
This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.

July 15–17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference

is sponsored by USENIX.

PracExtractor: Extracting Configuration
Good Practices from Manuals to Detect

Server Misconfigurations
Chengcheng Xiang and Haochen Huang, University of California San Diego;
Andrew Yoo, University of Illinois at Urbana-Champaign; Yuanyuan Zhou,

University of California, San Diego; Shankar Pasupathy, NetApp
https://www.usenix.org/conference/atc20/presentation/xiang

PracExtractor: Extracting Configuration Good Practices from Manuals to Detect
Server Misconfigurations

Chengcheng Xiang
University of California, San Diego

Haochen Huang
University of California, San Diego

Andrew Yoo
University of Illinois Urbana-Champaign

Yuanyuan Zhou
University of California, San Diego

Shankar Pasupathy
NetApp Inc.

Abstract

Configuration has become ever so complex and error-prone
in today’s server software. To mitigate this problem, soft-
ware vendors provide user manuals to guide system admins
on configuring their systems. Usually, manuals describe not
only the meaning of configuration parameters but also good
practice recommendations on how to configure certain pa-
rameters. Unfortunately, manuals usually also have a large
number of pages, which are time-consuming for humans to
read and understand. Therefore, system admins often do not
refer to manuals but rely on their own guesswork or unre-
liable sources when setting up systems, which can lead to
configuration errors and system failures.

To understand the characteristics of configuration recom-
mendations in user manuals, this paper first collected and
studied 261 recommendations from the manuals of six large
open-source systems. Our study shows that 60% of the studied
recommendations describe specific and checkable specifica-
tions instead of merely general guidance. Moreover, almost
all (97%) of such specifications have not been checked in the
systems’ source code, and 61% of them are not equivalent to
the default settings. This implies that additional checking is
needed to ensure the recommendations are correctly applied.

Based on our characteristic study, we build a tool called
PracExtractor, which employs Natural Language Processing
(NLP) techniques to automatically extract configuration rec-
ommendations from software manuals, converts them into
specifications, and then uses the generated specifications to
detect violations in system admins’ configuration settings.
We evaluate PracExtractor with twelve widely-deployed soft-
ware systems, including one large commercial system from
a public company. In total, PracExtractor automatically ex-
tracts 338 recommendations and generates 173 specifications
with reasonable accuracy. With these generated specifications,
PracExtractor detects 1423 good practice violations from
open-source docker images. To this day, we have reported
325 violations and have got 47 of them confirmed as real
configuration issues by admins from different organizations.

1 Introduction

1.1 Motivation

Misconfiguration (error in configuration settings) has be-
come one of the major causes of failures in large-scale cloud
and Internet systems, as reported by many system vendors
[29,45,64] and service providers [20,26,32,34,37,51]. While
various fault tolerance and recovery mechanisms are effective
in handling hardware and software failures, they are less ef-
fective in handling configuration errors [27,32,37]. In 2017, a
configuration error at Level 3, an Internet backbone company,
caused a nationwide network outage [22]. On March 13th,
2019, the recent outage in Facebook was also caused by a
server configuration error, affecting millions of users [52]. In
addition to reliability, configuration errors can also lead to
security issues [59]. OWASP reports misconfiguration as one
of the top 10 most critical web security risks [38]. In 2017, a
configuration error of Amazon S3 storage exposed personal
information of 200 million U.S. voters [53].

One of the primary reasons for configuration errors is the
ever-increasing configuration complexity, especially with sys-
tem software [60]. Configuration complexity is partially re-
flected by the large and almost always increasing number
of configuration parameters, as well as their configuration
constraints and inter-dependency [31, 35, 44, 47, 63], which
inevitably increase system admins’ error rates [40, 46]. For
example, MySQL 8.0 has more than 460 configuration pa-
rameters. Similarly, Apache httpd 2.4 has more than 550
parameters. Such a high level of complexity makes system
configuration an error-prone task.

While research efforts have been attempted on reducing
configuration complexity [55, 60], it is still a long journey
to fully tame the complexity issue. Today, to assist system
admins, software vendors typically release user manuals to-
gether with their software. A manual describes in detail the
name, usages and sometimes constraints of each configura-
tion parameter. It can be in print as a PDF file or accessed
electronically as HTML/XML files, providing good guidance

USENIX Association 2020 USENIX Annual Technical Conference 265

Software Pages Software Pages

COMP-A1 8283 Httpd 1009
MySQL 5494 HBase 787
PostgreSQL 3724 Freebsd 726
CentOS 2297 Ubuntu server 413
Hadoop 2331 Zookeeper 181

Table 1: Number of pages in ten popular software’s manuals.

and reference for system admins to configure and manage
server software.

Unfortunately, system manuals are quite large, containing
hundreds or even thousands of pages. Table 1 lists the num-
bers of pages in the manuals of ten software, including one
commercial software, COMP-A 1. from a large public com-
pany. As the table shows, manuals of MySQL, PostgreSQL,
CentOS and Hadoop have 2331-5494 pages. COMP-A has
8283 pages in its technical documentation.

With such a daunting number of manual pages, system
admins find manuals hard and time-consuming to refer to
and understand. As such, system admins often do not refer
to them when configuring systems. Instead, they either rely
on their own judgment/guesswork or ask for help from other
admins [36]. Previous studies have shown that system admins
solved only a small proportion of usage problems (4% to
25%) by referring to manuals [21, 33, 36].

However, manuals still contain useful information and ig-
noring manuals can lead to configuration errors that cause
server downtime and data center outages. Figure 1 gives
six real-world configuration errors of commercial and open-
source software, in which system admins clearly do not follow
good practice recommendations in manuals. The misconfig-
ured parameters in these examples were set to incorrect values,
leading to problems of systems’ availability, performance and
security. Since these incorrect values are totally legal values
(i.e. violating no constraints in source code), they cannot be
detected by software’s own checking logic, as well as tools
that focus on checking for illegal values [63]. However, in all
these cases, the corresponding manuals actually have clearly
given recommendations on how to set these parameters. Had
these recommendations been followed by system admins,
these misconfigurations would have been avoided.

Unfortunately, good practices recommended in manuals or
other documents are not fully utilized by system admins to
avoid configuration errors mainly due to three reasons:

• Recommended practices are spread out in various parts
of manuals and cannot be easily found by system admins
due to manuals’ bulkiness and poor navigation [36].

• Many good practice recommendations are not always the
same as default settings (more details in §2). A recent

1We are required to keep the company and the product anonymous.

study shows that admins tend to go with default settings
for more than 80% of configuration parameters, and many
configuration errors were caused exactly because admins
do not change the default setting [60]. As later shown in
our evaluation (cf. Table 12), we also found many (997)
cases that system admins just went with bad defaults. Had
system admins read the recommendations in the manuals,
they could have avoided some of these mistakes.

• As shown in all the examples in Figure 1, good practices
recommended in manuals are often soft constraints, which
usually are not checked inside software. Thereby, the vi-
olations of them cannot be detected by previous tools
that were built by either inferring configuration specifica-
tion from the software’s source code [63] or just directly
reusing the source code to check configuration [61].

1.2 Our Contributions

This paper studies the research questions on whether it is use-
ful to automatically extract good practice recommendations
from manuals and use them to detect system admins’ con-
figuration issues, and if so, how to do it. We first collected
and studied 261 recommendations from six large open-source
software manuals. Our study shows that 60% of the studied
recommendations described specific, checkable specifications
instead of just general guidance. In addition, almost all (97%)
of the checkable specifications are not checked in source
codes, and 61% of them are different from the default settings
(reasons and details are discussed in §2).

Based on our characteristic study, we build a tool called
PracExtractor, which employs Natural Language Processing
(NLP) techniques to automatically extract good practice rec-
ommendations from manuals, converts them into specifica-
tions, and then uses the generated specifications to detect
violations in system admins’ configurations.

We evaluated PracExtractor with manuals of twelve widely-
deployed software systems, including one from a commer-
cial company with tens of thousands of customers. Overall,
PracExtractor automatically extracts 338 recommendations,
with a precision of 86% and a recall of 83%. PracExtractor
converts 173 recommendations into specifications with rea-
sonable accuracy. For the six “new” manuals not included in
our characteristic study, PracExtractor can achieve a precision
of 83% for recommendations and 88% for specifications.

To evaluate the capability of detecting real-world miscon-
figurations, we run PracExtractor against real-world config-
urations from top-downloaded container images on Dock-
erHub [24]. PracExtractor detects 1423 violations in 853
images. We reported 325 violations to the image maintainers
and got 47 confirmed as real configuration issues, including
six issues in images with over 1M downloads and 28 in images
with over 1K downloads.

Interestingly, in addition to detecting system admins’ con-
figuration problems, PracExtractor also detects a few incorrect

266 2020 USENIX Annual Technical Conference USENIX Association

Httpd

Parameter: EnableSendfile

Incorrect setting by admins: on

Outcome: web pages become unavailable

Fix: change the value to off

(d)

Recommendation in manual:
“Within some filesystems, it is better to disable

this feature to avoid operational problems.”

