FineStream: Fine-Grained Window-Based Stream Processing on CPU-GPU Integrated Architectures

Feng Zhang and Lin Yang, Renmin University of China; Shuhao Zhang, Technische Universität Berlin and National University of Singapore; Bingsheng He, National University of Singapore; Wei Lu and Xiaoyong Du, Renmin University of China

https://www.usenix.org/conference/atc20/presentation/zhang-feng

This paper is included in the Proceedings of the 2020 USENIX Annual Technical Conference.

July 15–17, 2020

978-1-939133-14-4

Open access to the Proceedings of the 2020 USENIX Annual Technical Conference is sponsored by USENIX.
FineStream: Fine-Grained Window-Based Stream Processing on CPU-GPU Integrated Architectures

Feng Zhang¹, Lin Yang¹, Shuhao Zhang²,³, Bingsheng He³, Wei Lu¹, Xiaoyong Du¹

¹Key Laboratory of Data Engineering and Knowledge Engineering (MOE), and School of Information, Renmin University of China
²DIMAS, Technische Universität Berlin
³School of Computing, National University of Singapore

fengzhang@ruc.edu.cn, yanglin2330@ruc.edu.cn, shuhao.zhang@tu-berlin.de, hebs@comp.nus.edu.sg, lu-wei@ruc.edu.cn, duyong@ruc.edu.cn

Abstract

Accelerating SQL queries on stream processing by utilizing heterogeneous coprocessors, such as GPUs, has shown to be an effective approach. Most works show that heterogeneous coprocessors bring significant performance improvement because of their high parallelism and computation capacity. However, the discrete memory architectures with relatively low PCI-e bandwidth and high latency have dragged down the benefits of heterogeneous coprocessors. Recently, hardware vendors propose CPU-GPU integrated architectures that integrate CPU and GPU on the same chip. This integration provides new opportunities for fine-grained cooperation between CPU and GPU for optimizing SQL queries on stream processing. In this paper, we propose a data stream system, called FineStream, for efficient window-based stream processing on integrated architectures. Particularly, FineStream performs fine-grained workload scheduling between CPU and GPU to take advantage of both architectures, and it also provides efficient mechanism for handling dynamic stream queries. Our experimental results show that 1) on integrated architectures, FineStream achieves an average 52% throughput improvement and 36% lower latency over the state-of-the-art stream processing engine; 2) compared to the stream processing engine on the discrete architecture, FineStream on the integrated architecture achieves 10.4x price-throughput ratio, 1.8x energy efficiency, and can enjoy lower latency benefits.

1 Introduction

Optimizing the performance of stream processing systems has been a hot research topic due to the rigid requirement on the event processing latency and throughput. Stream processing on GPUs has been shown to be an effective method to improve its performance [23, 33, 34, 41, 54, 62, 67]. GPUs consist of a large amount of lightweight computing cores, which are naturally suitable for data-parallel stream processing. GPUs are often used as coprocessors that are connected to CPUs through PCI-e [42]. Under such discrete architectures, stream data need to be copied from the main memory to GPU memory via PCI-e before GPU processing, but the low bandwidth of PCI-e limits the performance of stream processing on GPUs. Hence, stream processing on GPUs needs to be carefully designed to hide the PCI-e overhead. For example, prior works have explored pipelining the computation and communication to hide the PCI-e transmission cost [34, 54].

Despite of various studies in previous stream processing engines on general-purpose applications [5, 23, 25, 33, 54, 62], relatively few studies focus on SQL-based relational stream processing. Supporting relational stream processing involves additional complexities, such as how to support window-based query semantics and how to utilize the parallelism with a small window or slide size efficiently. Existing engines, such as Spark Streaming [57], struggle to support small window and slide sizes, while the state-of-the-art window-based query engine, Saber [34], adopts a bulk-synchronous parallel model [66] for hiding PCI-e transmission overhead.

In recent years, hardware vendors have released integrated architectures, which completely remove PCI-e overhead. We have seen CPU-GPU integrated architectures such as NVIDIA Denver [13], AMD Kaveri [15], and Intel Skylake [27]. They fuse CPUs and GPUs on the same chip, and let both CPUs and GPUs share the same memory, thus avoiding the PCI-e data transmission. Such integration poses new opportunities for window-based streaming SQL queries from both hardware and software perspectives.

First, different from the separate memory hierarchy of discrete CPU-GPU architectures, the integrated architectures provide unified physical memory. The input stream data can be processed in the same memory for both CPUs and GPUs, which eliminates the data transmission between two memory hierarchies, thus eliminating the data copy via PCI-e.

Second, the integrated architecture makes it possible for processing dynamic relational workloads via fine-grained co-operations between CPUs and GPUs. A streaming query can consist of multiple operators with varying performance features on different processors. Furthermore, stream processing often involves dynamic input workload, which affects operator performance behaviors as well. We can place operators on
different devices with proper workloads in a fine-grained manner, without worrying about transmission overhead between CPUs and GPUs.

Based on the above analysis, we argue that stream processing on integrated architectures can have much more desirable properties than that on discrete CPU-GPU architectures. To fully exploit the benefits of integrated architectures for stream processing, we propose a fine-grained stream processing framework, called FineStream. Specifically, we propose the following key techniques. First, a performance model is proposed considering both operator topologies and different architecture characteristics of integrated architectures. Second, a light-weight scheduler is developed to efficiently assign the operators of a query plan to different processors. Third, online profiling with computing resource and topology adjustment are involved for dynamic workloads.

We evaluate FineStream on two platforms, AMD A10-7850K, and Ryzen 5 2400G. Experiments show that FineStream achieves 52% throughput improvement and 36% lower latency over the state-of-the-art CPU-GPU stream processing engine on the integrated architecture. Compared to the best single processor throughput, it achieves 88% performance improvement.

