path a kernel filesystem re-
quest takes from being issued by an application to being
handled by a user space filesystem and have the results
communicated back to the application.

• Design and implement an optimized framework for user
space filesystem that is backward compatible with FUSE
and that takes advantage of the growing number of cores
available on modern systems to achieve low latency and
high throughput for fast storage devices.

• Demonstrate that such a framework enables kernel
filesystem requests to be processed in user space with
latency in the 4 microseconds range and throughput ex-
ceeding 8 GB/s.

• Extend the framework to provide features such as sup-
port for online upgrade and crash recovery that are criti-
cal for deploying user level filesystems in production.

The rest of this paper is organized as follows. In the next
section, we survey related work. In Section 3, we introduce
the design and implementation of XFUSE. In Section 4, we
evaluate XFUSE performance. Section 5 concludes this paper.

2 Background and Related Work

FUSE is a widely adopted framework to support a filesystem
in user space [7]. Figure 1 shows its highlevel architecture.
FUSE consists of a Linux kernel module and a user space li-
brary that is linked to a user space filesystem daemon process.
Conceptually, the FUSE kernel module consists of two parts:
filesystem handler which is the code that processes filesystem
operations including the code that invokes VFS, and device
handler which interacts with the user space filesystem via a
special device, /dev/fuse.

The filesystem handler and device handler run in different
process contexts. The former runs in the context of the appli-
cation process while the latter runs in the filesystem daemon
process context. Communication between the two parts is
coordinated through kernel events and incurs context switch
cost. More specifically, there is a context switch when an ap-
plication process sends a filesystem request to the filesystem
daemon process, and there is another context switch when

Kernel Module fuse.ko

Filesystem
Handler

Filesystem

Libfuse

User
Application FUSE API

Device
Handler

Daemon Process

Syscall

Figure 1: FUSE (and XFUSE) Architecture.

the filesystem daemon process responds to the application’s
request. Therefore each filesystem operation submitted by the
application incurs at least two context switches with FUSE.
In addition, FUSE has a single pending request queue from
which threads of a filesystem daemon process pick up incom-
ing requests for processing. Under load, this global queue
becomes a source of contention.

There has been a large body of work on analyzing and
improving the performance of FUSE (e.g. [11, 17, 22, 30]).
ExtFUSE [11], for instance, extends FUSE so that a filesys-
tem in user space can register a piece of simple code in the
OS kernel to handle selected filesystem operations without in-
curring a context switch. There have also been alternatives to
FUSE. For example, AVFS [1] uses the environment variable
LD_PRELOAD [15, 21] to intercept libc POSIX API entry
and invoke filesystem operations without context switch.

More recently, ZUFS [10] has been proposed as an alternate
framework for user space filesystem that eliminates one data
copy by having the kernel module copy data directly from the
source to the destination. ZUFS and XFUSE share many of
the same performance goals. We attempted to evaluate ZUFS
but encountered issues. Our queries, as well as those from
others, on the ZUFS project page on GitHub went unanswered.
It appears that ZUFS is no longer maintained.

There has also been work on implementing the filesys-
tem as an embeddable library running in user space (e.g.
NVFUSE [6]) and on providing the filesystem as a separate
user space process that communicates with each application
through a private communication channel (FSP [19]). These
approaches require applications to be rebuilt. They also by-
pass the VFS layer which provides important functionality
such as as permission checking, file sharing coordination and
buffer management.

The idea of transparently restarting the filesystem upon
failure is explored in [25] and a specific framework that pro-
vides support for restartable user space filesystems is proposed
in [26]. This framework, however, requires significant kernel

864 2021 USENIX Annual Technical Conference USENIX Association

changes and does not support advanced filesystem features
such as direct I/O and multi-threading [26]. The shadow driver
concept proposed in [27] inspired us to keep track of incom-
ing requests and eventually led to the crash restart algorithm
proposed in this paper.

There has been a lot of recent interest in enabling VMs
(and sandboxed containers [4, 8, 12]) to share a host directory.
In particular, virtio-fs [9] builds upon FUSE to allow a VM
to access files on the host. It provides a direct access (DAX)
mode whereby data in the host page cache can be mapped into
a VM and then accessed directly from within the VM. For
non-DAX mode operations, virtio-fs is essentially FUSE with
virtio [23] as the channel between the filesystem and device
handlers. From this perspective, we believe that the improve-
ments XFUSE provides over FUSE should be applicable to
virtio-fs as well.

3 XFUSE

XFUSE is designed to achieve low latency and high through-
put for fast storage devices, and scale with the increasingly
large number of CPU cores available in today’s systems. Be-
sides supporting user space filesystems in general, XFUSE
is specifically designed for deploying the following types of
filesystems:

• Filesystems that use high speed storage devices such
as those based on persistent memory technology. To
effectively leverage the very low read and write latency
(microseconds range) that these devices offer, software
overhead must not dominate.

• Filesystems that use SSDs and distributed storage sys-
tems based on high performance network technology
such as RDMA. Such storage systems can deliver low
I/O latency (on the order of 100 microseconds) and high
throughput (several GB/s).

• Filesystems that are used in a production environment
where availability of service is critical and disruption
of users should be kept to a minimum. In particular,
recoverable faults and maintenance activities such as
filesystem upgrade should not materially impact service
to the user.

FUSE has been widely adopted to deploy user space filesys-
tem. Thus XFUSE is designed to be backward compatible
with FUSE. To end users, an XFUSE mount is almost iden-
tical to a FUSE mount. To filesystem developers, XFUSE
supports the FUSE API and extends it to enable additional
functionality such as support for online upgrade and crash
restart. Just as with FUSE, XFUSE consists of a kernel mod-
ule, xfuse.ko, and a library, libxfuse.a, that needs to be linked
into the filesystem daemon.