Comp-A
Parameter: export-policy

Incorrect setting by admins: none

Outcome: NFS mount permission deny

Fix: Specify a rule for export-policy

(a)

Recommendation in manual:
“Always create a rule with a policy to control

access to a volume.”

Comp-A

Parameter: security-style

Incorrect setting by admins: mix

Outcome: NFS volumes are not mounted

Fix: change security-style to unix

(b)

Recommendation in manual:
“Choose either NTFS- or UNIX-style security

unless there is a specific reason to use mix.”

(e)

HBase
Parameter: hbase.regionserver.thrift.framed

Incorrect setting by admins: false

Outcome: vulnerable to DoS attack

Fix: change the value to true

Recommendation in manual:
“Setting this to false will select the default

transport, vulnerable to DoS…”

Comp-A

Parameter: rsize

Incorrect setting by admins: 32k

Outcome: Performance slowdown

Fix: change rsize to 64k

(c)

Recommendation in manual:
“Comp-A highly recommends using 64k

rsize/wsize for better performance with NFS v4.”

Cassandra

Parameter: enable_transient_replication

Incorrect setting by admins: true

Outcome: potential service failure

Fix: change the value to false

(f)

Recommendation in manual:
“Transient replication is experimental and is not

recommended for production use.”

Figure 1: Six real-world configuration errors that were made by system admins without following recommendations from manuals.
(a)(b)(c) are from COMP-A’s customer ticket database, (d)(e)(f) are new misconfigurations our work discovered from public Docker images
and have been confirmed by multiple image maintainers [3–10].

default settings, three of which have already been confirmed
by MySQL and Cassandra developers as real bugs. Incorrect
default settings can easily cause configuration errors since
system admins are most likely to go with the default [60].

2 Characteristic Study

Before we build a tool to extract good practice recommenda-
tions from manuals, we first collected and studied 261 real-
world recommendations from manuals of six widely-deployed
systems listed in Table 2. Our study answers two questions:
(1) Is it useful to extract those recommendations from man-
uals? If they are all general advice such as “recommend to
set it to a large value”, extracting them is not very helpful
since they cannot be used as specifications for automatically
checking system admins’ settings. In contrast, if the recom-
mendations are clear specifications such as “recommend to set
this to greater than 2000”, extracting them out from manuals
can help build checkers to detect violations to them. Addi-
tionally, have developers already put in their code to check
if system admins follow these recommended practices? If
so, there is no need to extract them from manuals. Finally,
how often are these recommendations the default settings for
the corresponding configuration parameters? If they are not
default, why? (2) How difficult is it to extract good practice
recommendations from manuals? In particular, are manuals
structured enough for information extraction?

Observation 1: 157 (60%) of the studied good practice rec-
ommendations are specific instead of just general advice. We
manually studied all recommendations and categorized them

based on their contents. If a recommendation is about some-
thing that is hard to be checked automatically, it is classified
as a “general advice” (e.g. Table 3 last row). Otherwise, it
is classified as a “clear specification”, which is further cate-
gorized into value, usage, correlation, and property by what
is recommended, as explained in the caption of Table 2. An
example is given for each category in Table 3.

Table 2 shows the number of recommendations of each
category. In total, 157 (60%) of the 261 recommendations
describe clear specifications that if extracted can be used for
automatically checking system admins’ configuration settings.
The remaining 104 recommendations are general advice that
is hard to check automatically.

Observation 2: 152 (97%) of the specific good practices
recommended in manuals are not checked in source code.
For each recommendation, we manually examine the source
code of each software to see if the recommended practices are
checked in source code to warn/inform system admins upon
violations. Table 4 shows that only five out of the 157 specific
recommendations in manuals are checked in source code.

Listing 1 shows an example where a recommended practice
is checked in HBase code. In this case, if the practice is
violated by system admins, they will be warned to reexamine
the setting of this parameter more carefully.

The goal of our work is exactly to generate more checkings
like the HBase case shown in Listing 1, i.e. automatically
extract good practice specifications from manuals and build
a checker to warn system admins when their settings do not
follow the recommended practices.

Violations to good practices may not always be configura-
tion errors. However, as previous work [60, 62] has shown,

USENIX Association 2020 USENIX Annual Technical Conference 267

Software #Rec Specific General
value usage correl property total

MySQL 78 27 6 2 5 40 38
Httpd 92 25 16 8 3 52 40
PostgreSQL 49 21 1 3 3 28 21
HDFS 18 13 0 3 0 16 2
HBase 12 10 1 0 0 11 1
Spark 12 9 0 0 1 10 2
Total 261 105 24 16 12 157 104

Table 2: Characteristics of the 261 studied good practice recom-
mendations from six widely used software. “Specific”: describe a
clear specification; “value”: recommend to (not) set to one or mul-
tiple values (e.g. Table 3 row 2); “usage”: recommend to (not) use
an option, typically for command-line options without a value (e.g.
Table 3 row 3). “correlation”: recommend to set to a value smaller,
larger or equal to another parameter (e.g. Table 3 row 4). “property”:
recommend to set to a value with some property, such as in the
absolute path format(e.g. Table 3 row 5).

Category Example Practice Description in Manuals

Value It is generally not desirable to set this to a value greater than
2000.

Usage This option may be useful for diagnostic purposes, to see
the exact text of statements as received by the server, but for
security reasons is not recommended for production use.

Correlation Setting this lower than the dfs.namenode.replication.min is
not recommend and/or dangerous for production setups.

Property It is best to specify the datadir value as an absolute path.
General We recommend that this setting be kept to a high value for

maximum server performance.

Table 3: Real examples of recommendations of different types.

many system admins simply rely on guesswork or unreliable
sources (e.g. online forums) to configure complex server soft-
ware. If our checker can give a warning like Listing 1 when
the settings do not follow practices, system admins can at
least have a chance to reexamine the settings more carefully.

Observation 3: 96 (61%) of the specific good practice rec-
ommendations are not equivalent to default settings. It is
conceivable that some recommended practices might be the
default settings (after all, the vendor recommends them). If
this is the case, there is no need to extract recommended
practices from manuals. System admins simply just go with
default if they do not know how to set it better.

However, as shown in Table 5, only 61 (39%) good prac-
tices are equivalent to the default settings. For the majority
(61%) cases, recommendations are not the same as default
due to several reasons, including (a) 30 recommend multiple
different values, e.g. a range or a set of values. In real settings,
they may need to be modified to accommodate different situa-
tions, so it is worthwhile for sysadmins to double-check if the
settings follow recommendations.; (b) 30 recommend some
settings based on some conditions, e.g. “Enable A along with
B”; (c) 21 recommendations are on command line options that

Software # (%) of prac
checked in code

MySQL 1 (2.5%)
Httpd 1 (1.9%)
PostgreSQL 1 (3.6%)
HDFS 1 (6.3%)
HBase 1 (9.1%)
Spark 0 (0.0%)

Table 4: Number of good
practices checked in
source code.

if(balancedPreferencePercent
< 0.5) {

}

LOG.warn("The value of " +
DFS_DATANODE_BALANCED_SPACE
_PREFERENCE_FRACTION_KEY +
" is less than 0.5 so
volumes with less available
disk space will receive
more block allocations");

Listing 1: Example of a good
practice check in HBase’s
source code.

Software Same Multi Rela Cond No Others
-val -val -val -rec default

MySQL 14 10 1 10 4 1
Httpd 16 6 3 9 16 2
PostgreSQL 10 8 2 6 0 2
HDFS 9 1 3 3 0 0
HBase 6 3 0 1 0 1
Spark 6 2 0 1 1 0
Total 61 (39%) 30 (19%) 9 (6%) 30 (19%) 21(13%) 6 (4%)

Table 5: The number of recommendations that are the same as
the default and different categories of recommendations that
are not the same as the default (multiple-value, relative-value,
condition-recommendation, no-default, and others).

have no default values; (d) 9 recommend relative values, such
as “25% system RAM size”; (e) 6 cases have no clear reason
why the default is different. They may be potential bugs and
we have one of them confirmed as a bug by developers.

Observation 4: The six studied manuals are organized in a
similar structure. As shown in Table 6, the six manuals are
either in HTML or XML format and parameters in them are
described in a similar structure:

• Each parameter is described in one separate section.
• Parameter names are often used as the section headings.
• There is some meta-info of the parameter described in the

format of <key>:<value>, such as “Type:string”.
• Most information related to each parameter is described

in one or several paragraphs of free texts.

The per-parameter section structure makes it possible to
relate each parameter name and its description by parsing the
section structure. In addition, data types and default values can
be used to identify parameter values in plain text descriptions
which is necessary for generating specifications.

3 Design and Implementation

We design and implement PracExtractor to automatically ex-
tract recommendations from manuals, convert them into spec-
ifications and then uses them to detect violations. PracExtrac-

268 2020 USENIX Annual Technical Conference USENIX Association

Software Manual
format

Parameter
section?

Data type? Default
value?

MySQL html Yes Table Table
Httpd xml Yes No Table
PostgreSQL html Yes KV Text
HDFS xml Yes No Table
HBase html Yes No KV
Spark html Yes No Table

Table 6: Format and structure of manuals regarding how
they describe configuration parameters. “Parameter section”—
a separate section describes each individual parameter, “Data
type”/“Default value” — the format they are described in, including
table and KV (<key>:<value>).

tor faces two main challenges: (1) As manuals are written
in plain texts and have a large amount of texts unrelated to
recommendations, how to effectively filter noises and extract
only recommendations? (2) Even after we extract recommen-
dations, how to convert them into formal specifications that
can be used to automatically check for violations?