We also compare stream processing on integrated architectures with that on discrete CPU-GPU architectures. Our evaluation shows that FineStream on integrated architectures achieves 10.4x price-throughput ratio, and 1.8x energy efficiency. Under certain circumstances, it is able to achieve lower processing latency, compared to the state-of-the-art execution on discrete architectures. This further validates the large potential of exploring the integrated architectures for data stream processing.

Overall, we make the following contributions:

- We propose the first fine-grained window-based relational stream processing framework that takes the advantages of the special features of integrated architectures.
- We develop lightweight query plan adaptations for handling dynamic workloads with the performance model that considers both the operator and architecture characteristics.
- We evaluate FineStream on a set of stream queries to demonstrate the performance benefits over current approaches.

2 Background

2.1 Integrated Architecture

We show an architectural overview of the CPU-GPU integrated architecture in Figure 1. The integrated architecture consists of a CPU, a GPU, a shared memory management unit, and system DRAM. CPUs and GPUs have their own caches. Some models of integrated architectures, such as Intel Haswell i7-4770R processor [3], integrate a shared last level cache for both CPUs and GPUs. The shared memory management unit is responsible for scheduling accesses to system DRAM by different devices. Compared to the discrete CPU-GPU architecture, both CPUs and GPUs are integrated on the same chip. The most attractive feature of such integration is the shared main memory which is available to both devices. With the shared main memory, CPUs and GPUs can have more opportunities for fine-grained cooperation. The most commonly used programming model for integrated architectures is OpenCL [49], which regards the CPU and the GPU as devices. Each device consists of several compute units (CUs), which are the CPU and GPU cores in Figure 1.

![Figure 1: A general overview of the integrated architecture.](image)

We show a comparison between the integrated and discrete architectures (discrete GPUs) in Table 1. These architectures are used in our evaluation (Section 7). Although the integrated architectures have lower computation capacity than the discrete architectures currently, the integrated architecture is a potential trend for a future generation of processors. Hardware vendors, including AMD [15], Intel [27] and NVIDIA [13], all release their integrated architectures. Moreover, future integrated architectures can be much more powerful, even can be a competitive building block for exascale HPC systems [47,55], and the insights and methods in this paper still can be applied. Besides, the integrated architectures are attractive due to their efficient power consumption [15,60] and low price [31].

Table 1: Integrated architectures vs. discrete architectures.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Integrated Architectures</th>
<th>Discrete Architectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDP (W)</td>
<td>95</td>
<td>65</td>
</tr>
<tr>
<td>price ($)</td>
<td>209</td>
<td>169</td>
</tr>
<tr>
<td>bandwidth (GB/s)</td>
<td>25.6</td>
<td>38.4</td>
</tr>
<tr>
<td>TFLOPS</td>
<td>0.9</td>
<td>1.7</td>
</tr>
<tr>
<td># cores</td>
<td>512x4</td>
<td>704x4</td>
</tr>
</tbody>
</table>

The number of cores for each integrated architecture includes four CPU cores. For discrete architectures, we only show the GPU device.

2.2 Stream Processing with SQL

Although various heterogeneous stream processing systems have appeared [23,33,34,41,54,62,67], we find that most
of these systems are used to process unstructured data, and only one work, Saber [34], is developed for structured stream processing on GPUs. Saber supports structured query language (SQL) on stream data [6]. The benefits of supporting SQL come from two aspects. First, with SQL, users can use familiar SQL commands to access the required records, which makes the system easy to use. Second, supporting SQL eliminates the tedious programming operations about how to reach a required record, which greatly expands the flexibility of its usage. Based on the analysis, this work explores stream processing with SQL on integrated architectures.

We consider supporting the basic SQL functions with stream processing, as shown in Figure 2. According to [6], SQL on stream processing consists of the following four major concepts: 1) **Data stream S**, which is a sequence of tuples, \(<t_1,t_2,...,>_i\>\), where \(t_i\) is a tuple. A tuple is a finite ordered list of elements, and each tuple has a timestamp. 2) **Window w**, which refers to a finite sequence of tuples, which is the data unit to be processed in a query. The window in stream has two features: **window size** and **window slide**. **Window size** represents the size of the data unit to be processed, and **window slide** denotes the sliding distance between two adjacent windows. 3) **Operators**, which are the minimum processing units for the data in a window. In this work, we consider common relational operators including **projection**, **selection**, **aggregation**, **group-by**, and **join**. 4) **Queries**, which are a form of data processing, each of which consists of at least one operator and is based on windows. Additionally, note that in real stream processing systems such as Saber [34], data are processed in **batch** granularity, instead of window granularity. A batch can be a group of windows when the window size is small, or a part of a window when the window size is extremely large.

3 Revisiting Stream Processing

We discuss the new opportunities (Section 3.1) and challenges (Section 3.2) for stream processing on integrated architectures in this section, which motivate this work.

3.1 Varying Operator-Device Preference

| Opportunities: Due to the elimination of transmission cost between CPU and GPU devices on integrated architectures, we can assign operators to CPU and GPU devices in a fine-grained manner according to their device-preference.

We analyze the operators in a query, and find that different operators show various device preferences on integrated architectures. Some operators achieve higher performance on the CPU device, and others have higher performance on the GPU device. We use a simple query of **group-by** and **aggregation** on the integrated architecture for illustration, as shown in Figure 3. The GPU queue is used to sequentially execute the queries on the GPU, while the CPU queue is used to execute the related queries on the CPU. The window size is 256 tuples and the window slide is 64. Each batch contains 64,000 tuples, and each tuple is 32 bytes. The input data are synthetically generated, which is described in Section 7.1. When the query runs on the CPU, **group-by** takes about 18.2 ms and **aggregation** takes about 5.2 ms. However, when the query runs on the GPU, **group-by** takes about 6.7 ms and **aggregation** takes about 5.8 ms.