3.1 Performance

Invoke
wait for

condition

Is
condition

true?

Is wait <
busy-wait
period?

Wait on
event

CPU yield

Return

No

Yes

No

Yes

Figure 2: Busy-Event Wait.

3.1.1 Adaptive Waiting

XFUSE is patterned after FUSE [7] and has a similar architec-
ture. Figure 1 can be used to describe the XFUSE architecture
as well. From the figure, a FUSE request flows from the
user application to the filesystem daemon process through the
filesystem handler and the device handler. After the filesystem
has processed the request, it sends a response in the reverse
direction through the device handler and the filesystem han-
dler. FUSE uses kernel events to coordinate the flow between
the filesystem and device handlers. The latency for a FUSE
request thus includes the time required by the filesystem dae-
mon to handle the request and the time for two event waits -
one by the device handler to obtain an incoming request and
the second by the request handler to obtain the response from
the filesystem daemon.

A kernel event notification takes on the order of a few
microseconds to be delivered. For requests that can be handled
quickly by the filesystem, the overhead of two event waits is
very costly. For example, the latency of filesystem metadata
requests that operate on in-memory data is dominated by the
two event waits. The event waits also mask the low-latency
benefit provided by high performance storage devices such as
those based on persistent memory technology.

USENIX Association 2021 USENIX Annual Technical Conference 865

To avoid this overhead, XFUSE introduces an initial period
of busy waiting or busy polling to the event wait. This wait
scheme is depicted in Figure 2. If the condition being sought
by a process is satisfied during the busy waiting period, the
process continues without incurring the cost of an event wait.
However, if the condition being sought is not met within the
busy-wait period, the scheme falls back to regular event wait.
We term this scheme busy-event wait.

With XFUSE, the device handler running in a filesystem
daemon thread checks for new requests in a busy loop for a
short period of time. If a pending request arrives during this
busy waiting period, it is found and handled immediately by
the daemon thread. If no new request arrives within the short
period of time, the thread falls back to waiting on an event
that is signalled whenever a request is submitted. The device
handler sends a reply back to the filesystem handler in the
same manner. If the filesystem daemon can handle a request
fast enough, the filesystem handler may still be busy waiting
when the reply becomes available. In this case, the end-to-end
latency as observed by the application process can be as low
as 3-4 microseconds.

The effectiveness of busy waiting has some dependence
on whether the application threads and filesystem daemon
threads are running on the same or different CPUs. We evalu-
ate this factor in Section 4.1.2. In setting the busy-wait period,
there is a tradeoff between request latency and CPU utiliza-
tion which affects throughput. The busy-wait period should
be set based on the performance characteristics of the filesys-
tem and the underlying storage system. Later in Section 4.1.1,
we evaluate this parameter and find that a busy-wait period
on the order of 10 microseconds achieves a good balance for
systems based on persistent memory technology as well as
those based on SSD.

To further reduce CPU consumption and potentially in-
crease throughput, we can dynamically adjust the busy-wait
period based on the latency observed in the system. In particu-
lar, if the actual time required to service a request exceeds the
busy-wait period, attempting to busy wait is futile and only
wastes CPU resources. We thus experimented with a simple
scheme that dynamically disables busy waiting whenever the
last observed latency exceeds the busy-wait period by more
than the net overhead of event wait, and reenables it when-
ever the last observed latency falls below this threshold. We
refer to this scheme as adaptive busy-event wait. Results re-
ported in Section 4.1.1 show that adaptive busy-event wait is
very effective at avoiding unnecessary busy waiting, thereby
increasing throughput.

3.1.2 Increased Parallelism

With the growing number of cores available on modern sys-
tems, increasing the number of requests that can be processed
in parallel is the key to increasing throughput. XFUSE en-
ables multiple filesystem daemon threads to work on different

requests in parallel, and supports the asynchronous processing
model to enable each thread to handle multiple concurrent
requests.

More specifically, XFUSE provides multiple communi-
cation channels between the filesystem handler and device
handler. Each channel has two queues. One is the free queue
containing request slots that can be used for new requests.
The other is the processing queue containing requests that
are inflight. The filesystem handler selects a channel for an
incoming request using a channel selection policy. At the
other end of each channel is a filesystem daemon thread wait-
ing for new requests. There can be multiple requests in the
processing queue per daemon thread. XFUSE also ensures
that threads working on different channels do not have lock
contention between them. The number of channels and the
number of request slots per channel determine the maximum
concurrency that XFUSE can deliver to the filesystem daemon.
In order to make effective use of the multiple channels and
associated filesystem daemon threads that XFUSE supports,
thread placement and channel selection policies are important
considerations. We discuss and evaluate these policies later
in Sections 4.1.2 and 4.1.3.

In contrast, FUSE uses a single request queue to hold in-
coming requests. When there are many concurrent accesses,
the single request queue may become a source of contention
and limit the throughput that FUSE can achieve. As we shall
see later in Section 4, XFUSE is able to drive much higher
throughput than FUSE through increased parallelism.

3.2 RAS

3.2.1 Online Upgrade

Scheduling service downtime to perform an upgrade is very
disruptive in production settings. By operating outside of the
kernel, a user space filesystem can potentially be upgraded
without disrupting the application. Such a non-disruptive or
online upgrade capability will ease the introduction of new
features and big fixes, and facilitate the deployment of user
space filesystems in production environments.