To address the first challenge, PracExtractor breaks manual
texts into sentences and extracts recommendation sentences
with two filtering steps: keyword-based filtering (coarse
grained) and syntactic-pattern-based filtering (fine grained).
PracExtractor mines the keywords and syntactic patterns from
the studied 261 recommendations.

To address the second challenge, PracExtractor first identi-
fies semantic entities (e.g. parameter name and values) in a
recommendation sentence and then convert it into a formal
specification by matching them with semantic patterns.

3.1 Preprocessing and Parsing
PracExtractor first preprocesses and parses software manu-
als into parameter name, meta-info and free-text descriptions.
The meta-info, including type and default value, is necessary
for recognizing setting entities later (cf. §3.3). One special
parameter type is enum, for which manuals usually also in-
dicate all valid values along with a parameter. PracExtractor
extracts the valid values for each parameter and uses them to
identify enum values from a sentence in §3.3.

PracExtractor parses manuals based on the observed man-
ual structure. Table 6 shows that manuals are usually written
in HTML/XML formats with separate sections for different
parameters. PracExtractor parses HTML and XML files, iden-
tifies each separate parameter section, and extracts parameter
name, meta-info and free-text description from each. PracEx-
tractor then breaks free-text descriptions into sentences.

Different manuals may still have slightly different formats
for parameter sections. To handle that, PracExtractor takes an
input of a small code snippet (format spec). A format spec
is easy to write: according to our evaluation of twelve large
manuals, they are typically fewer than 30 lines of Python code,
and each of them can be written in 0.5-2 hours. (cf. Table 14).

Word Covered
sentences

Bigram Covered
sentences

recommend 74 be recommended 34
well 26 should only 20
good 26 may want 13
appropriate 21 good idea 7
want 17 with caution 7

Table 7: 10 sample keywords (words and bigrams) collected
by PracExtractor from 261 studied recommendations and how
many recommendations each covers.

3.2 Recommendation Sentences Extraction
Most sentences in manuals do not contain recommenda-
tions. For the twelve evaluated software manuals, 696–25510
sentences are extracted from parameter sections, but only
0.4%–2.7% of them contain recommendations. To extract
these small percentage of recommendations, PracExtractor
performs two steps filtering:

Keyword-based Filtering Following the intuition that rec-
ommendations are usually described with certain keywords
(e.g. “recommend”, “suggest”), PracExtractor extracts can-
didate recommendations with keyword filtering. To find out
which words/phrases should be used as the keywords, PracEx-
tractor first breaks the studied 261 recommendation sentences
into individual words and bigrams (two consecutive words)
and uses them as the candidate keywords T . PracExtractor
then uses inverse document frequency (IDF) to rank the candi-
date keywords. IDF reflects how frequently a term t (word/bi-
gram in our case) occurs in a set of sentences set S, as:

IDF(t,S) = log
|S|

|{s ∈ S : t ∈ s}|
.

PracExtractor calculates IDF(t,R) for the studied recom-
mendations R and IDF(t,S) for all the manual sentences S.
PracExtractor ranks T based on IDF(t,R) and IDF(t,S) and
get the smallest 100 and 300 terms separately as TR and TS.
PracExtractor uses TR − TS as the final keywords. The in-
tuition behinds this is to find the words that are important
in recommendations but not normal sentences. In Table 7,
the sample keywords show that PracExtractor has effectively
found keywords related to recommendations.

Syntactic-Pattern-based Filtering Using keyword filtering
alone is not enough. After keyword-based filtering, only 7.3%
of the remaining sentences are recommendations. Many sen-
tences with the recommendation-related keywords are not true
recommendations. Figure 2 (a) and (b) gives examples that
the same keywords can be contained both in recommendation
and non-recommendation sentences.

The key difference between these recommendations and
non-recommendations in Figure 2 is their syntactic patterns.

USENIX Association 2020 USENIX Annual Technical Conference 269

Setting this parameter to true is appropriate .

csubj acomp

setting phrase keyword

The maximum recommended value is 4 GB .
amod nsubj

keyword setting phrase

attr

This is not guaranteed even with the recommended settings.
amod

keyword

nsubj

Make sure this directory contains appropriate symbolic links.

keyword

acomp

setting phrasekeyword
It is usually best not to turn it off in production.

xcomp
acomp

You need to test to decide the setting that provides the best performance.

keyword

acomp

(a) Recommendation sentences (b) Non-recommendation sentences

Figure 2: Comparison of syntactic patterns of recommendation and non-recommendation sentences that contain likely-
recommendation keywords. The patterns are labeled as undirected dependency paths from a keyword to a setting phrase, where a dependency
path consists of a sequence of syntactic relations annotated with Universal Dependencies [23]: amod – link from a noun to an adjective
modifier; nsubj – relation between a verb/noun and a prepositional phrase; attr – relation between a verb/adjective and a complement, etc.

Besides a keyword, the recommendations also contain a set-
ting phrase, a noun/verb phrase describing what setting is
recommended. Between such setting phrases and keywords,
there are certain syntactic relations (patterns), which do not
exist in non-recommendation sentences. PracExtractor lever-
age the syntactic-patterns to do fine-grained filtering.

PracExtractor first adopts the universal dependency (UD)
tree [23] to represent a sentence’s syntactic structure. A UD
tree T = (V,E) consists of vertices V and edges E, where
v ∈ V is labeled with a word’s part of speech (POS) and
e∈ E represents the syntactic dependency between two words
(cf. Figure 2). Let T ′ = (V,E ′) be an undirected correspon-
dence of T , the syntactic pattern between a keyword and a
setting phrase can be represented with an undirected path
p = (v0,e′v0,v1

,v1, ...,vn), where v0 is the keyword, vn is the
setting phrase, and e′vi−1,vi

∈ E ′ for i ∈ [1,n].
With the UD representation, PracExtractor mines the

unique patterns for recommendations from the studied 261
recommendations Srec and a set of non-recommendation sam-
ples Snot_rec that contains the keywords. For each sentence s,
PracExtractor builds T ′s = (Vs,E ′s) and extracts all paths

ρs = {(v0, e′v0,v1
, v1, ..., vn) :

v0 ∈ KEYWORDS ∧ ∀i ∈ [1,n] e′vi−1,vi
∈ E ′s

∧ ∀i ∈ [0,n] vi ∈Vs ∧ vn ∈ SETTINGPHRASES},

that starts from each keyword and ending at each setting
phrase. The keywords are from the last step and the set-
ting phrases are labeled by human inspectors. PracExtrac-
tor extracts all such paths from all recommendations and
non-recommendation samples, denoted as Prec and Pnot_rec.
PracExtractor then extracts patterns Ppattern with Algorithm 1.

With the identified syntactic patterns Ppattern, PracExtractor
classifies a new sentence s′ into a recommendation or non-
recommendation. PracExtractor traverse Ppattern and check if
any pattern matched with s′. If at least one pattern matched
then s′ is classified as a recommendation otherwise non-
recommendation. Such a matched pattern also labels the set-

Algorithm 1: Syntactic-pattern extraction algorithm
Input: Prec =

⋃
s∈Srec ρs, Pnot_rec =

⋃
s∈Snot_rec ρs

Output: a pattern set Ppattern

P′rec← [], Ppattern← /0;
for ρi ∈ Prec do

// Collect all the prefixes of ρi
for ρi, j ∈ prefix(ρi) do

P′rec.append(ρi, j);
// Traverse elements in P′rec in the order of frequency
// to extract the most general patterns
for ρi ∈ mostFrequentElement(P′rec) do

if prefix(ρi)∩Ppattern 6= /0 then
continue;

if ρi /∈ Pnot_rec then
Ppattern = Ppattern∪{ρi};

return Ppattern

ting phrase in s′ at the pattern’s end (cf. Figure 2). The setting
phrase will be used in specification generation (cf.§3.3).

3.3 Specification Generation

In §3.2, PracExtractor identifies recommendation sentences
and the setting phrases within it. PracExtractor then converts
the setting phrases into checkable, formal specifications. Ta-
ble 8 gives three example recommendations and the corre-
sponding specifications. In general, PracExtractor can gener-
ate four types of specifications, including value, correlation,
usage and property, as shown in Table 9.

A naïve way to generate specifications is to match setting
phrases with predefined regular expressions and convert them
accordingly. This can transform simple phrases with numbers
(e.g. “less than 8”), but cannot convert more complex phrases
(e.g. phrases with enum or parameter names). For instance,
a phrase could be “set to chain”, where “chain” is an enum
value in Httpd. Such software-specific words can hardly be
predefined in regular expressions and so cannot be matched.

270 2020 USENIX Annual Technical Conference USENIX Association

Sentence Specification

It is recommended to enable this option. p == true

A value between 8 to 16 is suggested. p ! [8, 16]

We suggest to set it less than ThreadsPerChild. p < ThreadsPerChild

Table 8: Examples of specifications generated by PracExtractor.
Setting phrases are marked with rectangles.