![Figure 3: An example of operator-device preference.](image)

We further evaluate the performance of operators on a single device in Table 2. Table 2 shows that using a single type of device cannot achieve the optimal performance for all operators. The **aggregation** includes the operators of **sum**, **count**, and **average**, and they have similar performance. We use **sum** as a representative for **aggregation**. From Table 2, we can see that **projection**, **selection**, and **group-by** achieve better performance on the GPU than on the CPU, while **aggregation** and **join** achieve better performance on the CPU than on the GPU. Additionally, **projection** shows similar performance on CPU and GPU devices. Specifically, for **join**, the CPU performance is about 6x the GPU performance. Such different device preferences inspire us to perform fine-grained stream processing on integrated architectures.

Integrated architectures eliminate data transmission cost between CPU and GPU devices. This provides opportunities for stream processing with operator-level fine-grained placement. The operators that can fully utilize the GPU capacity exhibit higher performance on GPUs than on CPUs, so these operators shall be executed on GPUs. In contrast, the operators with low parallelism shall be executed on CPUs. Please note that such fine-grained cooperation is inefficient on dis-
Table 2: Performance (tuples/s) of operators on the CPU and the GPU of the integrated architecture.

<table>
<thead>
<tr>
<th>Operator</th>
<th>CPU only (10^6)</th>
<th>GPU only (10^6)</th>
<th>Device choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>projection</td>
<td>14.2</td>
<td>14.3</td>
<td>GPU</td>
</tr>
<tr>
<td>selection</td>
<td>13.1</td>
<td>14.1</td>
<td>GPU</td>
</tr>
<tr>
<td>aggregation</td>
<td>14.7</td>
<td>13.5</td>
<td>CPU</td>
</tr>
<tr>
<td>group-by</td>
<td>8.1</td>
<td>12.4</td>
<td>GPU</td>
</tr>
<tr>
<td>join</td>
<td>0.7</td>
<td>0.1</td>
<td>CPU</td>
</tr>
</tbody>
</table>

diverse CPU-GPU architectures due to transmission overhead. For example, Saber [34], one of the state-of-the-art stream processing engines utilizing the discrete CPU-GPU architectures, is designed aiming to hide PCI-e overhead. It adopts a bulk-synchronous parallel model, where all operators of a query are scheduled to one processor to process a micro-batch of data [53].

3.2 Fine-Grained Stream Processing

Challenges: A fine-grained stream processing that considers both architecture characteristics and operator preference shall have better performance, but this involves several challenges, from both application and architecture perspectives.

Based on the analysis, we argue that stream processing on integrated architectures can have much desirable properties than that on discrete CPU-GPU architectures. Particularly, this work introduces a concept of fine-grained stream processing: co-running the operators to utilize the shared memory on integrated architectures, and dispatching the operators on devices with both architecture characteristics and operator features considered.

However, enabling fine-grained stream processing on integrated architectures is complicated by the features of SQL stream processing and integrated architectures. We summarize three major challenges as follows.

Challenge 1: Application topology combined with architectural characteristics. Application topology in stream processing refers to the organization and execution order of the operators in a SQL query. First, the relation among operators could be more complicated in practice. The operators may be represented as a directed acyclic graph (DAG), instead of a chain, which contains more parallel acceleration opportunities. Second, with architectural characteristics considered, such as the CPU and GPU architectural differences, the topology with computing resource distribution becomes very complex. In such situations, how to perform fine-grained operator placement for application topology on different devices of integrated architectures becomes a challenge. Third, to assist effective scheduling decisions, a performance model is needed to predict the benefits from various perspectives.

Challenge 2: SQL query plan optimization with shared main memory. First, a SQL query in stream processing can consist of many operators, and the execution plan of these operators may cause different bandwidth pressures and device preferences. Second, in many cases, independent operators may not consume all the memory bandwidth, but co-running them together could exceed the bandwidth limit. We need to analyze the memory bandwidth requirement of co-running. Third, CPUs and GPUs have different preferred memory access patterns. Current methods [5, 23, 25, 33, 34, 54, 62] do not consider these complex situations of shared main memory in integrated architectures.

Challenge 3: Adjustment for dynamic workload. During stream processing, stream data are changing dynamically in distributions and arrival speeds, which is challenging to adapt. First, workload change detection and computing resource adjustment need to be done in a lightweight manner, and they are critical to performance. Second, the query plan may also need to be updated adaptively, because the operator placement strategy based on the initial state may not be suitable when the workload changes. Third, during adaptation, online stream processing needs to be served efficiently. Resource adjustment and query plan adaptation on the fly may incur runtime overhead, because we need to adjust not only the operators in the DAG but also the hardware computing resources to each operator. Additionally, the adjustment among different streams also needs to be considered.

4 FineStream Overview

We propose a framework, called FineStream, for fine-grained stream processing on integrated architectures. The overview of FineStream is shown in Figure 4. FineStream consists of three major components, including performance model, online profiling, and dispatcher. The online profiling module is used to analyze input batches and queries for useful information, which is then fed into the performance model. The performance model module uses the collected data to build models for queries with both CPUs and GPUs to assist operator dispatching. The dispatcher module assigns stream data to operators with proper processors according to the performance model on the fly.

Next, we discuss the ideas in FineStream, including its workflow, query plan generation, processing granularity, operator mapping, and solutions to the challenges mentioned in Section 3.2.

Workflow. The workflow of FineStream is as follows. When the engine starts, it first processes several batches using only the CPUs or the GPUs to gather useful data. Second, based on these data, it builds a performance model for operators of a query on different devices. Third, after the performance model is built, the dispatcher starts to work, and the fine-grained stream processing begins. Each operator shall be assigned to the cores of the CPU or the GPU for parallel execution. Additionally, the workload could be dynamic.
For dynamic workload, query plan adjustment and resource reallocation need to be conducted.