When a filesystem daemon terminates, all the file descrip-
tors to the special device /dev/fuse are closed. This leads the
kernel to unmount the filesystem automatically. In order to
keep the kernel from unmounting the filesystem during an
upgrade of the filesystem daemon, XFUSE provides a monitor
service to hold all the XFUSE device file descriptors while the
old filesystem daemon exits and a new daemon executing the
upgraded software takes over to serve running applications.

XFUSE includes a library, libxfuse to facilitate the interac-
tion between the filesystem daemon and the XFUSE monitor
service. Libxfuse extends the FUSE libfuse library with new
functionalities and APIs that allow user space filesystems
built with it to support online upgrade.

Figure 3 illustrates the XFUSE-assisted filesystem online

866 2021 USENIX Annual Technical Conference USENIX Association

Monitor
service

xfuse.ko

libxfuse

Filesystem

libxfuse

Filesystem

CLI 1. Install new package

2. Start

87

5. Stop fetching requests

6. Finish fetched requests,
Save states

4 3

9. Load states

10. Start to fetch requests

Upgraded instancePrevious instance

Kernel

Holds fds to
xfuse device

Figure 3: Filesystem Online Upgrade Workflow.

upgrade workflow. Figure 4 shows the XFUSE state transi-
tions in both filesystem daemons during the upgrade process.
The numbered actions in the two figures match. Certain de-
tails, such as error handling, are omitted to reduce clutter.

1. The upgrade workflow starts with an operation to update
the filesystem software package. In Figure 3, this opera-
tion is triggered through a CLI (command line interface)
command to install the new software package.

2. After installation, a filesystem daemon process running
the new software is started. This filesystem daemon ini-
tializes its XFUSE stack with parameters to interact with
the XFUSE monitor service, and provides libxfuse with
a number of callback functions. The usage of those call-
backs is depicted in Figure 4.

3. Upon starting, libxfuse connects to the XFUSE mon-
itor service on behalf of the filesystem daemon and
fetches all the file handles to the XFUSE device. As
discussed earlier, having the monitor service create and
hold XFUSE device handles ensures that the filesystem
service can remain online to applications during the up-
grade.

4. When a filesystem daemon is running, it maintains a
communication channel with the XFUSE monitor ser-
vice. Through this channel, the monitor service notifies
the current filesystem daemon that it is being upgraded.

5. Libxfuse in the current filesystem daemon stops fetching
new requests from the kernel. However, XFUSE device
read operations issued moments earlier may still be re-
turning from the kernel. The filesystem may also be
replying to just-processed requests. Libxfuse waits for
all pending requests to drain.

6. The filesystem continues processing requests. When libx-
fuse is certain that there are no more inflight requests, it
notifies the filesystem to save its transient state. As an

6. Callback FS to save states

Starting

Loading

Serving

Pausing

Paused Starting

Loading

Serving

Pausing

Paused

2. Start

4. Callback FS to prepare

8. Callback FS to load states

10. Fetching requests from kernel

11. Upgrade succeeded

Upgrade failed
Callback FS to resume

Previous instance Upgraded instance

Figure 4: State Transitions during Filesystem Online Upgrade.

optimization, libxfuse can notify the filesystem earlier in
Step 4 to start preparing for an upgrade so as to reduce
the time needed to save the transient state after incoming
requests are paused.

7. Libxfuse notifies the XFUSE monitor service on behalf
of the current filesystem daemon that it is paused and
that its transient state has been saved. The saved state
includes open file handles, file locks and all other runtime
data necessary for a new filesystem daemon to take over
and continue serving running applications.

8. The XFUSE monitor service notifies the new filesystem
daemon that the saved state is ready to be loaded.

9. Libxfuse in the new filesystem daemon calls back into
the filesystem to load the saved state and prepare to
handle incoming requests.

10. The new filesystem daemon starts to fetch requests from
the kernel. Past this point, the previous filesystem dae-
mon exits. The online upgrade has been successfully
completed.

We have implemented a user space filesystem with the
ability to save and restore its transient state, and integrated
it with XFUSE to enable us to upgrade the filesystem soft-
ware with minimal user impact. The filesystem and XFUSE
components are deployed and serving production workloads.
In Figure 5, we plot the performance as observed by the fio
benchmark [2] operating against the filesystem as the filesys-
tem is upgraded. At 34 seconds into the plot, the upgrade is
initiated. This triggers a series of steps to verify and install the
new software package. A filesystem daemon process running
the new software is then started. Throughout this time, the
current filesystem daemon continues to serve I/O requests.
At 55 seconds into the plot, the current filesystem daemon is
asked to stop processing incoming requests. By 57 seconds
into the plot, the current filesystem daemon has completed all

USENIX Association 2021 USENIX Annual Technical Conference 867

0

200

400

600

800

0 10 20 30 40 50 60 70 80 90

Th
ro

ug
hp

ut
 (M

B/
s)

Time (s)

Upgrade
Initiated

Package
Preparation

Pause

Upgrade
Completed

Figure 5: Throughput During Online Upgrade of Filesystem.

pending requests and saved all of its transient state. The new
filesystem daemon loads the saved transient state and starts
to serve incoming requests. At this point, the old filesystem
has served its purpose and terminates itself. There is a ramp
up in performance as the new filesystem establishes its cache.

3.2.2 Crash Restart

The online upgrade process forms the basis for supporting
crash restart of the filesystem daemon process. Just as for
online upgrade, in order to support crash restart, the filesystem
must be able to remember its transient state and reinstate it via
the new filesystem daemon instance. After the new instance
is up and has restored the previous state, it can start to replay
any pending requests. The kernel module does not know the
exact point at which the filesystem daemon process crashed
and restarted. It simply resends all the pending requests that
it has already sent to the previous instance and for which it
has not received the response.