Category Specification Description Patterns Example

value/

correlation

p == v

p < v | p > v

p ! [v, v!]

p ! {v, v!}

v<value>
lesssyn | moresyn than v<value>
betweensyn v<value> to v!<value>
v<value> or v!<value>

correlation with (p, p!)

prefer (p, p!)

alongsyn with p!<para>
prefersyn p!<para>

usage use (p) usedsyn | usefulsyn

property format (p, f) f<format>

Table 9: Category of specifications PracExtractor generates
and example of patterns for each specification. “<value>” is
defined as “<bool>|<num><unit>?|<enum>|<parameter>” from Ta-
ble 10. “lesssyn” means the synonyms of “less”.

PracExtractor addresses this issue in three steps. First,
given a recommendation sentence, PracExtractor identifies
which parameter the sentence is associated with. Then,
PracExtractor uses the parameter’s meta-info (e.g. type and de-
fault value) extracted before (cf. §3.1) to identify setting enti-
ties, such as values and formats. Third, PracExtractor matches
the identified setting entities with predefined semantic pat-
terns to generate specifications.

Identify Parameter Names PracExtractor first identifies
which parameter a sentence is associated with. For a recom-
mendation sentence s in a paragraph p related to parameter
X , there are four possible cases: 1) Only X is mentioned in s.
PracExtractor determines this sentence is for X ; 2) Another
parameter Y is mentioned in s. PracExtractor checks if Y is a
subject or object to a verb like “set” or “specify” and deter-
mines the sentence is for Y if it is the case; 3) No parameter
is mentioned in s. PracExtractor further searches previous
sentences in paragraph p; 4) No parameter is mentioned in p,
PracExtractor determines the sentence is for X .

Identify Settings Entities Give the identified setting phrase
and associated parameter of a sentence, PracExtractor then
recognizes setting entities (e.g. values and formats) from
the setting phrase based on the associated parameter’s type.
Table 10 shows the seven types of setting entities that PracEx-
tractor can identify. For different types of setting entities,
PracExtractor identifies them with different syntax:

Type Setting Syntax

<bool> “enable” | “on” | “true” | “disable” | “false” | “off”

<num> [-+]?\d+(\.\d+)?

<unit> “byte” | “MB” | “ms” | “%” | “% of RAM” | …

<enum> !w " VALID_VALUES

<parameter> !w " ALL_PARAMETERS

<format> “email address” | “absolute path” | “domain name”

| …

<string> !w # !<bool> $ <num> $ <unit> $ <enum> $

<parameter> $ <format>)

Table 10: Types of setting entities PracExtractor iden-
tifies from recommendation sentences. VALID_VALUES and
ALL_PARAMETERS are from the type-info and parameter list that
PracExtractor identifies in the parsing step (cf. §3.1).

• For basic types, including <bool> and <num>, PracExtrac-
tor identifies them with regular expressions. For <num>,
PracExtractor also identifies common <unit> (e.g. “GB”,
“byte”) along with it.
• For <enum>, PracExtractor takes advantage of parameters’

type-info to identify it. The type-info of an <enum> param-
eter does not only indicate it is <enum> but also indicates
the valid values that can be set to the parameter. PracEx-
tractor has parsed these in the parsing step (cf. 3.1) and
now searches a setting phrase for the valid values.

• <parameter> is for the case that the setting phrase de-
scribes current parameter with respect to another param-
eter, such as “set A to be larger than B”. PracExtractor
identifies this by searching for valid parameter names in
the setting phrase. Note PracExtractor has extracted all
parameter names in the parsing step (cf. 3.1).

• For <format>, PracExtractor identifies common formats
(e.g. “email address”, “absolute path”) of parameters
based on word matching. PracExtractor allows users to
provide new words to extend the identifiable formats.

• All other words/phrases are identified as <string>.
PracExtractor further handles two kinds of strings that
have special meaning. First, some of them use “this value”
or “this” to refer to a value mentioned in previous sen-
tences. PracExtractor recognizes such references and iden-
tifies the actual value from previous sentences. Second,
some may use “default” to refer to parameters’ default
value. In this case, PracExtractor uses the corresponding
default value extracted from the parsing step (cf. §3.1) as
the recommended setting.

Generate Specification PracExtractor generates checkable
formal specifications by matching the setting phrases with
predefined semantic patterns. Table 9 lists the types of spec-

USENIX Association 2020 USENIX Annual Technical Conference 271

ifications that can be generated by PracExtractor, each with
an example pattern. Before blindly matching a setting phrase
with patterns, PracExtractor first considers the associated pa-
rameter’s data type. For example, if the data type is <bool>
or <enum>, there is no need to match semantic patterns like
“less than <value>”, “between <value> and <value>”, or
anything that is for <num>. Second, synonyms are also con-
sidered for these patterns. For instance “lesssyn than” can also
match with “lower than” and “smaller than”, etc.

Detect Negation PracExtractor also detects negation in a
recommendation sentence and negates a specification when
necessary. Two different types of negations are handled
by PracExtractor. First, PracExtractor finds direct negation
words, such as “not” (or abbreviation “n’t”) “none” and
“never”, in sentences. In addition, PracExtractor also detects
indirect negation words and phrases, such as “avoid”, “with
caution”, "rarely", and "seldom", etc. to identify the negation.

3.4 Violation Detection from Configurations
PracExtractor parses a configuration file and turns the settings
into key-value pairs of (parameter name, value). Although
the formats of configuration files for different software can
vary depending on the software implementation, most of them
have similar formats. The configuration files of the twelve
popular systems in our evaluation, including MySQL, Httpd,
HBase, HDFS, Spark, Squid and even the commercial system,
all follow two common and simple formats: key-value pairs
with separator like ‘=’ or ‘:’ or XML format.

Then PracExtractor checks the parsed parameter values
against extracted specifications and generates warning mes-
sages if it detects violations. PracExtractor uses the original
sentences from manuals as the warning messages. An exam-
ple warning could be “Setting dfs.safemode.replication.min
lower than dfs.replication.min is not recommended and is
dangerous for production setups”. This warning can remind
sysadmins to double-check the configurations to avoid poten-
tial mistakes, just like the one shown in Figure 1 and 3.

Most of the violations detected by PracExtractor cannot
be detected by previous works. Previous works [44, 61, 63]
mainly use configuration checking/usage logic in source code
to detect misconfigurations. However, most recommendations
(97% as in Table 4) are not checked in source code, so viola-
tions to them cannot be detected by these works.

4 Experimental Evaluation

As shown in Table 11, we evaluate PracExtractor on twelve
large software systems including eleven popular open-source
server systems and one commercial systems (COMP-A) from
a public company that serves many enterprise customers.
These systems’ manuals have 543 to 8283 pages. These man-
uals include not only the six manuals in our characteristic

study, but also six new manuals that are not studied before.
We evaluate both the precision and recall of PracExtractor
by comparing its results with recommendations identified
by human inspectors. In our evaluation, two human inspec-
tors manually and independently examined each manual to
identify recommendations.

For violation detection, we evaluate PracExtractor with real-
world settings from top-ranked container images on Dock-
erHub (200 images for each open-source systems). We run
PracExtractor against configuration files in these docker im-
ages to detect violations to the specifications extracted from
manuals. The evaluated images include both Linux-based
and Windows-based one. However, as PracExtractor currently
does not support platform-specific checking, our evaluation
does not include checking platform-related specifications. In
total, only 4 specifications are platform-related.

Recommendation and Specification Extracted As shown
in Table 11, PracExtractor extracts a total of 338 good prac-
tice recommendations (including specific and general advice)
from manuals and automatically converts 173 of them into
formal specifications that can be used to check system ad-
mins’ configuration settings. Among all software, Httpd has
the most number (81) of recommendations extracted as well
as the most number (31) of specifications generated.

Results with the six “new” manuals excluded from our
study PracExtractor works reasonably well with the six “new”
software manuals that are not included in our characteristic
study. PracExtractor extracts 117 recommendations and 59
specifications from these manuals. For example, it extracts
35 recommendations and 22 specifications for the commer-
cial software, COMP-A. The precision and recall are only
slightly lower than the one for the six studied manuals, but are
still reasonably good (with a 0.83 precision and 0.80 recall
for recommendations, and 0.88 precision and 0.66 recall for
specifications).

Violations Detected PracExtractor detects in total 1423 prac-
tice violations from 853 unique images. We manually vali-
dated all the violations. We reported 325 (that are maintained
on GitHub) of them to their maintainers and have got 47 con-
firmed as real configuration issues, including six in images
with >1M downloads and 28 in images with >1K downloads.

Table 12 shows a breakdown of all detected violations.
426 are “wrong change”, namely a parameter is explicitly
changed to a non-recommended value by system admins. 997
violations are "wrong default", namely a parameter has a
non-recommended default value but is not changed. This
also matches with the finding from a previous real-world
misconfiguration study [60] that many configurations are left
as default. In this case, system admins are afraid of changing
default settings, even though the default is not recommended
or is simply a placeholder value, which needs system admins
to explicitly change to fit their own system environments.