Topology. The query plan can be represented as a DAG. In this paper, we concentrate on relational queries. We show an example in Figure 5, where \(OP \) represents an operator. \(OP7 \) and \(OP11 \) can represent joins. We follow the terminology in compiler domain [52], and call the operators from the beginning or the operator after \(join \) to the operator that merges with another operator as a **branch**. Hence, the query plan is also a branch DAG. For example, the operators of \(OP1, OP2, \) and \(OP3 \) form a branch in Figure 5. The main reason we use the branch concept is for parallelism: operators within a branch can be evaluated in a pipeline, and different branches can be executed in parallel, which shall be detailed in Section 5. The execution time in processing one batch is equal to the traversal time from the beginning to the end of the DAG. Because branches can be processed in parallel, the **branch** with the longest execution time dominates the execution time. We call the operator path that determines the total execution time as \(\text{path}_{\text{critical}} \), so the branch with the longest execution time belongs to \(\text{path}_{\text{critical}} \). For example, we assume that \(\text{branch2} \) has the longest execution time among the branches, its time is \(t_{\text{branch2}} \), and the execution time for \(OP_j \) is \(t_{OP_j} \). \(OP7 \) and \(OP11 \) can also be regarded as branches. Only when the outcomes of \(OP3 \) and \(OP6 \) are available, then \(OP7 \) can proceed. So do to the operators of \(OP7 \) and \(OP10 \) to \(OP11 \). Assuming \(OP7 \) and \(OP11 \) are blocking join operators, the total execution time for this query is the sum of \(t_{\text{branch2}}, t_{OP7}, \) and \(t_{OP11} \).

Operator Mapping. The fine-grained scheduling lies in how to map the operators to the limited resources on integrated architectures. In FineStream, we allow an operator to use one or several cores of the CPU or the GPU device. When the platform cannot provide enough resources for all the operators, some operators may share the same compute units. For example, in Figure 5, \(OP1 \) and \(OP2 \) can share the same CPU cores. If so, the input batches sequentially goes through \(OP1 \) and \(OP2 \) and no pipeline exists between two batches for \(OP1 \) and \(OP2 \).

Solutions to Challenges. FineStream addresses all the challenges mentioned in Section 3.2. For the first challenge, the performance module module estimates the overall performance with the help of the online profiling module by sampling on a small number of batches, and the dispatcher dynamically puts the operators on the preferred devices. For the second challenge, we have considered the bandwidth factor when building the performance model, which can be used to guide the parallelism for operators with limited bandwidth considered. For the third challenge, the online profiling checks both the stream and the operators to measure the data ingestion rate, and FineStream responses to these situations with different strategies based on the analysis for dynamic workloads. Next, we show the details of our system design.

5 Model for Parallelism Utilization

Guideline: A performance model is necessary for operator placement in FineStream, especially for the complicated operator relations in the DAG structure. The overhead of building fine-grained performance model for a query is limited because the placement strategy from the model can be reused for the continuous stream data.

We model the performance of executing a query in this section. The operators of the input query are organized as a DAG. In the performance model, we consider two kinds of parallelism. First, for intra-batch parallelism, we consider **branch co-running**, which means co-running operators in processing one batch. Second, for inter-batch parallelism, we consider **batch pipeline**, which means processing different batches in pipelines.

5.1 Branch Co-Running

Independent branches can be executed in parallel. With limited computation resources and bandwidth, we build a model for branch co-running behaviors in this part. We use \(B_{\text{max}} \) to denote the maximum bandwidth the platform can provide. If the sum of bandwidth utilization from different parallel branches, \(B_{\text{sum}} \), exceeds \(B_{\text{max}} \), we assume that the throughput degrades proportionally to the \(B_{\text{max}}/B_{\text{sum}} \) of the throughput with enough bandwidth [60]. To measure the bandwidth utilization, generally, for \(n \) co-running tasks, we have \(n \) co-
running stages, because tasks complete one by one. When multiple tasks finish at the same time, the number of stages decreases accordingly.

We use the example in Figure 5 for illustration. Assume that the time for different branches is shown in Figure 6 (a). If we co-run the three branches simultaneously, then the execution can be partitioned into three stages with different overlapping situations. We use t_{stage_1}, t_{stage_2}, and t_{stage_3} to represent the related stage time when the system has enough bandwidth. Then, if the required bandwidth for stage, exceeds B_{max}, the related real execution time t_{stage_j}' also extends accordingly. We define t_{stage_j}' in Equation 1. When the platform can provide the required bandwidth, r_j is equal to one. Otherwise, r_j is the ratio of the required bandwidth divided by B_{max}.

$$t_{stage_j}' = r_j \cdot t_{stage_j}$$ \hspace{1cm} (1)$$

To estimate the time for processing a batch in the critical path, generally for the branch DAG, we perform topology sort to organize the branches into different layers, and then we co-run branches on layer granularity. In each layer, we perform the above branch co-running. Then, the total execution time is the sum of time of all layers, as shown in Equation 2.

$$t_{total} = \sum_{j=0}^{n_{layer}} \sum_{i=0}^{n_{stage}} t_{stage_j, layer_j}'$$ \hspace{1cm} (2)$$

The throughput is the number of tuples divided by the execution time. Assume the number of tuples in a batch is m, then, the throughput is shown in Equation 3.

$$throughput_{branchCoRun} = \frac{m}{t_{total}}$$ \hspace{1cm} (3)$$

Optimization. We can perform branch scheduling for optimization, which has two major benefits. First, by moving branches from the stage with fully occupied bandwidth utilization to the stage with surplus bandwidth, the bandwidth can be better utilized. For example, in Figure 6 (b), assume that in stage1, the required bandwidth exceeds B_{max}, but the sum of the required bandwidth of branch2 and branch3 is lower than B_{max}, then we can move the execution of branch3 after the execution of branch1 for better bandwidth utilization. Second, the system may not have enough computation resources for all branches so that we can reschedule branches for better computation resource utilization. In stage1 of Figure 6 (a), when the platform cannot provide enough computing resources for all the three branches, we can perform the scheduling in Figure 6 (b). Additionally, We can perform batch pipeline between operators in each branch, which shall be discussed next.