The new filesystem daemon instance, however, cannot sim-
ply re-process all the requests because filesystem requests
are not idempotent. For example, suppose a user successfully
removes a file P. If the file removal operation were to be
applied again, it would fail because the file P no longer exists.

To handle crash restart in the face of such non-idempotent
requests, the filesystem daemon saves information about re-
cent requests in a request-response table. This table records
the response for requests that have already been processed by
the filesystem daemon. For each incoming request, the filesys-
tem daemon replies with the saved response if the request
is recorded in the table. Otherwise it processes the requests
normally. To uniquely identify a request, the kernel module as-
signs a request ID, which encodes a consecutive sequence ID,
to each incoming request. To ensure that IDs are assigned con-
secutively, the filesystem daemon needs to persist the largest
request ID it has processed. After a restart, the new daemon
instance passes this value as a mount flag to the kernel.

The size of the request-response table is bounded by the
number of requests that may be inflight. Conceptually, the
XFUSE kernel module keeps a queue of the requests that

User
Kernel

Reader

xfuse.ko

lib
xf
us
e

Ti
m
in
gF
S

Figure 6: Experimental Setup for Parametric Analysis.

it has received the response for. When sending the next re-
quest, it dequeues a completed request and sends its request
ID along with the new request. The filesystem daemon uses
the completed request ID to prune its request-response table.
In practice, the tracking of completed requests and their re-
sponses is done on a per channel basis to avoid introducing
points of contention in this process, Each channel only needs
to keep track of up to queue depth number of recent requests.

4 Performance Evaluation

To evaluate the performance characteristics of XFUSE, we
first use a controlled environment to explore the different
aspects of XFUSE individually. The goal of this analysis is
to systematically understand how these aspects are affected
by policy choices and tuning parameters, and to project the
performance that can potentially be achieved by a filesystem
daemon that is optimized for XFUSE. We then measure actual
system performance on real systems when the filesystem
requests are looped through XFUSE and FUSE, and compare
the results with directly accessing kernel-mode EXT4 [20].

4.1 Parametric Analysis
In this section, we use the experimental setup depicted in
Figure 6. The setup is designed to provide a controlled envi-
ronment where various aspects of XFUSE can be isolated and
the associated parameters can be tuned systematically. Be-
cause existing user space filesystems have not been optimized
beyond what FUSE can drive, this setup also serves to project
the kind of performance that XFUSE can potentially achieve
with a user space filesystem that is optimized for it. The setup
consists of a reader composed of multiple reader threads each
synchronously reading 4 KB of data from a random location
in a large file. These read requests are sent via XFUSE to Tim-
ingFS, a simple filesystem daemon that emulates the timing
characteristics of persistent memory and SSD.

TimingFS supports only readdir, getattr and read operations.
Readdir and getattr operations are supported only to the extent
necessary for a filesystem to be mounted and a file within
the filesystem to be opened for read. The main purpose of
TimingFS is to respond to read requests of the opened file. In

868 2021 USENIX Annual Technical Conference USENIX Association

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000

La
te

nc
y

(u
s)

Throughput (MB/s)

PMEM-like

0
5
10
15
20

Busy Wait (us)

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000

La
te

nc
y

(u
s)

Throughput (MB/s)

SSD-like

0
5
10
15
20

Busy Wait (us)

Figure 7: Performance with Busy-Event Wait.

the persistent memory mode, TimingFS handles the file read
requests by immediately copying the requested amount of
data from the specified location in a memory pool standing in
as the file. In the results, this case is denoted as PMEM-like.
In the SSD mode, TimingFS enqueues the read request and a
worker thread handles the enqueued request after a delay of
100us. This case is denoted as SSD-like in the results. We use
a file size of 1 GB to ensure that the memory footprint exceeds
the L1 and L2 processor caches as is typically the case for I/O
requests because of the amount of data involved. For 4 KB
requests, ensuring that the data does not reside solely in the
processor caches adds about 1 us to the read latency.

All the experiments in this analysis were performed using
dedicated servers running Linux 4.19.91 on the Alibaba Cloud.
Each server has dual Intel(R) Xeon(R) Platinum 8163 CPUs
operating at 2.50GHz for a total of 48 physical cores. We
restricted the experiments in this section to using the first 24
physical cores.

4.1.1 Waiting Strategy

Figure 7 summarizes the effect of introducing an initial pe-
riod of busy waiting to event wait. Note that with a busy-wait
period of 0, busy-event wait degenerates into event wait. Ob-
serve that adding on the order of 10 us of busy waiting is very
effective at lowering latency and increasing throughput for
PMEM-like storage. On the other hand, adding busy waiting
is not effective for SSD-like storage. In fact it degrades perfor-
mance significantly for SSD-like storage, and the degradation
increases with the busy-wait period. This is because the ser-
vice time with SSD-like storage exceeds the busy-wait period
so that the busy waiting is wasted and only serves to drive up
CPU utilization which affected the throughput.