272 2020 USENIX Annual Technical Conference USENIX Association

Software Category Update Time # Recommendations # Specifications
of Manuals total extracted precision recall total generated precision recall

MySQL database Aug. 2019 78 61 0.90 0.78 40 30 0.88 0.75
Httpd web server Aug. 2019 92 81 0.83 0.88 52 31 0.79 0.60
PostgreSQL database Aug. 2019 49 38 0.95 0.78 28 20 0.87 0.71
HDFS distributed storage Aug. 2019 18 17 1.00 0.94 16 14 0.93 0.88
HBase distributed storage Aug. 2019 12 12 1.00 1.00 11 11 1.00 1.00
Spark distributed computing Aug. 2019 12 12 0.86 1.00 10 8 0.89 0.80
COMP-A commercial storage May 2019 49 35 0.70 0.71 37 22 1.00 0.59
Nginx proxy Jul. 2019 26 24 0.92 0.92 6 4 0.50 0.67
Flink stream processing Aug. 2019 10 6 0.67 0.60 6 4 1.00 0.67
Squid proxy Feb. 2019 22 18 0.86 0.82 13 9 0.82 0.69
Mapred distributed computing Aug. 2019 25 20 0.95 0.80 15 9 1.00 0.60
Cassandra distributed storage Aug. 2019 15 14 0.93 0.93 13 11 0.85 0.85

studied 261 221 0.89 0.85 157 114 0.87 0.73
new 147 117 0.83 0.80 90 59 0.88 0.66
overall 408 338 0.86 0.83 247 173 0.87 0.70

Table 11: Numbers of recommendations extracted and specifications generated by PracExtractor and corresponding
accuracy (precision= TruePositive

TruePositive+FalsePositive and recall= TruePositive
TruePositive+FalseNegative). Recommendations consist of both general

advice and specific ones that can be converted into specifications. “studied” refers to the software included in our characteristic
study (first 6 rows) , while “new” refers to other software not included in our study (last 6 rows) .

Software Wrong
change

Wrong
default

Software Wrong
change

Wrong
default

MySQL 20 200 Nginx 0 0
Httpd 338 200 Flink 0 0
PostgreSQL 8 0 Squid 20 0
HDFS 21 0 Mapred 0 0
HBase 0 199 Cassandra 9 398
Spark 10 0

Total Wrong change 426 Wrong default 997

Table 12: Detected good practice violations in container images
from Dockerhub. We reported 325 violations to the image owners,
and 47 of them have been confirmed as real configuration errors.
Three wrong defaults are also confirmed by MySQL and Cassandra.

Figure 3 gives three examples of real-world violations that
are detected by PracExtractor from popular container images
on DockerHub. They have been confirmed by the image own-
ers as real configuration errors or by the software developers
as real bugs. Here are the root causes:

(a) HDFS manual recommends to leave the parameter as
true to avoid registration of excluded hostnames. How-
ever, it is ignored and violated in 21 images, which can
cause security issues. We reported them and so far two
of them have been confirmed [11, 12].

(b) Cassandra manual does not recommend to enable the
experimental feature as it may cause potential failure.
However, the default setting enables it, which is a bug,
and 199 images just keep the default. The bug has been
confirmed and fixed by Cassandra in its new version [1].

(c) The default setting for this parameter in MySQL is much
larger than the recommended value in the manual, and
the default value (set by MySQL developers) is actually
incorrect. We report it to MySQL official Bugzilla and it
has been confirmed as a bug [16].

Indeed, not all the 1423 violations are configuration errors
or bugs. However, as discussed before in the real-world exam-
ple from HBase (cf. §2 Listing 1) that explicitly performs such
checks in its source code, when such violations are warned to
system admins, they at least get a chance to reexamine and
reconsider the settings more carefully.

Maintainers’ Feedback on Violations We reported 325 to
the image maintainers and so far have got 47 violations con-
firmed that they need to be changed. We list three example
confirmations in Table 13 (row 1, 2, 3). We took a further
look into the impact of these confirmed violations: 11 cause
security vulnerabilities, 31 cause unreliable services, 2 cause
performance issues and 3 cause database inconsistency.

We also got 46 other feedbacks that the maintainers hesi-
tated to fix the violations. They either think it is the upstream
vendors’ responsibility to handle the issues (Table 13 row 4,
5) or are aware of the limitations but make the settings for
particular environments (Table 13 row 6).

Lines of Customized Code for Each Manual Table 14
shows the lines of Python code (LOC) of the format spec
for each manual. It needs only 6-73 LOC for the software
manuals with hundreds and thousands of pages. Also, the
LOC is not proportional to the number of pages in manuals,
and it is only one-time effort to each software. On average,
it needs little effort (0.5-2 hours) to customize PracExtrac-

USENIX Association 2020 USENIX Annual Technical Conference 273

Cassandra

Parameter: enable_materialized_views

Default: true

Recommendation: false

Misconfiguration: keep wrong default

Violated docker images:

199 images

(b)

Recommendation in manual:
“Materialized views are considered

experimental and are not recommended for
production use.”

MySQL

(c)

Recommendation in manual:
“The maximum recommended value is 4GB

…MySQL currently cannot work with binary
log positions greater than 4GB.”

Parameter: max_binlog_cache_size

Default: 2^64

Recommendation: 4GB

Misconfiguration: keep wrong default

Violated docker images:

200 images

(a)

Recommendation in manual:
“It is recommended that this setting be left on to

prevent accidental registration of datanodes
listed in the excludes file…”

Parameter: dfs.namenode.datanode.

registration.ip-hostname-check

Default: true

Recommendation: true

Misconfiguration: false

Violated docker images:
Babbleshack/hadoop, jamesmcclain/hadoop

HDFS

Figure 3: Example of new violations detected by PracExtractor in popular images from DockerHub. The violations have been confirmed
by image maintainers [11, 12] and software vendors (Cassandra and MySQL). Cassandra has fixed (b) in its new version [1].

Image Feedback on Violation Reports from Image Maintainers

eviles/
httpd

“Ok, I’ve fixed two images: eviles/httpd, eviles/httpd-
tomcat.’ [3]

newnius/
hbase

“Thanks for pointing out this. I have added that to the default
configuration files and rebuilt the images.” [5]

oscerd/
cassandra

“Yes we can do that. I can update the configuration for 3.10 and
3.11.” [9]

vitessio/
mysql

“As a general strategy, I plan to use MySQL’s default values
unless there is a strong use-case to override.” [13]

madflojo/
cassandra

“Since we are using the upstream cassandra/latest, I’d prefer
that this issue go to them.” [14]

publicisw/
httpd

“We are aware of these limitations...This is only used on new
linux kernels, which should support this feature...” [15]

Table 13: Example of positive and less-positive (in gray back-
ground) feedback. Due to page limit, we list three for each.

tor for a new software manual, including even for the large
commercial software manual with 8283 pages.

Accuracy — False Negatives and False Positives Table 11
shows PracExtractor’s accuracy in terms of recall and pre-
cision. For recommendation extraction, PracExtractor has a
reasonable high recall, 0.83. In other words, overall, PracEx-
tractor misses only 17% of the recommendations. For spec-
ification extraction, PracExtractor’s recall is slightly lower
(0.70) (i.e. miss 30% of the specification). This is mainly
because some descriptive texts and string values are hard to
be automatically recognized and converted into specification
(cf. Table 15). This can be further improved by analyzing the
semantics of parameter names so that string values can be
better matched with parameter meanings.

PracExtractor has low false positives, too. Its overall pre-
cision is 0.86 for recommendation and 0.87 for specification.
That is, only 14% of the recommendations and 13% of the
specifications extracted by PracExtractor are false positives.
The false positives are introduced mainly due to texts are
incorrectly identified as parameter values (cf. Table 15).

Impacts of False Positives The false positives will not cause

Software Manual
pages

LOC Software Manual
pages

LOC

MySQL 5494 73 COMP-A 8283 18
Httpd 1009 10 Nginx 543 24
PostgreSQL 3724 24 Flink 6152 6
HDFS 1031 12 Squid 1391 10
HBase 787 14 Mapred 1318 12
Spark 599 6 Cassandra 913 11

Table 14: Lines of code (LOC) of format specs for the twelve
evaluated manuals.

serious impacts as they can be recognized easily. Table 16
shows three cases of false recommendations that PracExtrac-
tor extracted from the evaluated manuals. They are descrip-
tions related to the parameters but just are not recommen-
dations. For example, “there may be circumstances where
it is desirable for a configuration section’s authorization to
be combined with that of its predecessor” is a false positive,
which describes a parameter usage but gives no recommenda-
tion. Since PracExtractor includes such an original sentence
from manuals in a warning message, sysadmins who read it
can easily realize that it is not a recommendation and will not
be misguided.