5.2 Batch Pipeline

We can also partition the DAG into phases, and perform co-running in pipeline between phases for processing different batches. For simplicity, in this part, we assume that the number of phases in the DAG is two. Please note that when the platform has enough resources, the pipeline for operators can be deeper. We show a simple example in Figure 7 (a). The operators in phase1 and the operators in phase2 need to be mapped into different compute units, so that these two phases can co-run in the pipeline. Figure 7 (b) shows the execution flow in pipeline. When FineStream completes the processing for batch1 in phase1 and starts to process batch1 in phase2, FineStream can start to process batch2 in phase1 simultaneously. Phase1 and phase2 can co-run because they rely on different compute units.

![Figure 7: An example of partitioning phases for batch pipeline.](image-url)

Figure 7: An example of partitioning phases for batch pipeline.

We need to estimate the bandwidth of two overlapping phases, so that we can further estimate the batch pipeline throughput. The time for a phase, t_{phase_j}, is the sum of the execution time of the operators in the phase for processing a batch. We use t_{phase1} to denote the time for phase1 while t_{phase2} for phase2. When two batches are being processed in different phases in the engine, FineStream tries to maximize the overlapping of t_{phase1} and t_{phase2} of the two batches. However, the overlapping can be affected by memory bandwidth utilization. The online profiling in Section 6.3 collects the size of memory accesses $s_{i,dev}$ (including read and write) and the execution time $t_{i,dev}$ for each operator. The bandwidth of the two overlapping phases is described as Equation 4.

$$bandwidth_{overlap} = MIN(B_{max}, \sum_{i=0}^{n_{op1}} s_{i,dev} \cdot t_{phase1} + \sum_{i=n_{op1}+1}^{n_{op2}} s_{i,dev} \cdot t_{phase2})$$ \hspace{1cm} (4)$$

When $bandwidth_{overlap}$ does not reach B_{max}, the execution time for processing n batches, $t_{NBatches}$, is shown in Equation 5.

$$t_{NBatches} = n \cdot MAX(t_{phase1}, t_{phase2}) + MIN(t_{phase1}, t_{phase2})$$ \hspace{1cm} (5)
When $\text{bandwidth}_{\text{overlap}}$ reaches B_{max}, the execution time of co-running two phases in the pipeline on different batches is longer than any of their independent execution time. We assume that the independent execution time of the longer phase is t_l and the independent time for the shorter phase is t_s. Then, the overlapping ratio for the two phases r_{olp} is t_s divided by t_l. Assuming the total size of the memory accesses for the longer phase is s_l, and the total size for the shorter phase is s_s, then the execution time of the overlapping interval, t_{olp}, is shown in Equation 6.

$$t_{\text{olp}} = \frac{s_s + r_{\text{olp}} \cdot s_l}{\text{bandwidth}_{\text{overlap}}}$$ \hspace{1cm} (6)

To estimate the time of the rest part in the longer phase, we assume that the bandwidth of the independent execution of the longer phase is bandwidth_l. Then, the execution time t_{rest} is shown in Equation 7.

$$t_{\text{rest}} = \frac{(1 - r_{\text{olp}}) \cdot s_l}{\text{bandwidth}_l}$$ \hspace{1cm} (7)

Then, when bandwidth B_{max} is reached, the execution time t_{nBatches} to process n batches is shown in Equation 8.

$$t_{\text{nBatches}} = n \cdot (t_{\text{olp}} + t_{\text{rest}})$$ \hspace{1cm} (8)

We assume that a batch contains m tuples, and then, the throughput can be expressed by Equation 9. When bandwidth is sufficient, t_{nBatches} is described as Equation 5; otherwise, Equation 8.

$$\text{throughput}_{\text{batch Pipeline}} = \frac{m \cdot n}{t_{\text{nBatches}}}$$ \hspace{1cm} (9)

Optimization. Branch co-running can also be conducted in batch pipeline. For example, in Figure 7, the branches in phase1 can be corun when the system can provide sufficient computing resources and bandwidth. The only thing we need to do is to integrate the branch co-running technique in the potential phases.

5.3 Handling Dynamic Workload

In branch co-running, the hardware resource binded to each branch is based on the characteristics of both the operator and the workload. During workload migration, the workload pressure for each branch may be different from the original state. Hence, the static computing resource allocation may not be suitable for dynamic workload.

A possible solution is to redistribute computing resources to operators in each branch according to the performance model. However, this solution has the following two drawbacks. First, only adjusting the hardware resources on different branches may not be able to maintain the performance, because query plan topology may not fit the current streaming application. In such cases, the query plan needs to be reoptimized for system performance. Second, resource redistribution incurs overhead. Therefore, efficient resource reallocation and query plan adjustment are necessary for FineStream handling dynamic workload.

Light-Weight Resource Reallocation. In FineStream, we use a light-weight dynamic resource reallocation strategy. When the workload ingestion rate of a branch decreases, we can calculate the reduced ratio, and assume that such proportion of computing resources in that branch can be transferred to the other branches. We use an example in Figure 8 for illustration. In Figure 8 (a), 90% workload after operator OP1 flow to OP2. When the workload state changes to the state in Figure 8 (b), part of the computing resource associated with OP2 shall be assigned to OP3 accordingly.