We next investigate enabling busy waiting only when it

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000

La
te

nc
y

(u
s)

Throughput (MB/s)

SSD-like

0
5
10
15
20

Busy Wait (us)

Figure 8: Performance with Adaptive Busy-Event Wait.

is beneficial. The basic idea is that if the current wait is go-
ing to be longer than the busy-wait period, we should skip
the busy waiting and go straight to event waiting. We use
a simple method of predicting the current wait time based
on the observed latency of the last completed wait. Now, the
last wait could have been completed by an event notifica-
tion so a conservative threshold for enabling busy waiting is
that the last observed latency is within the busy-wait period
plus the net overhead of event wait. In other words, we dis-
able busy waiting when the last observed latency exceeds the
busy-wait period by more than the net overhead of event wait
and reenable it when the last observed latency falls below
this threshold. From Figure 9, the latency achieved with busy

USENIX Association 2021 USENIX Annual Technical Conference 869

0

5

10

15

20

0 2000 4000 6000 8000 10000

La
te

nc
y

(u
s)

Throughput (MB/s)

PMEM-like

Event/Same
Event/Cross
Adaptive/Same
Adaptive/Cross

Same CPU

Cross CPU

0

50

100

150

200

250

300

0 2000 4000 6000 8000

La
te

nc
y

(u
s)

Throughput (MB/s)

SSD-like

Event-Wait/Same CPU
Event-Wait/Cross CPU
Adaptive-Wait/Same CPU
Adaptive-Wait/Cross CPU

Same
CPU

Cross CPU

Figure 9: Effect of Thread Placement.

waiting can reach just under 4 us while that with event waiting
is around 9 us, suggesting that the net event overhead is about
5 us in our experimental setup.

As shown in Figure 8, with such an adaptive busy-event
wait scheme, the latency becomes relatively insensitive to
the busy-wait period because futile busy waiting is avoided.
With adaptive busy-event wait, a busy-wait period in the 10 us
range woks well for both the PMEM-like and SSD-like config-
urations. Observe further that throughput is increased beyond
event-wait even though the service time with SSD-like storage
far exceeds the busy-poll periods under consideration. Recall
that there are two waits in the system. One is by the device
handler to obtain an incoming request and the second is by
the request handler to obtain a response from the filesystem
daemon process. For SSD-like storage, the device handler
running in the filesystem daemon thread to pick up incom-
ing requests benefits from the busy waiting when under load.
Thus adaptive busy-event wait offers a performance benefit
even for relatively slow SSD-like storage.

4.1.2 Thread Placement

The overhead of busy waiting and event waiting depends
on whether the application threads and filesystem daemon
threads are executing on the same CPU. If the application
thread and corresponding filesystem daemon thread run on
different CPUs and use busy waiting to send messages to each
other, the number of context switches will be greatly reduced.
On the other hand, if the two threads are scheduled on the
same CPU, context switches between the 2 threads are needed
to accept the request and receive the response. Furthermore,
the scheduler typically implements a per CPU run queue so
that local CPU event notification is likely to be delivered
faster. There are also cache locality considerations when it

comes to scheduling the application threads and filesystem
daemon threads, but our evaluation shows that this effect is
secondary.

In Figure 9, we investigate the effect of thread placement
on performance by controlling the CPU on which each appli-
cation and filesystem daemon thread runs, and the mapping of
requests to channels. Specifically, we affine each application
thread to a CPU and map each request to a channel based
on the CPU ID of the application thread issuing the request.
On the filesystem daemon side, we consider two cases - one
where the thread listening on a channel is affined to the same
CPU as the application thread whose requests are mapped to
that channel (denoted same CPU), and the second where the
listening thread is affined to a different CPU (denoted cross
CPU). Observe that for PMEM-like storage, cross CPU busy
waiting offers the lowest latency of just under 4 us, outper-
forming same CPU busy waiting by between 3-5 us. On the
other hand, same CPU event waiting significantly outperforms
cross CPU event waiting. In the SSD-like case, the long ser-
vice time with SSD-like storage means that busy waiting does
not improve latency. Thus for SSD-like storage, the lowest
latency is obtained by scheduling the application threads and
corresponding filesystem daemon threads on the same CPU.

In some production environments such as those where large
server farms are used to provide a specific set of services to
many customers, the thread placement on each server can
be controlled as we have done in these experiments. When
PMEM-like storage is used in these types of environments,
the application and corresponding filesystem daemon threads
should be placed on different CPUs and adaptive busy-event
wait should be used so as to achieve a significant improve-
ment in latency. For SSD-like storage, the application and
corresponding filesystem daemon threads should be placed

870 2021 USENIX Annual Technical Conference USENIX Association

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000

La
te

nc
y

(u
s)

Throughput (MB/s)

PMEM-like

PID
CPUID
RR
STIME
HASH

Channel
Selection

Policy

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000

La
te

nc
y

(u
s)

Throughput (MB/s)

SSD-like

PID
CPUID
RR
ST
HASH

Channel
Selection

Policy

Figure 10: Effect of Channel Selection Policy.

on the same CPU. In this case, adaptive busy-event wait does
not improve performance but does not hurt either.

4.1.3 Channel Selection

In other environments where thread placement cannot be ex-
plicitly managed, the performance achieved depends on how
the scheduler maps the application and filesystem daemon
threads to CPUs, and on how the requests are mapped to the
channels. In Figure 10, we evaluate various channel selection
policies when the thread placement is left entirely up to the
scheduler.

The best strategy in this case is to evenly distribute re-
quests across the channels so that multiple filesystem daemon
threads can be brought to bear on handling the requests. There
is one caveat in that if the policy keeps switching to an idle
channel, it will render busy waiting ineffective. In the figure,
RR denotes the round robin channel selection policy. In the
PMEM-like case where busy waiting can be effective, RR per-
forms worse than other policies because it keeps rotating to a
channel where the corresponding filesystem daemon thread
is no longer busy waiting. In order to leverage busy waiting,
the channel selection policy needs to have a bias towards a
specific channel.

We also evaluate using the CPU ID, thread ID and thread
start time to map requests to channels. Depending on where
the scheduler places the application threads, using the CPU
ID to select channels may result in a very skewed channel
distribution. Thread start time may also collide and result in a
less than balanced distribution. We find that using thread ID
is much more stable in terms of yielding an even distribution
because the thread ID is at least unique. To further avoid the
risk of a skewed distribution, we can use hashing techniques
on the thread ID to avoid colliding on the same channel. The

HASH selection algorithm uses 3 hash functions to identify
candidate channels and selects the channel with the shortest
queue. In the case of a tie, it always selects the first candidate
channel to avoid defeating busy waiting. HASH consistently
avoids skewed distribution.