Evaluation with Existing Misconfiguration Dataset We
also evaluate PracExtractor with existing configuration issues.
As there is no existing dataset for good practice violations,
we use a dataset [2] for general configuration issues used in
previous works [60, 61]. This dataset contains configuration
issues from various online forums and mailing lists. We use
the issues categorized as “error” to evaluate PracExtractor.
Out of the 63 evaluated configuration errors, PracExtractor
can detect 7 (10%) of them. We validated that these detected
errors cannot be detected by previous works [35, 61] as they
violate no constraint in source code while previous works use
code constraints to detect errors. For the undetected errors,
we found that manuals do not provide recommendations for

274 2020 USENIX Annual Technical Conference USENIX Association

Software False Negatives Software False Positives
R1 R2 R3 R4 R5

Httpd 10 11 0 Httpd 4 4
COMP-A 8 3 4 Nginx 4 0
Mapred 1 2 3 Squid 2 0

Table 15: Root causes for PracExtractor’s False Negative and
False Positive. R1 — descriptive recommendations that are not
identified, such as “it is recommended to not configure a ticket key
file”. It is hard to automatically infer that this refers to not using
SSLSessionTicketKeyFile. R2 — unknown string values that are
not identified. For example, in “it’s recommended the username
’anonymous’ is in allowed userIDs”, it is hard to recognize the com-
mon word “anonymous” as a value. R3 — sentences that are not
covered by our syntactic patterns. R4 — texts that are incorrectly
identified as parameter values. R5 — non-recommendation sentences
that are mismatched with syntactic patterns of recommendations.

the error-related parameters. With a grain of salt, this shows
that current manuals have not provided enough recommenda-
tions for avoiding many real-world misconfigurations. Further
enriching manuals with good practices may improve PracEx-
tractor’s detecting capability and also benefit system admins
who refer to manuals to resolve configuration issues.

5 Discussion

Generality. PracExtractor is reasonably general for manuals
from different software. As our evaluation on six new manuals
shows, PracExtractor can identify most (80%) recommenda-
tions from these manuals with a precision of 83%.
Human Effort. PracExtractor can easily be extended with
new format specs to accommodate future manuals. In our
evaluation, the specs for the six new software manuals are
all less than 30 lines (cf. Table 14) and were written by a
first-year graduate student, each in 0.5-2 hours.
Accuracy of Manuals. Another concern is whether manu-
als themselves deliver accurate information for PracExtractor
to extract. After all, manuals can be outdated and can have
mistakes made by the writers. In our work, we considered
these factors. First, we validated the last update time of our
evaluated manuals. As shown in Table 11, all twelve manu-
als are updated recently this year. Second, we compared the
specifications extracted from manuals against source code
and reported all differences to developers to check. If either
is wrong/obsolete, it may introduce problems. Interestingly,
in three cases, developers from MySQL and Cassandra con-
firmed that the source code is wrong (cf. Figure 3).

6 Related Work

Misconfiguration detection and troubleshooting. Many
works have been done on detecting [25, 28, 30, 61, 66, 68]

Parameter False Positive Recommendations

adaptive_hash
_index

It may be desirable to dynamically enable or disable adap-
tive hash indexing to improve query performance.

AuthMerging There may be circumstances where it is desirable for a
configuration section’s authorization to be combined with
that of its predecessor.

LimitRequest
Line

When name-based virtual hosting is used, the value for this
directive is taken from the default (first-listed) virtual host
best matching the current IP address and port combination.

Table 16: Example of false positive recommendations PracEx-
tractor extracted. They can be easily recognized by system admins
and will not misguide them to make wrong changes.

and troubleshooting [17–19, 42, 43, 54, 56, 57, 65, 69] configu-
ration errors. Almost all of these works detect configuration
errors by either checking against (a) patterns mined from tons
of configuration files, or (b) constraints inferred from source
code. Our work is complementary to these approaches. We
extract recommendations from vendor-provided manuals as
specifications, use them to detect violations, and warn system
admins to reexamine the violations. Each of the approaches
has its own strengths and weaknesses. Below, we compare
our approach with each previous one respectively.

Xu [61,63], Rabkin [44], and Nadi [35] propose approaches
to extract configuration constraints from source code using
static analysis. While it can infer simple constraints such as
parameter types, range and some simple dependencies, it is
less effective in checking against more complex constraints,
especially configuration settings that are legitimate but may
not be good or optimal. In our work, we focus on good prac-
tices recommended by vendors. If a system admin configures
a parameter with a valid setting but does not achieve the in-
tended goal (e.g performance, reliability or security goal),
previous works that focus on detecting invalid configurations
will not report any problem. In comparison, our PracExtractor
can still warn him/her about the setting if it does not follow
the good practices PracExtractor extracts from manuals.

Encore [68], PeerPressure [54] and Santolucito et al’s wo-
rk [47, 48] propose to extract configuration constraints and
good practices from existing settings. These approaches as-
sume that a large number of independent configuration sam-
ples are available for learning and the correct configurations
are the common ones. This assumption can be true for some
systems where configuration settings can be collected from
users/customers back to vendors. However, for many enter-
prise software such as database or storage systems that are
mainly deployed in enterprises (e.g. financial companies and
government), each system’s configuration settings are confi-
dential information and cannot be shared back with vendors.
As such, these approaches are less applicable. In comparison,
PracExtractor is applicable to such scenarios because it au-
tomatically extracts good practice recommendations that are
already written in vendor-provided manuals, and the check-

USENIX Association 2020 USENIX Annual Technical Conference 275

ers generated by PracExtractor can be shipped to enterprise
customers to check their configuration settings.

In addition to the above two approaches, another closely
related work is ConfSeer [41], which takes a user’s config-
uration of one or multiple parameters to search against the
vendor’s Knowledge Base (KB) articles and identifies those
highly relevant ones so that users can read those KB articles
to self-diagnose and self-correct misconfiguration (with no
need to call customer support). While this work also uses
NLP techniques, their goal is to narrow down the match so
that users do not need to read hundreds of KB articles. For a
given configuration parameter setting from a user, ConfSeer
returns a ranked list of KB articles for the user to explore,
in a way similar to a search engine like Google that tries to
return the most relevant web pages to a user’s query. In other
words, ConfSeer is an improved Google search engine for
configuration-related KB articles. In comparison, our goal is
to extract configuration recommendations from manuals and
convert them into formal and checkable specifications. Our
checker can be shipped to the customer sites to automatically
detect violations and warn system admins to reexamine their
settings to proactively avoid problems instead of waiting for
postmortem troubleshooting.

Inferring specification from text. Some past works also aim
to infer specifications from program-related texts, including
from program comments [49, 50], API documents [39, 67,
70, 71], and man pages [58]. Our work differs from previous
works both on purposes and techniques. First, instead of help-
ing developers find bugs in source code as in [49, 50, 70], our
work aims to help system admins detect misconfigurations
in their system settings. Secondly, comments and API docu-
ments have relatively uniform structures, which makes it easy
to extract information like function names and variable types.
In comparison, manuals are much less structured. The only
structure is that each parameter has its own section/chapter.
Inside a section, it is mostly free text. Thirdly, PracExtractor
extracts much more complex constraints than previous work
on man pages [58]. DASE [58] uses regular expression to
extract valid options from man pages. In comparison, PracEx-
tractor can extract option value, correlation and property from
software manuals.

7 Conclusions and Future Work

This paper focused on the usefulness and feasibility of extract-
ing good practice recommendations from software manuals
to detect configuration problems. Specifically, we first con-
ducted a characteristic study on 261 recommendations from
six large open source software manuals. Based on the obser-
vations learned, we designed and implemented a tool, called
PracExtractor, that can extract 338 recommendations and gen-
erate 173 specifications with reasonable accuracy from twelve
large software manuals, including one for a large commercial

software system. Additionally, with the generated specifica-
tions, PracExtractor have detected 1423 violations from 853
container images on DockerHub. We reported 325 of them
and so far have got 47 confirmed as real configuration issues
by the image maintainers from different organizations.

Interestingly, in addition to detecting system admins’ con-
figuration problems, PracExtractor can also help detect in-
correct default settings for configuration parameters. When a
default setting differs from a recommendation in the manual,
it may indicate that the default setting is wrong. Incorrect
default settings can easily cause configuration errors because
system admins are most likely to go with default [60]. In our
experiments, we did discover a few such software bugs, and
three of them have already been confirmed respectively by
MySQL and Cassandra.

PracExtractor is far from perfect. First, there is still much
space to further improve its accuracy based on our analysis
of false positives and false negatives (cf. Table 15). Further
semantic analysis of parameter descriptions can improve the
identification accuracy of parameter type, name and value.
Second, PracExtractor currently cannot extract specifications
with descriptive conditions, such as “set A with a large work-
load”. This may possibly be handled by further incorporating
domain knowledge of common descriptions and sub-clause
analysis techniques.

Several other directions are also valuable to explore in the
future. First, from our experience, we found that a uniform
structure (e.g. per-parameter section) and consistent word us-
age (e.g. recommend) benefit extracting recommendations a
lot. Therefore, it would be interesting to explore how manuals
may be restructured so more information can be automatically
extracted. Second, PracExtractor may be potentially used to
detect documentation drift — manuals are not updated along
with source code. By combining PracExtractor with source
code analysis tools, it is possible to compare the configura-
tions described in manuals and used in source code. Third,
while PracExtractor focuses on analyzing user manuals, the
approach may be applicable to extract good practices from
other text-based documents such as knowledge-base (KB)
articles, which are used by support engineers to troubleshoot
customer issues.