![Figure 8: An example of adjustment for dynamic workload.](image)

Query Plan Adjustment. With reference to [30], FineStream generates not only the query plan that soon will be used in the stream processing, but also several possible alternatives. During stream processing, FineStream monitors the size of intermediate results. If the performance degrades and the size of intermediate results varies greatly, FineStream shall switch to another alternative query plan topology. In the implementation, FineStream generates three additional plans by default, and picks them based on the performance model.

6 Implementation Details

6.1 How FineStream Works

We present the system workflow in Figure 9. In Figure 9, thread1 is used to cache input data, while thread2 is used to...
process the cached data. The detailed workflow is as follows. First, when FineStream starts a new query, the dispatcher executes the query on the CPU for batch1 and then on the GPU for batch2. Second, during these single-device executions, FineStream conducts online profiling, during which the operator-related data that are used to build the performance model are obtained, including the CPU and GPU performance, and bandwidth utilization. Third, with these data, FineStream builds the performance model considering branch co-running and batch pipeline. Fourth, after building the model, FineStream generates several query plans with detailed resource distribution. With the generated query plan, the dispatcher performs fine-grained scheduling for processing the following batches. When dynamic workload is detected, FineStream performs related adjustment mentioned in Section 5.3. For the operators in FineStream, we reuse the operator code from OmniDB [64]. Please note that the goal of this work is to provide a fine-grained stream processing method on integrated architectures. The same methodology can also be applied for using other OpenCL processing engine such as Voodoo [45].

![figure](image_url)

Figure 9: FineStream workflow.

Additionally, when users change the window size of a query on the fly, FineStream updates the window size parameter after the related batch processing is completed, and then continues to run with performance detection. If the performance decreases below a given value (70% of the original performance by default), FineStream re-determines the query plan with computing resource based on the parameters and the performance model.

6.2 Dispatcher

The dispatcher of FineStream is a module for assigning stream data to the related operators with hardware resources. The dispatcher has two functions. First, it splits the stream data into batches with a fixed size. Second, it sends the batches to the corresponding operators with proper hardware resources for execution. The goal of the dispatcher is to schedule operator tasks to the appropriate devices to fully utilize the capacity of the integrated architecture.

Algorithm 1 is the pseudocode of the dispatcher. When a stream is firstly presented in the engine, FineStream conducts branch co-running and batch pipeline according to the performance model mentioned in Section 5 (Lines 2 to 5). FineStream also detects dynamic workload (Lines 6 to 15). If dynamic workload is detected, FineStream conducts the related resource reallocation. If such reallocation does not help, it further conducts query plan adjustment.

Algorithm 1: Scheduling Algorithm in FineStream

```
Function dispatch(batch, resource, model):
    if taskFirstRun then
        branchCoRun(resource, model)
        batchPipeline(resource, model)
        taskFirstRun = false
    // Handling dynamic workload and query plan optimization
    if detectDynamicWorkload() then
        resourceReallocation()
        if performanceChanged == true then
            if performanceDegrade() then
                adjustQueryPlan() queryChanged = true
            end if
        end if
        resourceChanged = true
        if queryChanged == true then
            queryChanged = false
        end if
        queryChanged = false
    end if
```

6.3 Online Profiling

The purpose of online profiling is to collect useful performance data to support building the performance model.

In online profiling, we have two concerns. The first is what data to generate in this module. This is decided by the performance model. These data include the data size, execution time, bandwidth utilization, and throughput for each operator on devices. The second is, to generate the data, what information we shall collect from stream processing.

FineStream performs online profiling for operators from memory bandwidth and computation perspectives.

Memory Bandwidth Perspective. Based on the above analysis, we use bandwidth, defined as the transmitted data size divided by the execution time, to depict the characteristics from data perspective of an operator. The transmitted data for an operator consists of input and output. The input relates to the batch while the output relates to both the operator and the batch. We define the bandwidth of the operator \(i \) on device \(dev \) in Equation 11. The parameters \(s_{\text{input}_i} \) and \(s_{\text{output}_i} \) denote the estimated input and the output sizes of the operator \(i \), and \(t_{i, dev} \) represents the execution time of the operator \(i \) on device \(dev \).

\[
\text{bandwidth}_{i, dev} = \frac{s_{\text{input}_i} + s_{\text{output}_i}}{t_{i, dev}} \tag{11}
\]

Computation Perspective. To depict the characteristics from the computation perspective, we use throughput, which is defined as the total number of processed tuples \(n_{\text{tuples}} \) divided by the time \(t_{i, dev} \) for operator \(i \) on device \(dev \). All these values can be obtained from online profiling.
Further, to understand the advantage of using the integrated architecture to accelerate stream processing, we compare FineStream on integrated architectures with Saber further rewrite the CPU operators in Saber in OpenCL for the original CPU operators in Saber are written in Java, and we distribute operators of a query to different devices. The system and test its performance capacity, we load the data from memory. This method avoids network being bottleneck. In practice, the system obtains stream data via network.

Benchmarks. We use nine queries to evaluate the overall performance of the fine-grained stream processing engine on the integrated architectures. Similar benchmarks have been used in [34]. The details of the nine queries are shown in Table 3. Q1, Q2, and Q3 are conducted on the Google compute cluster monitoring dataset. Q4, Q5, and Q6 are for the dataset of anomaly detection in smart grids. Q7, Q8, and Q9 are for the dataset from the linear road benchmark.

Dynamic Workload Generation. We use the datasets and benchmarks to generate dynamic workload. For the first dataset of cluster monitoring, the seventh attribute of category gradually changes from type 1 to type 2 within 10,000 batches. We use the query Q1 for illustration, and we denote it as T1. Similar evaluations are also conducted on the second dataset of smart grid with the query Q5, which is denoted as T2, and the third dataset of linear road benchmark with the query Q8, which is denoted as T3.