4.1.4 Performance Potential

XFUSE is designed to provide an efficient conduit between
the kernel file system interface and a user space filesystem
daemon. The performance that it can deliver ultimately de-
pends on the capability of the user space filesystem. Here, we
use our simple filesystem daemon, TimingFS, to project the
best-case performance that XFUSE can achieve with a user
space filesystem that is optimized for it. We configure XFUSE
based on the analysis results discussed above. Specifically, we
use adaptive busy-event wait with a busy-wait period of 10 us
and an event overhead of 5 us. We also set up XFUSE with 24
channels and corresponding TimingFS threads, one for each
of the physical cores that are used for the experiments.

Figure 11 presents the results. Notice that in the PMEM-
like configuration, XFUSE is able to achieve latency in the
4 us range and throughput exceeding 8 GB/s. FUSE, on the
other hand, has a latency of 10 us and throughput of less than
2 GB/s. Across both PMEM-like and SSD-like configura-
tions, XFUSE significantly outperforms FUSE both in terms
of latency and throughput. The improvement is especially dra-
matic for the PMEM-like configuration because the storage is
so fast that even small overheads become hugely significant.

4.2 System-Level Performance
In this section, we use system-level benchmark workloads to
evaluate the performance potential of XFUSE. The experi-

USENIX Association 2021 USENIX Annual Technical Conference 871

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000

La
te

nc
y

(u
s)

Throughput (MB/s)

PMEM-like

XFUSE/Same CPU
XFUSE/Cross CPU
FUSE

0

50

100

150

200

250

300

0 2000 4000 6000 8000

La
te

nc
y

(u
s)

Throughput (MB/s)

SSD-like

XFUSE/Same CPU
XFUSE/Cross CPU
FUSE

Figure 11: Performance of XFUSE and FUSE with TimingFS.

User
Kernel

RAMDisk/
FastDisk/
SlowDisk

Setup 1

Filebench

EXT4

Storage

Setup 2

Filebench

fuse.ko

Storage

lib
fu
se

EXT4

Setup 3

Filebench

xfuse.ko

Storage

EXT4

St
ac
kF
S

lib
xf
us
e

St
ac
kF
S

Figure 12: Experimental Setup for Evaluating System-Level Performance.

mental setup is depicted in Figure 12. The setup is designed
foremost to provide a common basis for comparing XFUSE
with FUSE and regular kernel-mode EXT4, and errs on the
side of being conservative for XFUSE. Specifically, in this
setup, XFUSE and FUSE rely on StackFS [30] to route calls
back to kernel-mode EXT4. StackFS is a simple stackable
passthrough filesystem originally developed to evaluate FUSE
performance. StackFS has not been reworked to take advan-
tage of the low-latency and high parallelism that XFUSE can
deliver.

As discussed in [30], existing techniques such as the kernel
page cache and FUSE’s readahead are effective at masking
the performance of user space filesystems in several types
of workload. In this section, we present results focusing on
those cases where FUSE has a significant gap with kernel-
mode EXT4, namely the Filebench random read, file create
and webserver workloads, as previously defined and made
public [29, 30]. We ran these workloads as is and without
specifying CPU affinity.

We performed the measurements using dedicated servers
running Linux 4.19.91 on the Alibaba Cloud. The FUSE
version used is 3.6.1. Each server has 48 physical cores (dual
Intel(R) Xeon(R) Platinum 8163 CPUs operating at 2.50GHz)
and 768GB of memory. All the experiments in this section
were limited to using the first 24 physical cores and 256 GB
of memory. The remaining 512 GB of memory was allocated
as a RAM disk. We configured XFUSE based on the analysis
results presented in the previous section, meaning that we
used adaptive busy-event wait with a busy-wait period of
10 us and an event overhead of 5 us. We also set up XFUSE
with 24 channels and corresponding StackFS threads, one for
each of the physical cores.

The first config uses the RAM disk as the storage device.
This config is meant to illustrate the potential performance
achievable when using XFUSE to access a user mode per-
sistent memory based filesystem. We refer to this setup as
RAMDisk. In the second config, we use the fastest cloud disk
available. The average latency for a 4 KB read is about 115 us

872 2021 USENIX Annual Technical Conference USENIX Association

0

50

100

150

200

250

0 250 500 750 1000

La
te

nc
y

(u
s)

Throughput (1000 ops/s)

RAMDisk

EXT4
FUSE
XFUSE
EXT4
FUSE
XFUSE

Random-
Read

Web-
Server

0

200

400

600

800

1000

0 60 120 180 240

La
te

nc
y

(u
s)

Throughput (1000 ops/s)

FastDisk

EXT4
FUSE
XFUSE
EXT4
FUSE
XFUSE

Random-
Read

Web-
Server

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20

La
te

nc
y

(m
s)

Throughput (1000 ops/s)

SlowDisk

EXT4
FUSE
XFUSE
EXT4
FUSE
XFUSE

Random-
Read

Web-
Server

Figure 13: Performance of Random-Read and Web-Server
Workloads.

on this disk. Based on its provisioned size, the throughput
for this disk is capped at 80K IOPS. We refer to this setup as
FastDisk. In the third config, we use the slowest cloud disk
available. The average 4 KB read latency is about 250 us for
this disk and it is limited to 5K IOPS. We refer to this setup
as SlowDisk.