Acknowledgments

We greatly appreciate the anonymous reviewers and our shep-
herd, Scott D. Stoller, for their insightful comments and feed-
back. We thank the Opera group, the Systems and Networking
group at UCSD as well as Anita Jinda, Sam Lin and Jianmo
Ni for useful discussions and paper proofreading. We thank
Tianyin Xu for sharing a configuration issue dataset with us.
This work is supported in part by NSF grants (CNS-1814388,
CNS-1526966) and the Qualcomm Chair Endowment.

276 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Cassandra release note. https:
//gitbox.apache.org/repos/asf?p=
cassandra.git;a=blob;f=NEWS.txt;h=
ead28f0ac3d8d93c1ad87a3b944c0c72345257c1;hb=
HEAD.

[2] Configuration datasets. https://github.com/
tianyin/configuration_datasets.

[3] Github issue. https://github.com/eviles/docker/
issues/1.

[4] Github issue. https://github.com/sspreitzer/
docker-httpd-mirror/issues/1.

[5] Github issue. https://github.com/newnius/
Dockerfiles/issues/4/.

[6] Github issue. https://github.com/F21/hbase/
issues/2.

[7] Github issue. https://github.com/binhnv/docker-
hbase/issues/1.

[8] Github issue. https://github.com/Boostport/
hbase-phoenix-all-in-one/issues/1.

[9] Github issue. https://github.com/oscerd/
cassandra-image/issues/1.

[10] Github issue. https://github.com/femiwiki/
cassandra/issues/3.

[11] Github issue. https://github.com/Babbleshack/
docker-hadoop-yarn/issues/1.

[12] Github issue. https://github.com/jamesmcclain/
HadoopDocker/issues/8.

[13] Github issue. https://github.com/vitessio/
vitess/issues/5056.

[14] Github issue. https://github.com/madflojo/
cassandra-dockerfile/issues/1.

[15] Github issue. https://github.com/
publicisworldwide/docker-stacks/issues/31.

[16] Mysql bugzilla. https://bugs.mysql.com/
bug.php?id=94487.

[17] Bhavish Agarwal, Ranjita Bhagwan, Tathagata Das, Sid-
dharth Eswaran, Venkata N Padmanabhan, and Geof-
frey M Voelker. Netprints: Diagnosing home network
misconfigurations using shared knowledge. In NSDI,
volume 9, pages 349–364, 2009.

[18] Mona Attariyan, Michael Chow, and Jason Flinn. X-
ray: Automating root-cause diagnosis of performance
anomalies in production software. In Presented as part
of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), pages 307–320,
2012.

[19] Mona Attariyan and Jason Flinn. Automating configu-
ration troubleshooting with dynamic information flow
analysis. In OSDI, volume 10, pages 1–14, 2010.

[20] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle.
The datacenter as a computer: An introduction to the
design of warehouse-scale machines. Synthesis lectures
on computer architecture, 8(3):1–154, 2013.

[21] Irina Ceaparu, Jonathan Lazar, Katie Bessiere, John
Robinson, and Ben Shneiderman. Determining causes
and severity of end-user frustration. International
journal of human-computer interaction, 17(3):333–356,
2004.

[22] CNN. Here’s why you may have had internet
problems today. https://money.cnn.com/2017/
11/06/technology/business/internet-outage-
comcast-level-3/index.html, 2017.

[23] Marie-Catherine De Marneffe, Timothy Dozat, Natalia
Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre,
and Christopher D Manning. Universal stanford de-
pendencies: A cross-linguistic typology. In LREC, vol-
ume 14, pages 4585–92, 2014.

[24] Inc. Docker. Docker hub. https://hub.docker.com/,
2019.

[25] Nick Feamster and Hari Balakrishnan. Detecting bgp
configuration faults with static analysis. In Proceedings
of the 2Nd Conference on Symposium on Networked
Systems Design & Implementation-Volume 2, pages 43–
56. USENIX Association, 2005.

[26] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto,
Agung Laksono, Anang D Satria, Jeffry Adityatama,
and Kurnia J Eliazar. Why does the cloud stop com-
puting?: Lessons from hundreds of service outages. In
Proceedings of the Seventh ACM Symposium on Cloud
Computing, pages 1–16. ACM, 2016.

[27] Peng Huang. Toward Understanding and Dealing with
Failures in Cloud-Scale Systems. PhD thesis, UC San
Diego, 2016.

[28] Peng Huang, Chuanxiong Guo, Jacob R Lorch, Lidong
Zhou, and Yingnong Dang. Capturing and enhancing in
situ system observability for failure detection. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 1–16, 2018.

USENIX Association 2020 USENIX Annual Technical Conference 277

https://gitbox.apache.org/repos/asf?p=cassandra.git;a=blob;f=NEWS.txt;h=ead28f0ac3d8d93c1ad87a3b944c0c72345257c1;hb=HEAD
https://gitbox.apache.org/repos/asf?p=cassandra.git;a=blob;f=NEWS.txt;h=ead28f0ac3d8d93c1ad87a3b944c0c72345257c1;hb=HEAD
https://gitbox.apache.org/repos/asf?p=cassandra.git;a=blob;f=NEWS.txt;h=ead28f0ac3d8d93c1ad87a3b944c0c72345257c1;hb=HEAD
https://gitbox.apache.org/repos/asf?p=cassandra.git;a=blob;f=NEWS.txt;h=ead28f0ac3d8d93c1ad87a3b944c0c72345257c1;hb=HEAD
https://gitbox.apache.org/repos/asf?p=cassandra.git;a=blob;f=NEWS.txt;h=ead28f0ac3d8d93c1ad87a3b944c0c72345257c1;hb=HEAD
https://github.com/tianyin/configuration_datasets
https://github.com/tianyin/configuration_datasets
https://github.com/eviles/docker/issues/1
https://github.com/eviles/docker/issues/1
https://github.com/sspreitzer/docker-httpd-mirror/issues/1
https://github.com/sspreitzer/docker-httpd-mirror/issues/1
https://github.com/newnius/Dockerfiles/issues/4/
https://github.com/newnius/Dockerfiles/issues/4/
https://github.com/F21/hbase/issues/2
https://github.com/F21/hbase/issues/2
https://github.com/binhnv/docker-hbase/issues/1
https://github.com/binhnv/docker-hbase/issues/1
https://github.com/Boostport/hbase-phoenix-all-in-one/issues/1
https://github.com/Boostport/hbase-phoenix-all-in-one/issues/1
https://github.com/oscerd/cassandra-image/issues/1
https://github.com/oscerd/cassandra-image/issues/1
https://github.com/femiwiki/cassandra/issues/3
https://github.com/femiwiki/cassandra/issues/3
https://github.com/Babbleshack/docker-hadoop-yarn/issues/1
https://github.com/Babbleshack/docker-hadoop-yarn/issues/1
https://github.com/jamesmcclain/HadoopDocker/issues/8
https://github.com/jamesmcclain/HadoopDocker/issues/8
https://github.com/vitessio/vitess/issues/5056
https://github.com/vitessio/vitess/issues/5056
https://github.com/madflojo/cassandra-dockerfile/issues/1
https://github.com/madflojo/cassandra-dockerfile/issues/1
https://github.com/publicisworldwide/docker-stacks/issues/31
https://github.com/publicisworldwide/docker-stacks/issues/31
https://bugs.mysql.com/bug.php?id=94487
https://bugs.mysql.com/bug.php?id=94487
https://money.cnn.com/2017/11/06/technology/business/internet-outage-comcast-level-3/index.html
https://money.cnn.com/2017/11/06/technology/business/internet-outage-comcast-level-3/index.html
https://money.cnn.com/2017/11/06/technology/business/internet-outage-comcast-level-3/index.html
https://hub.docker.com/

[29] Weihang Jiang, Chongfeng Hu, Shankar Pasupathy,
Arkady Kanevsky, Zhenmin Li, and Yuanyuan Zhou.
Understanding customer problem troubleshooting from
storage system logs.

[30] Yu Jin, Nick Duffield, Alexandre Gerber, Patrick
Haffner, Subhabrata Sen, and Zhi-Li Zhang. Nevermind,
the problem is already fixed: proactively detecting and
troubleshooting customer dsl problems. In Proceedings
of the 6th International Conference on emerging Net-
working EXperiments and Technologies, page 7. ACM,
2010.

[31] Emre Kiciman and Yi-Min Wang. Discovering cor-
rectness constraints for self-management of system con-
figuration. In International Conference on Autonomic
Computing, 2004. Proceedings., pages 28–35. IEEE,
2004.

[32] Ben Maurer. Fail at scale: Reliability in the face of rapid
change. ACM Queue, 13(8):30, 2015.

[33] Valerie Mendoza and David G Novick. Usability over
time. In Proceedings of the 23rd annual international
conference on Design of communication: documenting
& designing for pervasive information, pages 151–158.
ACM, 2005.

[34] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and
Onur Mutlu. A large scale study of data center network
reliability. In Proceedings of the Internet Measurement
Conference 2018, pages 393–407. ACM, 2018.