7.2 Performance Comparison

Throughput. We explore the throughput of FineStream for the nine queries. Figure 10 shows the processing throughput of the best single device, Saber, and FineStream for these queries on both the A10-7850K and Ryzen 5 2400G platforms. Please note that the y-axis of the figure is in log scale. We have the following observations. First, on the A10-7850K platform, FineStream achieves 88% throughput improvement
over the best single device performance on average; compared to Saber, FineStream achieves 52% throughput improvement. Because of the efficient CPU and GPU co-running, FineStream nearly doubles the performance compared to the method of using only a single device. Because FineStream adopts the continuous operator model where each operator could be scheduled on its preferred device, FineStream utilizes the integrated architecture better than Saber that uses the bulk-synchronous parallel model. Such result clearly shows the advantage of fine-grained stream processing on the integrated architecture. Second, on the Ryzen 5 2400G platform, all hardware configurations have been upgraded in comparison with A10-7850K, especially the CPUs; the CPU-only throughput on Ryzen 5 2400G is much higher than that on A10-7850K. Moreover, Saber achieves a 56% throughput improvement compared to the throughput of the best single device, and FineStream is still 14% higher than Saber on this platform. Similar phenomena have also been observed in [58–60].

![Figure 10: Throughput of different queries.](image)

Latency. Figure 11 reports the latency of different queries on the integrated architectures. In this work, latency is defined as the end-to-end time from the time a query starts to the time it ends. FineStream has the lowest latency among these methods. First, on the A10-7850K platform, FineStream’s latency is 10% lower than that of the best single device, and 36% lower than the latency of Saber. Second, on Ryzen 5 2400G platform, it is 2% lower than that of the best single device, and 9% lower than that of Saber. The reason is that FineStream considers device preference for operators and assigns the operators to their suitable devices. In this way, each batch can be processed in a more efficient manner, leading to lower latency.

![Figure 11: Latency of different queries.](image)

Profiling. We show the relationship between throughput and latency of both FineStream and Saber in Figure 12. Figure 12 shows that queries with high throughput usually have low latency, and vice versa.

![Figure 12: Throughput vs. latency.](image)

7.3 Comparison with Discrete Architectures

In this part, we compare FineStream on the integrated architectures and Saber on the discrete architectures from three perspectives: performance, price, and energy-efficiency.

Performance

Comparison. The current GPU on the integrated architecture is less powerful than the discrete GPU, as mentioned in Section 2.1. The discrete GPUs exhibit 1.8x to 5.7x higher throughput than the integrated

![Figure 14: Latency comparison of different operators.](image)
architectures, due to the more computational power of discrete GPUs. However, the integrated architecture demonstrates lower processing latency compared to the discrete architecture when the data transmission cost between the host memory and GPU memory in the workload is significant. For example, the latencies for projection, selection, aggregation, group-by, and join are 0.6, 1.5, 1.0, 10.6, and 1924.5 ms on Ryzen 5 2400G platform, while 1.1, 1.2, 1.2, 1.6, and 7600.1 ms on GTX 1080Ti platform; these operators are distributed in Figure 14, where join (JOIN), projection (PROJ), and aggregation (AGG) achieve lower latency on the integrated architecture, while selection (SELT), and group-by (GRPBY) prefer the discrete architecture. The x-axis represents the ratio of \(m_{\text{compute}}/(s_{\text{write}}+s_{\text{read}}) \) where \(m_{\text{compute}} \) denotes the kernel computation workload size, and \(t_{\text{write}} \) and \(s_{\text{read}} \) denote the data transmission sizes from the host memory to the GPU memory and from the GPU memory to the host memory via PCI-e. For further explanation, to execute a kernel on discrete GPUs, the execution time \(t_{\text{total}} \) includes 1) the time \(t_{\text{write}} \) of data transmission from the host memory to the GPU memory via PCI-e, 2) the time \(t_{\text{compute}} \) for data processing kernel execution, and 3) the time \(t_{\text{read}} \) of data transmission from the GPU memory to the host memory. As for executing a kernel on the integrated architecture, although its \(t_{\text{compute}} \) is longer than that on discrete GPUs, its \(t_{\text{write}} \) and \(t_{\text{read}} \) can be avoided. For the queries in Table 3, the data movement overhead on discrete architectures ranges from 31 to 62%.

Price-Throughput Ratio Comparison. FineStream on integrated architectures shows a high price-throughput ratio, compared to Saber on the discrete architectures. The price of the 1080Ti discrete architecture is about 7x higher than that of the A10-7850K integrated architecture, and the price of the V100 discrete architecture is about 64x higher than that of the Ryzen 5 2400G integrated architecture. Figure 15 shows the comparison of their price-throughput ratio. On average, FineStream on the integrated architectures outperforms Saber on the discrete architectures by 10.4x.

![Figure 15: Comparison of price-throughput ratio.](image)

Energy Efficiency Comparison. We also analyze the energy efficiency of FineStream and Saber. The Thermal Design Power (TDP) is 95W on A10-7850K, and 65W on Ryzen 5 2400G. For the 1080Ti platform, the TDP of the Intel i7-8700K CPU and NVIDIA GTX 1080Ti GPU are 95W and 250W, respectively. For the V100 platform, the TDP of the Intel E5-2640 v4 CPU and NVIDIA V100 GPU are 90W and 300W, respectively. Similar to [61], we use performance per Watt to define energy efficiency. On average, FineStream on the integrated architectures is 1.8x energy-efficient than Saber on the discrete architectures.

7.4 Handling Dynamic Workload

In this section, we discuss how to handle dynamic workloads. To demonstrate the capability of FineStream to handle dynamic workload, we evaluate FineStream on the dynamic workloads mentioned in Section 7.1. On average, FineStream achieves a performance of 323,727 tuples per second, which outperforms the static method (we denote “static” for FineStream without adapting to dynamic workload) by 28.6%, as shown in Table 4.