Figure 13 summarizes the performance results for the
Random-Read and Web-Server workloads. With RAMDisk,
kernel-mode EXT4 outperforms FUSE by a large margin
across the 2 workloads. XFUSE closes the gap significantly
both in terms of latency and throughput. For Random-Read,
latency with XFUSE comes in at 9 us versus 28 us with FUSE.
Throughput with XFUSE exceeds 874K ops/s while FUSE
can only achieve 285K ops/s. This represents a 3x improve-
ment. The improvement is similarly large for the Web-Server
workload. The gap with kernel-mode EXT4 is still significant
as expected because the XFUSE results are obtained by loop-
ing requests to user space and back into kernel-mode EXT4.
We expect the gap to be reduced with an actual filesystem
daemon running in user space that is optimized for XFUSE.

Observe that as the storage is slower, the gap between
kernel-mode EXT4 and FUSE shrinks as does the benefit
of XFUSE over FUSE. With SlowDisk, there is virtually no
performance difference between XFUSE and FUSE. This
is to be expected because when the storage is slower, the
performance is bottlenecked more by the storage than by the
conduit to user space. For FastDisk, which is the storage that
performance-critical workloads are most likely to be using,
XFUSE offers significant benefit over FUSE. For example,
for the Web-Server workload, latency with XFUSE is 425 us
versus 466 us with FUSE, and throughput is 125K ops/s versus
86K ops/s with FUSE. Note that the throughput of FastDisk
is capped at 80K IOPs based on its provisioned size. For the
Random-Read workload, XFUSE is able to deliver the full
throughput of FastDisk, matching the throughput achieved by
kernel-mode EXT4.

The results for the File-Create workload are summarized
in Figure 14. To reduce clutter, the results for FastDisk are
not presented. XFUSE outperforms FUSE for both FastDisk
and RAMDisk, but not by as large a margin as in the case of
the Random-Read and Web-Server workloads. For the File-
Create workload, the throughput with kernel-mode EXT4 is
several times higher than that with either FUSE or XFUSE.
The File-Create workload creates millions of small files and
each create requires several calls into StackFS to perform
getattr and pathname lookups. StackFS in turn dynamically
allocates memory and uses internal global locks and states to
translate the requests it receives back to POSIX calls to the
underlying EXT4. These roundtrips between the kernel and
StackFS as well as the implementation of StackFS restrict the
performance of File-Create with FUSE and XFUSE. Notice
further from the figure that the File-Create workload does
not scale in performance beyond 4 threads on kernel-mode
EXT4. This limits the benefit that XFUSE can provide over

USENIX Association 2021 USENIX Annual Technical Conference 873

0

200

400

600

800

1000

0 50 100 150 200 250 300 350

La
te

nc
y

(u
s)

Throughput (1000 ops/s)

File-Create EXT4
FUSE
XFUSE
EXT4
FUSE
XFUSE

RAMDisk

SlowDisk

4 threads

Figure 14: Performance of File-Create Workload.

FUSE because the increased parallelism that XFUSE provides
cannot be brought to bear on this workload with EXT4 as the
backing filesystem.

The results underscore the point that XFUSE is designed
to provide an efficient conduit between the kernel filesystem
interface and a user space filesystem. The performance that it
can achieve depends ultimately on the capability of the user
space filesystem. Our measurements indicate that even with
an existing FUSE-targeted StackFS, XFUSE offers significant
performance improvement over FUSE. We anticipate that the
improvement will be even more pronounced with user space
filesystems that are designed to take advantage of the low
latency and high parallelism that XFUSE can deliver.

5 Conclusion

This paper presents XFUSE, a user space filesystem frame-
work that addresses the performance and RAS concerns gen-
erally associated with user space filesystems. XFUSE is back-
ward compatible with FUSE and takes advantage of the grow-
ing number of cores available on modern systems to achieve
low latency and high throughput for fast storage devices.
XFUSE can enable filesystem requests made through standard
kernel interfaces to be processed at the user level with latency
in the 4 microseconds range, and offers throughput exceeding
8 GB/s. XFUSE also provide features such as support for on-
line upgrade and crash recovery that are critical for deploying
user level filesystems in production.

Acknowledgments

This paper would not have been possible without the collab-
oration of our storage and kernel teams. We are grateful to

our shepherd and anonymous reviewers for helping us im-
prove the paper, and to the many who have worked on FUSE
and on whose shoulders we stand. We are working towards
contributing XFUSE to the community.

References

[1] AVFS - A Virtual File System. http:
//avf.sourceforge.net.

[2] fio - Flexible I/O tester rev. 3.27. https://
fio.readthedocs.io/en/latest/fio_doc.html.

[3] FUSE-based file system backed by Amazon S3. https:
//github.com/s3fs-fuse/s3fs-fuse.

[4] gVisor is an application kernel for containers that pro-
vides efficient defense-in-depth anywhere. https://
gvisor.dev.

[5] A network filesystem client to connect to SSH servers.
https://github.com/libfuse/sshfs.

[6] NVMe based File System in User-space. https://
github.com/nvfuse/nvfuse.

[7] The reference implementation of the Linux FUSE
(Filesystem in Userspace) interface. https://
github.com/libfuse/libfuse.

[8] Secure and fast microVMs for serverless computing.
https://firecracker-microvm.github.io.

[9] virtio-fs. https://virtio-fs.gitlab.io.

[10] zero-copy file-system feeder. A Linux module which dis-
patch kernel’s VFS commands to user-space server.
https://github.com/NetApp/zufs-zuf.

[11] Ashish Bijlani and Umakishore Ramachandran. Exten-
sion framework for file systems in user space. In 2019
USENIX Annual Technical Conference, pages 121–134,
2019.