[35] Sarah Nadi, Thorsten Berger, Christian Kästner, and
Krzysztof Czarnecki. Mining configuration constraints:
Static analyses and empirical results. In Proceedings
of the 36th International Conference on Software Engi-
neering, pages 140–151. ACM, 2014.

[36] David G Novick and Karen Ward. Why don’t people
read the manual? In Proceedings of the 24th annual
ACM international conference on Design of communi-
cation, pages 11–18. ACM, 2006.

[37] David Oppenheimer, Archana Ganapathi, and David A
Patterson. Why do internet services fail, and what can
be done about it? In USENIX symposium on internet
technologies and systems, volume 67. Seattle, WA, 2003.

[38] OWASP. Top 10-2017 a6-security misconfigura-
tion. https://www.owasp.org/index.php/Top_10-
2017_A6-Security_Misconfiguration, 2017.

[39] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie,
Stephen Oney, and Amit Paradkar. Inferring method
specifications from natural language api descriptions.
In Proceedings of the 34th International Conference
on Software Engineering, pages 815–825. IEEE Press,
2012.

[40] C Perrow. Normal accidents: living with high-risk tech-
nologies (basic, new york). 1984.

[41] Rahul Potharaju, Joseph Chan, Luhui Hu, Cristina Nita-
Rotaru, Mingshi Wang, Liyuan Zhang, and Navendu
Jain. Confseer: leveraging customer support knowledge
bases for automated misconfiguration detection. Pro-
ceedings of the VLDB Endowment, 8(12):1828–1839,
2015.

[42] Andrew Quinn, David Devecsery, Peter M Chen, and
Jason Flinn. Jetstream: Cluster-scale parallelization
of information flow queries. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 451–466, 2016.

[43] Ariel Rabkin and Randy Katz. Precomputing possible
configuration error diagnoses. In Proceedings of the
2011 26th IEEE/ACM International Conference on Au-
tomated Software Engineering, pages 193–202. IEEE
Computer Society, 2011.

[44] Ariel Rabkin and Randy Katz. Static extraction of pro-
gram configuration options. In 2011 33rd International
Conference on Software Engineering (ICSE), pages 131–
140. IEEE, 2011.

[45] Ariel Rabkin and Randy Howard Katz. How hadoop
clusters break. IEEE software, 30(4):88–94, 2013.

[46] James Reason. Human error. Cambridge university
press, 1990.

[47] Mark Santolucito, Ennan Zhai, Rahul Dhodapkar, Aaron
Shim, and Ruzica Piskac. Synthesizing configura-
tion file specifications with association rule learning.
Proceedings of the ACM on Programming Languages,
1(OOPSLA):64, 2017.

[48] Mark Santolucito, Ennan Zhai, and Ruzica Piskac. Prob-
abilistic automated language learning for configuration
files. In International Conference on Computer Aided
Verification, pages 80–87. Springer, 2016.

[49] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan
Zhou. /* icomment: Bugs or bad comments?*. In ACM
SIGOPS Operating Systems Review, volume 41, pages
145–158. ACM, 2007.

[50] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. acom-
ment: mining annotations from comments and code
to detect interrupt related concurrency bugs. In 2011
33rd International Conference on Software Engineering
(ICSE), pages 11–20. IEEE, 2011.

[51] Chunqiang Tang, Thawan Kooburat, Pradeep Venkat-
achalam, Akshay Chander, Zhe Wen, Aravind
Narayanan, Patrick Dowell, and Robert Karl. Holistic

278 2020 USENIX Annual Technical Conference USENIX Association

https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration

configuration management at facebook. In Proceedings
of the 25th Symposium on Operating Systems Principles,
pages 328–343. ACM, 2015.

[52] TechCrunch. Facebook blames a server configuration
change for yesterday’s outage. https://shorturl.at/
opuEG, 2019.

[53] virtualizationreview. Configuration error leads
to another amazon web services data breach.
https://virtualizationreview.com/articles/
2017/06/21/configuration-error-leads-to-
another-aws-data-breach.aspx, 2017.

[54] Helen J Wang, John C Platt, Yu Chen, Ruyun Zhang,
and Yi-Min Wang. Automatic misconfiguration trou-
bleshooting with peerpressure. In OSDI, volume 4,
pages 245–257, 2004.

[55] Shu Wang, Chi Li, Henry Hoffmann, Shan Lu, William
Sentosa, and Achmad Imam Kistijantoro. Understand-
ing and auto-adjusting performance-sensitive config-
urations. In Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), vol-
ume 53, pages 154–168. ACM, 2018.

[56] Yi-Min Wang, Chad Verbowski, John Dunagan,
Yu Chen, Helen J Wang, Chun Yuan, and Zheng Zhang.
Strider: A black-box, state-based approach to change
and configuration management and support. Science of
Computer Programming, 53(2):143–164, 2004.

[57] Andrew Whitaker, Richard S Cox, and Steven D Gribble.
Configuration debugging as search: Finding the needle
in the haystack. In OSDI, volume 4, pages 6–6, 2004.

[58] Edmund Wong, Lei Zhang, Song Wang, Taiyue Liu,
and Lin Tan. Dase: Document-assisted symbolic ex-
ecution for improving automated software testing. In
Proceedings of the 37th International Conference on
Software Engineering-Volume 1, pages 620–631. IEEE
Press, 2015.

[59] Chengcheng Xiang, Yudong Wu, Bingyu Shen, Mingyao
Shen, Haochen Huang, Tianyin Xu, Yuanyuan Zhou,
Cindy Moore, Xinxin Jin, and Tianwei Sheng. Towards
continuous access control validation and forensics. In
Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 113–
129, 2019.

[60] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou,
Shankar Pasupathy, and Rukma Talwadker. Hey, you
have given me too many knobs!: understanding and deal-
ing with over-designed configuration in system software.

In Proceedings of the 2015 10th Joint Meeting on Foun-
dations of Software Engineering, pages 307–319. ACM,
2015.

[61] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou,
Shan Lu, Long Jin, and Shankar Pasupathy. Early detec-
tion of configuration errors to reduce failure damage. In
OSDI, pages 619–634, 2016.

[62] Tianyin Xu, Han Min Naing, Le Lu, and Yuanyuan Zhou.
How do system administrators resolve access-denied
issues in the real world? In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems,
pages 348–361. ACM, 2017.

[63] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tian-
wei Sheng, Ding Yuan, Yuanyuan Zhou, and Shankar
Pasupathy. Do not blame users for misconfigurations.
In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pages 244–259. ACM,
2013.

[64] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou,
Lakshmi N Bairavasundaram, and Shankar Pasupathy.
An empirical study on configuration errors in commer-
cial and open source systems. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, pages 159–172. ACM, 2011.

[65] Chun Yuan, Ni Lao, Ji-Rong Wen, Jiwei Li, Zheng
Zhang, Yi-Min Wang, and Wei-Ying Ma. Automated
known problem diagnosis with event traces. In ACM
SIGOPS Operating Systems Review, volume 40, pages
375–388. ACM, 2006.

[66] Ding Yuan, Yinglian Xie, Rina Panigrahy, Junfeng Yang,
Chad Verbowski, and Arunvijay Kumar. Context-based
online configuration-error detection. In Proceedings of
the 2011 USENIX conference on USENIX annual tech-
nical conference, pages 28–28. USENIX Association,
2011.

[67] Juan Zhai, Jianjun Huang, Shiqing Ma, Xiangyu Zhang,
Lin Tan, Jianhua Zhao, and Feng Qin. Automatic model
generation from documentation for java api functions.
In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), pages 380–391. IEEE,
2016.

[68] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xi-
aolan Zhang, Niyu Ge, Vasanth Bala, Tianyin Xu, and
Yuanyuan Zhou. Encore: Exploiting system envi-
ronment and correlation information for misconfigu-
ration detection. Proceedings of the Eighteenth In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 42(1):687–700, 2014.

USENIX Association 2020 USENIX Annual Technical Conference 279

https://shorturl.at/opuEG
https://shorturl.at/opuEG
https://virtualizationreview.com/articles/2017/06/21/configuration-error-leads-to-another-aws-data-breach.aspx
https://virtualizationreview.com/articles/2017/06/21/configuration-error-leads-to-another-aws-data-breach.aspx
https://virtualizationreview.com/articles/2017/06/21/configuration-error-leads-to-another-aws-data-breach.aspx

[69] Sai Zhang and Michael D Ernst. Automated diagnosis
of software configuration errors. In Proceedings of the
2013 International Conference on Software Engineering,
pages 312–321. IEEE Press, 2013.

[70] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. Infer-
ring resource specifications from natural language api
documentation. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engi-

neering, pages 307–318. IEEE Computer Society, 2009.

[71] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Se-
bastiano Panichella, and Harald Gall. Analyzing apis
documentation and code to detect directive defects. In
Proceedings of the 39th International Conference on
Software Engineering, pages 27–37. IEEE Press, 2017.

280 2020 USENIX Annual Technical Conference USENIX Association

	Introduction
	Motivation
	Our Contributions

	Characteristic Study
	Design and Implementation
	Preprocessing and Parsing
	Recommendation Sentences Extraction
	Specification Generation
	Violation Detection from Configurations

	Experimental Evaluation
	Discussion
	Related Work
	Conclusions and Future Work