Table 4: Throughput of the queries on dynamic workloads.

<table>
<thead>
<tr>
<th>Dynamic Workload</th>
<th>A10-7850K (10^5 tuples/s)</th>
<th>Ryzen 5 2400G (10^5 tuples/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>4.2</td>
<td>4.4</td>
</tr>
<tr>
<td>FineStream</td>
<td>3.1</td>
<td>3.1</td>
</tr>
</tbody>
</table>

We use \(T1 \) as an example, and show the detailed throughput along with the number of batches in Figure 16. In the timeline process, the static method decreases due to the improper hardware resource distribution. As for FineStream, the hardware computing resources can be dynamically adjusted according to the data distribution, so the performance does not decline with the changes.

![Figure 16: Throughput of \(T1 \) on dynamic workloads.](image)

7.5 Detailed Analysis

Performance Model Accuracy. In stream processing, after each batch is processed, we use the measured batch processing speed to correct our model. We use the example of \(Q1 \) for illustration, as shown in Figure 17. We use the percent deviation to measure the accuracy of our performance model. The percent deviation is defined as the absolute value of the real throughput minus the estimated throughput, divided by the real throughput. The smaller the percent deviation is, the more...
accurate the predicted result is. The deviation decreases as the number of processed batches increases. After 20 batches are processed, we can reduce the deviation to less than 10%. Please note that in stream processing scenarios, input tuples are continuously coming, so the time for correcting performance prediction can be ignored in stream processing. For dynamic workload, the accuracy also depends on the intensity of workload changes.

Runtime Overhead Analysis. FineStream incurs runtime overhead in the batch processing phase from two aspects. First, it detects whether the input stream belongs to dynamic workload, which causes time overhead. Second, the scheduling also takes time. In our evaluation, we observe that the time overhead accounts for less than 2% of the processing time, which can be ignored in stream processing.

8 Related Work

Parallel stream processing [4, 10, 12, 21, 28, 29, 34, 43, 46, 63], query processing [9, 14, 16, 20, 22, 56], and heterogeneous systems [11, 17, 24, 26, 32, 35–38, 45, 48, 50] are hot research topics in recent years. Different from these works, FineStream targets sliding window-based stream processing, which focuses on window handling with SQL and dynamic adjustment. GPUs have massive threads and high bandwidth, and have emerged to be one of the most promising heterogeneous accelerators to speedup stream processing. Verner et al. [54] presented a stream processing algorithm considering various latency and throughput requirements on GPUs. Alghabi et al. [5] developed a framework called FineStream for fine-grained stream processing on multiple GPUs. De Matteis et al. [25] developed a system called Storm [1], to GPU platforms. Augonnet et al. [8] explored data-aware task scheduling for multi-devices, which can be integrated into this work. FineStream differs from those previous works in two aspects: firstly on integrated architectures, and secondly for SQL stream processing.

The closest work to FineStream is Saber [34], which aims to utilize discrete CPU-GPU architectures. Saber [34] adopts a bulk-synchronous parallel model [53, 66], where the whole query (with multiple operators) on each batch of input data is dispatched on one device. Such a mechanism naturally minimizes the communication overhead among operators inside the same query. It is hence suitable in discrete CPU-GPU architectures, where PCI-e overhead is significant and shall be avoided as much as possible. However, it may result in suboptimality in integrated architectures for mainly two reasons. First, it overlooks the performance difference between different devices for each operator. Second, the communication overhead between the CPU and the GPU in integrated architectures is negligible. Targeting at integrated architectures, FineStream adopts continuous operator model [53, 66], where each operator of a query can be independently placed at a device. We further build a performance model to guide operator-device placement optimization. It is noteworthy that our fine-grained operator placement is different from classical placement strategies for general stream processing [18, 19, 40, 51, 65] for their different design goals. In particular, most prior works aim at reducing communication overhead among operators, which is not an issue in FineStream. Instead, FineStream needs to take device preference into consideration during placement optimization, which has not been considered before.

9 Conclusion

Stream processing has shown significant performance benefits on GPUs. However, the data transmission via PCI-e hinders its further performance improvement. This paper revisits window-based stream processing on the promising CPU-GPU integrated architectures, and with CPUs and GPUs integrated on the same chip, the data transmission overhead is eliminated. Furthermore, such integration opens up new opportunities for fine-grained cooperation between different devices, and we develop a framework called FineStream for fine-grained stream processing on the integrated architecture. This study shows that integrated CPU-GPU architectures can be more desirable alternative architectures for low-latency and high-throughput data stream processing, in comparison with discrete architectures. Experiments show that FineStream can improve the performance by 52% over the state-of-the-art method on the integrated architecture. Compared to the stream processing engine on the discrete architecture, FineStream on the integrated architecture achieves 10.4x price-throughput ratio, 1.8x energy efficiency, and can enjoy lower latency benefits.

Acknowledgments

We sincerely thank our shepherd Sergey Blagodurov and the anonymous reviewers for their insightful comments and suggestions. This work is supported by the National Key Research and Development Program of China (No. 2018YFB100401), National Natural Science Foundation of China (No. 61732014, 61802412, 61972402, and 61972403), and Beijing Natural Science Foundation (No. L192027), and is also supported by a MoE AcRF Tier 1 grant (TI 251RES1824) and Tier 2 grant (MOE2017-T2-1-122) in Singapore. Xiaoyong Du is the corresponding author of this paper.
References

[58] Feng Zhang, Bo Wu, Jidong Zhai, Bingsheng He, and Wenguang Chen. FinePar: Irregularity-aware fine-grained workload partitioning on integrated architectures. In CGO, 2017.

[64] Shuhao Zhang, Jiong He, Bingsheng He, and Mian Lu. OmniDB: Towards portable and efficient query processing on parallel CPU/GPU architectures. PVLDB, 2013.