[12] Jay Chen. Making containers more iso-
lated: An overview of sandboxed container
technologies, (accessed January 12, 2020).
http://unit42.paloaltonetworks.com/making-
containers-more-isolated-an-overview-of-
sandboxed-container-technologies.

[13] Intel Corp. Intel® Optane™ technology for
data centers, (accessed January 12, 2020).
http://www.intel.com/content/www/us/
en/architecture-and-technology/optane-
technology/optane-for-data-centers.html.

874 2021 USENIX Annual Technical Conference USENIX Association

http://avf.sourceforge.net
http://avf.sourceforge.net
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://github.com/s3fs-fuse/s3fs-fuse
https://github.com/s3fs-fuse/s3fs-fuse
https://gvisor.dev
https://gvisor.dev
https://github.com/libfuse/sshfs
https://github.com/nvfuse/nvfuse
https://github.com/nvfuse/nvfuse
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://firecracker-microvm.github.io
https://virtio-fs.gitlab.io
https://github.com/NetApp/zufs-zuf
http://unit42.paloaltonetworks.com/making-containers-more-isolated-an-overview-of-sandboxed-container-technologies
http://unit42.paloaltonetworks.com/making-containers-more-isolated-an-overview-of-sandboxed-container-technologies
http://unit42.paloaltonetworks.com/making-containers-more-isolated-an-overview-of-sandboxed-container-technologies
http://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
http://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
http://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html

[14] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over commodity ethernet at scale. In Proceedings of
the 2016 ACM SIGCOMM Conference, pages 202–215,
2016.

[15] Shi Zhan Feng Dan Zhao Heng and Yao Yingying.
LD_PRELOAD based file system management. Jour-
nal of Huazhong University of Science and Technology
(Natural Science Edition), 2010.

[16] Yukai Huang, Jinkun Geng, Du Lin, Bin Wang, Junfeng
Li, Ruilin Ling, and Dan Li. LOS: A high performance
and compatible user-level network operating system.
In Proceedings of the First Asia-Pacific Workshop on
Networking, pages 50–56, 2017.

[17] Shun Ishiguro, Jun Murakami, Yoshihiro Oyama, and
Osamu Tatebe. Optimizing local file accesses for FUSE-
based distributed storage. In 2012 SC Companion: High
Performance Computing, Networking Storage and Anal-
ysis, pages 760–765, 2012.

[18] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: A highly scalable user-level tcp
stack for multicore systems. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation,
pages 489–502, 2014.

[19] Jing Liu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Sudarsun Kannan. File systems as pro-
cesses. In 11th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 19), 2019.

[20] Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Andreas Dilger, Alex Tomas, and Laurent
Vivier. The new ext4 filesystem: Current status and
future plans. In Proceedings of the Linux Symposium,
volume 2, pages 21–33, 2007.

[21] Kevin Pulo. Fun with LD_PRELOAD. In linux. conf.
au, volume 153, 2009.

[22] Aditya Rajgarhia and Ashish Gehani. Performance and
extension of user space file systems. In Proceedings
of the 2010 ACM Symposium on Applied Computing,
pages 206–213, 2010.

[23] Rusty Russell. virtio: towards a de-facto standard for
virtual I/O devices. ACM SIGOPS Operating Systems
Review, 42(5):95–103, 2008.

[24] Frank B Schmuck and Roger L Haskin. GPFS: A shared-
disk file system for large computing clusters. In USENIX
Conference on File and Storage Technologies (FAST’02),
2002.

[25] Swaminathan Sundararaman, Sriram Subramanian, Ab-
hishek Rajimwale, Andrea C Arpaci-Dusseau, Remzi H
Arpaci-Dusseau, and Michael M Swift. Membrane: Op-
erating system support for restartable file systems. ACM
Transactions on Storage (TOS), 6(3):11, 2010.

[26] Swaminathan Sundararaman, Laxman Visampalli, An-
drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
Refuse to crash with Re-FUSE. In Proceedings of the
sixth Conference on Computer Systems, pages 77–90,
2011.

[27] Michael M Swift, Muthukaruppan Annamalai, Brian N
Bershad, and Henry M Levy. Recovering device
drivers. ACM Transactions on Computer Systems
(TOCS), 24(4):333–360, 2006.

[28] Vasily Tarasov, Abhishek Gupta, Kumar Sourav, Sagar
Trehan, and Erez Zadok. Terra incognita: On the practi-
cality of user-space file systems. In 7th USENIX Work-
shop on Hot Topics in Storage and File Systems (Hot-
Storage 15), 2015.

[29] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A flexible framework for file system bench-
marking. USENIX; login, 41(1):6–12, 2016.

[30] Bharath Vangoor, Kumar Reddy, Vasily Tarasov, and
Erez Zadok. To FUSE or not to FUSE: Performance of
user-space file systems. In 15th USENIX Conference on
File and Storage Technologies (FAST’17), pages 59–72,
2017.

[31] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th Symposium on Operating Systems Design and
Implementation, pages 307–320, 2006.

[32] Benjamin Zhu, Kai Li, and R Hugo Patterson. Avoiding
the disk bottleneck in the Data Domain deduplication
file system. In Fast, volume 8, pages 1–14, 2008.

USENIX Association 2021 USENIX Annual Technical Conference 875

	Introduction
	Background and Related Work
	XFUSE
	Performance
	Adaptive Waiting
	Increased Parallelism

	RAS
	Online Upgrade
	Crash Restart

	Performance Evaluation
	Parametric Analysis
	Waiting Strategy
	Thread Placement
	Channel Selection
	Performance Potential

	System-Level Performance

	Conclusion

